Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-19T07:18:29.391Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2011

Patrick Bateson
Affiliation:
University of Cambridge
Peter Gluckman
Affiliation:
University of Auckland
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. A., Laforsch, C. & Tollrian, R. (1999). Transgenerational induction of defences in animals and plants. Nature, 401, 60–63.CrossRefGoogle Scholar
Albon, S. D., Clutton-Brock, T. H. & Guinness, F. E. (1987). Early development and population dynamics in red deer. II. Density-independent effects and cohort variation. Journal of Animal Ecology, 56, 69–81.CrossRefGoogle Scholar
Amundson, R. (2005). The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Andersson, M. (1994). Sexual Selection, Princeton, NJ: Princeton University Press.Google Scholar
Anway, M. D., Cupp, A. S., Uzumcu, M. & Skinner, M. K. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466–1469.CrossRefGoogle ScholarPubMed
Applebaum, S. W. & Heifetz, Y. (1999). Density-dependent physiological phase in insects. Annual Review of Entomology, 44, 317–341.CrossRefGoogle ScholarPubMed
Arthur, W. (1997). The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Avital, E. & Jablonka, E. (2000). Animal Traditions: Behavioural Inheritance in Evolution, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Badyaev, A. V. (2009). Evolutionary significance of phenotypic accommodation in novel environments: an empirical test of the Baldwin effect. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 364, 1125–1141.CrossRefGoogle ScholarPubMed
Badyaev, A. V. & Uller, T. (2009). Parental effects in ecology and evolution: mechanisms, processes and implications. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 364, 1169–1177.CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 30, 441–451, 536–553.CrossRefGoogle Scholar
Baldwin, J. M. (1902). Development and Evolution, London: MacMillan.Google Scholar
Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Winter, P. D., Osmond, C., Margetts, B. & Simmonds, S. J. (1989). Weight in infancy and death from ischaemic heart disease. Lancet, 2, 577–580.CrossRefGoogle ScholarPubMed
Bateson, P. P. G. (1976). Rules and reciprocity in behavioural development. In Growing Points in Ethology, ed. Bateson, P. P. G. & Hinde, R. A.. Cambridge, UK: Cambridge University Press, 40l–42l.Google Scholar
Bateson, P. (1983). Optimal outbreeding. In Mate Choice, ed. Bateson, P.. Cambridge, UK: Cambridge University Press, 257–277.Google Scholar
Bateson, P. (1987). Biological approaches to the study of behavioral development. International Journal of Behavioral Development, 10, 1–22.CrossRefGoogle Scholar
Bateson, P. (1994). The dynamics of parent–offspring relationships in mammals. Trends in Ecology & Evolution, 9, 399–403.CrossRefGoogle ScholarPubMed
Bateson, P. (2000). Models of memory: the case of imprinting. In Brain, Perception, Memory: Advances in Cognitive Neuroscience, ed. Bolhuis, J.. Oxford: Oxford University Press, 267–278.CrossRefGoogle Scholar
Bateson, P. (2001). Fetal experience and good adult design. International Journal of Epidemiology, 30, 928–934.CrossRefGoogle ScholarPubMed
Bateson, P. (2006). The adaptability driver: links between behaviour and evolution. Biological Theory, 1, 342–345.CrossRefGoogle Scholar
Bateson, P. (2007). Developmental plasticity and evolutionary biology. Journal of Nutrition, 137, 1060–1062.CrossRefGoogle ScholarPubMed
Bateson, P. (2010). The evolution of evolutionary theory. European Review, 18, 287–296.CrossRefGoogle Scholar
Bateson, P., Barker, D., Clutton-Brock, T., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–421.CrossRefGoogle ScholarPubMed
Bateson, P. & Horn, G. (1994). Imprinting and recognition memory: a neural net model. Animal Behaviour, 48, 695–715.CrossRefGoogle Scholar
Bateson, P. & Mameli, M. (2007). The innate and the acquired: useful clusters or a residual distinction from folk biology?Developmental Psychobiology, 49, 818–831.CrossRefGoogle ScholarPubMed
Bateson, P. & Martin, P. (1999). Design For a Life: How Behaviour Develops, London: Cape.Google Scholar
Bateson, W. (1894). Materials for the Study of Variation: Treated With Especial Regard to Discontinuity in The Origin of Species, London: Macmillan.Google Scholar
Bauerfeind, S. S., Perlick, J. E. C. & Fischer, K. (2009). Disentangling environmental effects on adult life span in a butterfly across the metamorphic boundary. Experimental Gerontology, 44, 805–811.CrossRefGoogle Scholar
Beall, C. M. (2007). Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proceedings of the National Academy of Sciences of the United States of America, 104, 8655–8660.CrossRefGoogle ScholarPubMed
Beall, C. M., Cavalleri, G. L., Deng, L., et al. (2010). Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proceedings of the National Academy of Sciences of the USA, 107, 11459–11464.CrossRefGoogle ScholarPubMed
Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. (2009). Experimental evolution of bet hedging. Nature, 462, 90–93.CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L. & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: an evolutionary theory of socialization. Child Development, 62, 647–670.CrossRefGoogle ScholarPubMed
Beltman, J. B., Haccou, P. & Ten Cate, C. (2004). Learning and colonization of new niches: a first step towards speciation. Evolution, 58, 35–46.CrossRefGoogle Scholar
Belyaev, D. K. (1969). Domestication of animals. Science Journal (UK), 5, 47–52.Google Scholar
Bird, C. D. & Emery, N. J. (2009). Rooks use stones to raise the water level to reach a floating worm. Current Biology, 19, 1410–1414.CrossRefGoogle ScholarPubMed
Blumberg, M. S. (2005). Basic Instinct: The Genesis of Behavior. New York: Thunder's Mouth Press.Google Scholar
Blumberg, M. S. (2009). Freaks of Nature: What Anomalies Tell Us About Development and Evolution, New York: Oxford University Press.Google Scholar
Bolhuis, J. J. (1991). Mechanisms of avian imprinting: a review. Biological Reviews, 66, 303–345.CrossRefGoogle ScholarPubMed
Borenstein, E., Feldman, M. W. & Aoki, K. (2008). Evolution of learning in fluctuating environments: when selection favors both social and exploratory individual learning. Evolution, 62, 586–602.CrossRefGoogle ScholarPubMed
Bossdorf, O., Richards, C. L. & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11, 106–115.Google ScholarPubMed
Breland, K. & Breland, M. (1966). Animal Behavior, New York: Macmillan.Google Scholar
Britten, R. J. & Davidson, E. H. (1969). Gene regulation for higher cells: a theory. Science, 165, 349–357.CrossRefGoogle ScholarPubMed
Brönmark, C., Pettersson, L. B. & Nilson, P. A. (1999). Predator-induced defense in crucian carp. In The Ecology and Evolution of Inducible Defenses, ed. Tollrian, R. & Harvell, C. D.. Princeton, NJ: Princeton University Press, 203–217.Google Scholar
Brooks, A. A., Johnson, M. R., Steer, P. J., Pawson, M. E. & Abdalla, H. I. (1995). Birth weight: nature or nurture?Early Human Development, 42, 29–35.CrossRefGoogle ScholarPubMed
Brown, R. W., Chapman, K. E., Edwards, C. R. & Seckl, J. R. (1993). Human placental 11-beta-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology, 132, 2614–21.CrossRefGoogle ScholarPubMed
Burkhardt, R. W. (2005). Patterns of Behavior, Chicago: University of Chicago Press.Google Scholar
Byrne, R. W. (2000). Evolution of primate cognition. Cognitive Science, 24, 543–570.CrossRefGoogle Scholar
Campos, E. (1995). Amblyopia. Survey of Ophthalmology, 40, 23–39.CrossRefGoogle ScholarPubMed
Cannon, W. B. (1929). Organization for physiological homeostasis. Physiological Reviews, 9, 399–431.CrossRefGoogle Scholar
Capy, P., Gasperi, G., Biemont, C. & Bazin, C. (2000). Stress and transposable elements: co-evolution or useful parasites?Heredity, 85, 101–106.CrossRefGoogle ScholarPubMed
Carroll, S. B. (2005). Endless Forms Most Beautiful: The New Science of Evo Devo, New York: Norton.Google Scholar
Cedar, H. & Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nature Reviews Genetics, 10, 295–304.CrossRefGoogle ScholarPubMed
Centerwall, S. A. & Centerwall, W. R. (2000). The discovery of phenylketonuria: the story of a young couple, two affected children, and a scientist. Pediatrics, 105, 89–103.CrossRefGoogle Scholar
Chali, D., Enquselassie, F. & , M. (1998). A case-control study on determinants of rickets. Ethiopian Medical Journal, 36, 227–234.Google ScholarPubMed
Champagne, F. A. (2010). Epigenetic influence of social experiences across the lifespan. Developmental Psychobiology, 52, 299–311.CrossRefGoogle ScholarPubMed
Champagne, F. A. & Curley, J. P. (2009). Epigenetic mechanisms mediating the long-term effects of maternal care on development. Neuroscience and Biobehavioral Reviews, 33, 593–600.CrossRefGoogle ScholarPubMed
Champagne, F. A., Francis, D. D., Mar, A. & Meaney, M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiology & Behavior, 79, 359–371.CrossRefGoogle ScholarPubMed
Chomsky, N. (2000). On Nature and Language, Cambridge, UK: Cambridge University Press.Google Scholar
Chou, H.-H., Hayakawa, T., Diaz, S., et al. (2002). Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proceedings of the National Academy of Sciences of the USA, 99, 11736–11741.CrossRefGoogle ScholarPubMed
Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. (1982). Red Deer: Behaviour and Ecology of Two Sexes, Chicago: University of Chicago Press.Google Scholar
Cohen, L. G., Celnik, P., Pascual-Leone, A., et al. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389, 180–183.CrossRefGoogle ScholarPubMed
Coon, D. (2006). Psychology: a Modular Approach to Mind and Behavior, Belmont: Thomson Learning.Google Scholar
Cornwallis, C. K. & Uller, T. (2010). Towards an evolutionary ecology of sexual traits. Trends in Ecology & Evolution, 25, 145–152.CrossRefGoogle ScholarPubMed
Cresswell, W. (1994). Song as a pursuit-deterrent signal, and its occurrence relative to other anti-predation behaviors of skylark (Alauda arvensis) on attack by merlins (Falco columbarius). Behavioral Ecology & Sociobiology, 34, 217–223.CrossRefGoogle Scholar
Danial, N. N. & Korsmeyer, S. J. (2004). Cell death: critical control points. Cell, 116, 205–19.CrossRefGoogle ScholarPubMed
Darwin, C. (1859). On the Origin of Species By Means of Natural Selection, London: Macmillan.Google Scholar
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex, London: Murray.Google Scholar
Darwin, C. (1872). The Expression of the Emotions in Man and Animals, London: John Murray.CrossRefGoogle Scholar
Dasgupta, P. (2009). Poverty traps: exploring the complexity of causation. In The Poorest and the Hungry: Assessments, Analyses, and Actions, ed. Braun, J., Vargas Hill, R. & Pandya-Lorch, R., Washington, DC: International Food Policy Research Institute, 129–146.Google Scholar
Davenport, J. (1997). Temperature and the life-history strategies of sea turtles. Journal of Thermal Biology, 22, 479–488.CrossRefGoogle Scholar
Davis, O. S. P., Haworth, C. M. A. & Plomin, R. (2009). Dramatic increase in heritability of cognitive development from early to middle childhood: an 8-year longitudinal study of 8,700 pairs of twins. Psychological Science, 20, 1301–1308.CrossRefGoogle Scholar
Dawkins, R. (1976). The Selfish Gene, New York: Oxford University Press.Google Scholar
Dawkins, R. (1986). The Blind Watchmaker, Harlow: Longman.Google Scholar
Dawkins, R. (1989). The evolution of evolvability. In Artificial Life VI: Proceedings of the Santa Fe Institute Studies in the Sciences of Complexity, ed. Langton, C.. Reading, MA: Addison-Wesley, 201–220.Google Scholar
Kort, S. R., Tebbich, J. M., Dally, N. J., Emery, N. J. & Clayton, N. S. (2006). The comparative cognition of caching. In Comparative Cognition: Experimental Explorations of Animal Intelligence, ed. Wasserman, E. A. & Zentall, T. R.. Oxford: Oxford University Press, 602–618.Google Scholar
Dejong, G. (1995). Phenotypic plasticity as a product of selection in a variable environment. American Naturalist, 145, 493–512.CrossRefGoogle Scholar
Denver, R., Mirhadi, N. & Phillips, M. (1998). Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology, 79, 1859–1872.Google Scholar
Diamond, J. (1991). Pearl Harbor and the Emperor's physiologists. Natural History, 1991, 2–7.Google Scholar
Dirani, M., Tong, L., Gazzard, G., et al. (2009). Outdoor activity and myopia in Singapore teenage children. British Journal of Ophthalmology, 93, 997–1000.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35, 125–129.CrossRefGoogle Scholar
Donohue, K. (2005). Niche construction through phonological plasticity: life history dynamics and ecological consequences. New Phytology, 166, 83–92.CrossRefGoogle Scholar
Dover, G. (1986). Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends in Genetics, 2, 159–165.CrossRefGoogle Scholar
Duarte, J. M. B. & Jorge, W. (1996). Chromosomal polymorphism in several populations of deer (genus Mazama) from Brazil. Archivos de Zootecnia, 45, 281–287.Google Scholar
Edelman, G. M. (1987). Neural Darwinism, New York: Basic Books.Google Scholar
Eichler, E. E. (2001). Segmental duplications: what's missing, misassigned, and misassembled – and should we care?Genome Research, 11, 653–6.CrossRefGoogle ScholarPubMed
Eldar, A., Shilo, B.-Z. & Barkai, N. (2006). Elucidating mechanisms underlying robustness of morphogen gradients. Current Opinion in Genetics & Development, 14, 435–439.CrossRefGoogle Scholar
Elton, C. (1930). Animal Ecology and Evolution, Oxford: Oxford University Press.Google Scholar
Erhuma, A., Bellinger, L., Langley-Evans, S. C. & Bennett, A. J. (2007). Prenatal exposure to undernutrition and programming of responses to high-fat feeding in the rat. British Journal of Nutrition, 98, 517–524.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsen, T. J., Osmond, C. & Barker, D. J. P. (2003). Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care, 26, 3006–3010.CrossRefGoogle ScholarPubMed
Felsenfeld, G. & Groudine, M. (2003). Controlling the double helix. Nature, 421, 448–453.CrossRefGoogle ScholarPubMed
Feng, S., Cokus, S. J., Zhang, X., et al. (2010). Conservation and divergence of methylation patterning in plants and animals. Proceedings of the National Academy of Sciences of the USA, 107, 8689–8694.CrossRefGoogle ScholarPubMed
Fernald, R. D. (2000). Evolution of eyes. Current Opinion in Neurobiology, 10, 444–450.CrossRefGoogle ScholarPubMed
Feuillet, L., Dufour, H. & Pelletier, J. (2007). Brain of a white-collar worker. Lancet, 370, 262.CrossRefGoogle ScholarPubMed
Fitzgibbon, C. D. & Fanshawe, J. H. (1988). Stotting in Thomson gazelles: an honest signal of condition. Behavioral Ecology & Sociobiology, 23, 69–74.CrossRefGoogle Scholar
Flatt, T. (2005). The evolutionary genetics of canalization. Quarterly Review of Biology, 80, 287–316.CrossRefGoogle ScholarPubMed
Fraga, M. F., Ballestar, E., Paz, M. F., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the USA, 102, 10604–10609.CrossRefGoogle ScholarPubMed
Frankel, N., Davis, G. K., Vargas, D., Wang, S., Payre, F. & Stern, D. L. (2010). Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature, 466, 490–493.CrossRefGoogle ScholarPubMed
Freeman, T. C. B., Sengpiel, F. & Blakemore, C. (1996). Development of binocular interactions in the primary visual cortex of anaesthetized kittens. Journal of Physiology, 494P, P18–P19.Google Scholar
Fuglsang, J. & Ovesen, P. (2006). Aspects of placental growth hormone physiology. Growth Hormone & IGF Research, 16, 67–85.CrossRefGoogle ScholarPubMed
Gale, C. R., Jiang, B., Robinson, S. M., Godfrey, K. M., Law, C. M. & Martyn, C. N. (2006). Maternal diet during pregnancy and carotid intima-media thickness in children. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1877–1882.CrossRefGoogle ScholarPubMed
Gangaraju, V. K., Yin, H., Weiner, M. M., Wang, J., Huang, X. A. & Lin, H. (2010). Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nature Genetics, 43, 153–158.CrossRefGoogle ScholarPubMed
Gilbert, S. F. (2005). Mechanisms for the environmental regulation of gene expression: ecological aspects of animal development. Journal of Biosciences, 30, 65–74.CrossRefGoogle ScholarPubMed
Gilbert, S. F. & Epel, D. (2009). Ecological Developmental Biology: Integrating Epigenetics, Medicine and Evolution, Sunderland, MA: Sinauer Associates.Google Scholar
Gilbert, S. F., Opitz, J. M. & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.CrossRefGoogle ScholarPubMed
Ginsburg, S. & Jablonka, E. (2007). The transition to experiencing. II. The evolution of associative learning based on feelings. Biological Theory, 2, 231–243.CrossRefGoogle Scholar
Giraldeau, L.-A., Valone, T. J. & Templeton, J. J. (2002). Potential disadvantages of using socially acquired information. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 357, 1559–1566.CrossRefGoogle ScholarPubMed
Gluckman, P. D. & Hanson, M. A. (2004). Maternal constraint of fetal growth and its consequences. Seminars in Fetal & Neonatal Medicine, 9, 419–425.CrossRefGoogle ScholarPubMed
Gluckman, P. D. & Hanson, M. A. (2005). The Fetal Matrix: Evolution, Development, and Disease, Cambridge, UK: Cambridge University Press.Google Scholar
Gluckman, P. D. & Hanson, M. A. (eds) (2006). Developmental Origins of Health and Disease, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Gluckman, P. D. & Hanson, M. A. (2010). The plastic human. Infant and Child Development, 19, 21–26.CrossRefGoogle Scholar
Gluckman, P. D., Hanson, M. A. & Beedle, A. S. (2007a). Early life events and their consequences for later disease: a life history and evolutionary perspective. American Journal of Human Biology, 19, 1–19.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A. & Beedle, A. S. (2007b). Non-genomic transgenerational inheritance of disease risk. Bioessays, 29, 145–154.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A. & Buklijas, T. (2010). A conceptual framework for the developmental origins of health and disease. Journal of Developmental Origins of Health and Disease, 1, 6–18.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Buklijas, T., Low, F. M. & Beedle, A. S. (2009). Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nature Reviews Endocrinology, 5, 401–408.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A. & Spencer, H. G. (2005a). Predictive adaptive responses and human evolution. Trends in Ecology & Evolution, 20, 527–533.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Hanson, M. A., Spencer, H. G. & Bateson, P. (2005b). Environmental influences during development and their later consequences for health and disease: implications for the interpretation of empirical studies. Proceedings of the Royal Society of London. Series B, Biological Sciences, 272, 671–677.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Lillycrop, K. A., Vickers, M. H., et al. (2007c). Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proceedings of the National Academy of Sciences of the USA, 104, 12796–12800.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Gluckman, P. D. & Hanson, M. A. (2010). Developmental origins of metabolic disease: life course and intergenerational perspectives. Trends in Endocrinology & Metabolism, 21, 199–205.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Gluckman, P. D., Lillycrop, K. A., et al. (2009). Epigenetic marks at birth predict childhood body composition at age 9 years. Journal of Developmental Origins of Health and Disease, 1, S44.Google Scholar
Gollin, E. S. (ed.) (1981). Developmental Plasticity: Behavioral and Biological Aspects of Variations in Development, New York: Academic Press.Google Scholar
Gonzalgo, M. L. & Jones, P. A. (1997). Mutagenic and epigenetic effects of DNA methylation. Mutation Research, 386, 107–118.CrossRefGoogle ScholarPubMed
Goodier, J. L. & Kazazian, H. H., Jr. (2008). Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell, 135, 23–35.CrossRefGoogle ScholarPubMed
Gottlieb, G. (1971). Development of Species Identification in Birds, Chicago: University of Chicago Press.Google Scholar
Gottlieb, G. (1992). Individual Development and Evolution, New York: Oxford University Press.Google Scholar
Gould, S. J. & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B, Biological Sciences, 205, 581–598.CrossRefGoogle Scholar
Gould, S. J. & Vrba, E. (1982). Exaptation: a missing term in the science of form. Palaeobiology, 8, 4–15.CrossRefGoogle Scholar
Grandjean, V., Hauck, Y., Beloin, C., Hégarat, F. & Hirschbein, L. (1998). Chromosomal inactivation of Bacillus subtilis exfusants: a prokaryotic model of epigenetic regulation. Biological Chemistry, 379, 553–557.Google ScholarPubMed
Grant, P. R. (1986). Ecology and Evolution of Darwin's Finches, Princeton, NJ: Princeton University Press.Google Scholar
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., et al. (2010). A draft sequence of the Neandertal genome. Science, 328, 710–722.CrossRefGoogle ScholarPubMed
Griffiths, J. S. & Mahler, H. R. (1969). DNA ticketing theory of memory. Nature, 223, 580–582.CrossRefGoogle Scholar
Griffiths, P. E. & Stotz, K. (2006). Genes in the post-genomic era. Theoretical Medicine and Bioethics, 27, 499–521.CrossRefGoogle Scholar
Grohmann, J. (1939). Modifikation oder Funktionsreifung? Ein Beitrag zur Klärung der wechelseitigen Beziehungen zwischen Instinkthandlung und Erfahrung. Zeitschrift für Tierpsychologie, 2, 132–144.CrossRefGoogle Scholar
Guan, J.-S., Haggarty, S. J., Giacometti, E., et al. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459, 55–60.CrossRefGoogle ScholarPubMed
Guerrero-Preston, R., Goldman, L. R., Brebi-Mieville, P., et al. (2010). Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics, 5, 539–546.CrossRefGoogle ScholarPubMed
Gunn, T. R. & Gluckman, P. D. (1989). The endocrine control of the onset of thermogenesis at birth. Baillière's Clinical Endocrinology and Metabolism, 3, 869–886.CrossRefGoogle ScholarPubMed
Gwinner, E. (1996). Circadian and circannual programmes in avian migration. Journal of Experimental Biology, 199, 39–48.Google ScholarPubMed
Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7, 1–16.CrossRefGoogle ScholarPubMed
Hardy, A. (1965). The Living Stream, London: Collins.Google Scholar
Harper, L. V. (2005). Epigenetic inheritance and the intergenerational transfer of experience. Psychological Bulletin, 131, 340–360.CrossRefGoogle ScholarPubMed
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the USA, 105, 17046–17049.CrossRefGoogle ScholarPubMed
Helanterä, H. & Uller, T. (2010). The price equation and extended inheritance. Philosophy & Theory in Biology, 2, e101.CrossRefGoogle Scholar
Helgason, A., Palsson, S., Guobjartsson, D., Kristjansson, P. & Stefansson, K. (2008). An association between the kinship and fertility of human couples. Science, 319, 813–816.CrossRefGoogle ScholarPubMed
Hensch, T. K. (2004). Critical period regulation. Annual Review of Neuroscience, 27, 549–579.CrossRefGoogle ScholarPubMed
Heyes, C. & Huber, L. (2000). The Evolution of Cognition, Cambridge, MA: MIT Press.Google Scholar
Hinde, R. A. (1959). Behaviour and speciation in birds and lower vertebrates. Biological Reviews, 34, 85–128.CrossRefGoogle Scholar
Hinton, G. E. & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1, 495–502.Google Scholar
Hölldobler, B. & Wilson, E. O. (1990). The Ants, Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Holmes, F. L. (1963). Claude Bernard and the milieu intérieur. Archives Internationales d'Histoire des Sciences, 16, 369–376.Google Scholar
Horn, G. & McCabe, B. J. (1984). Predispositions and preferences: effects on imprinting of lesions to the chick brain. Animal Behaviour, 32, 288–292.CrossRefGoogle Scholar
Horn, G., Rose, S. P. R. & Bateson, P. P. G. (1973). Experience and plasticity in the central nervous system. Science, 181, 506–514.CrossRefGoogle ScholarPubMed
Huang, S. (2009). Reprogramming cell fates: reconciling rarity with robustness. BioEssays, 31, 546–560.CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1976). The social function of intellect. In Growing Points in Ethology, ed. Bateson, P. P. G. & Hinde, R. A.. New York: Cambridge University Press, 303–317.Google Scholar
Jablonka, E. & Lamb, M. J. (1995). Epigenetic Inheritance and Evolution: The Lamarckian Dimension, New York: Oxford University Press.Google Scholar
Jablonka, E. & Lamb, M. J. (2005). Evolution in Four Dimensions, Cambridge, MA: MIT Press.Google Scholar
Jablonka, E., Oborny, B., Molnar, I., Kisdi, E., Hofbauer, J. & Czaran, T. (1995). The adaptive advantage of phenotypic memory in changing environments. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 350, 133–141.CrossRefGoogle ScholarPubMed
Jablonka, E. & Raz, G. (2009). Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quarterly Review of Biology, 84, 131–176.CrossRefGoogle Scholar
Jacob, F. & Monod, J. (1961). On the regulation of gene activity. Cold Spring Harbor Symposium on Quantitative Biology, 26, 193–211.CrossRefGoogle Scholar
Jahoor, F., Badaloo, A., Reid, M. & Forrester, T. (2006). Unique metabolic characteristics of the major syndromes of severe childhood malnutrition. In The Tropical Metabolism Research Unit, The University of the West Indies, Jamaica 1956–2006: The House that John Built, ed. Forrester, T., Picou, D. & Walker, S.. Kingston, Jamaica: Ian Randle Publishers, 23–60.Google Scholar
Jenuwein, T. & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.CrossRefGoogle ScholarPubMed
Johannsen, W. (1909). Elemente der Exakten Erblichkeitslehre, Jena, Germany: Gustav Fischer.Google Scholar
Johnson, L. J. & Tricker, P. J. (2010). Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity, 105, 113–121.CrossRefGoogle ScholarPubMed
Jolly, A. (1966). Lemur social behavior and primate intelligence. Science, 153, 501–506.CrossRefGoogle ScholarPubMed
Jones, A. P. & Friedman, M. I. (1982). Obesity and adipocyte abnormalities in offspring of rats undernourished during pregnancy. Science, 215, 1518–1519.CrossRefGoogle ScholarPubMed
Jones, J. H. (2009). The force of selection on the human life cycle. Evolution and Human Behavior, 30, 305–314.CrossRefGoogle ScholarPubMed
Jones, P. A. (1999). The DNA methylation paradox. Trends in Genetics, 15, 34–37.CrossRefGoogle ScholarPubMed
Jones, P. A., Rideout, W. M., Shen, J. C., Spruck, C. H. & Tsai, Y. C. (1992). Methylation, mutation and cancer. Bioessays, 14, 33–36.CrossRefGoogle ScholarPubMed
Kalbe, M., Eizaguirre, C., Dankert, I., et al. (2009). Lifetime reproductive success is maximized with optimal major histocompatibility complex diversity. Proceedings of the Royal Society B – Biological Sciences, 276, 925–934.CrossRefGoogle ScholarPubMed
Kandel, E. R. & Schwartz, J. H. (1982). Molecular biology of learning: modulation of transmitter release. Science, 218, 433–443.CrossRefGoogle ScholarPubMed
Kartavtseva, I. V. & Pavlenko, M. V. (2000). Chromosome variation in the striped field mouse Apodemus agrarius (Rodentia, Muridae). Russian Journal of Genetics, 36, 162–174.Google Scholar
Keller, E.F. (2000). Century of the Gene, Cambridge, MA: Harvard University Press.Google Scholar
Keller, E.F. (2010). The Mirage of a Space between Nature and Nurture, Durham, NC: Duke University Press.CrossRefGoogle Scholar
Kidwell, M. G. & Lisch, D. R. (2001). Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution, 55, 1–24.CrossRefGoogle ScholarPubMed
King, M. (1993). Species Evolution: The Role of Chromosome Change, Cambridge, UK: Cambridge University Press.Google Scholar
Kirschner, M. W. & Gerhart, J. C. (2005). The plausibility of life: resolving Darwin's dilemma, New Haven: Yale University Press.Google Scholar
Klopfer, P. & Klopfer, M. (1977). Compensatory responses of goat mothers to their impaired young. Animal Behaviour, 25, 286–291.CrossRefGoogle ScholarPubMed
Köhler, W. (1925). The Mentality of Apes, London and New York: K. Paul, Trench, Trubner & Co.Google Scholar
Koyama, F. C., Chakrabarti, D. & Garcia, C. R. S. (2009). Molecular machinery of signal transduction and cell cycle regulation in Plasmodium. Molecular and Biochemical Parasitology, 165, 1–7.CrossRefGoogle ScholarPubMed
Koziol, M. J. & Rinn, J. L. (2010). RNA traffic control of chromatin complexes. Current Opinion in Genetics & Development, 20, 142–148.CrossRefGoogle ScholarPubMed
Kruuk, L. E. B., Clutton-Brock, T. H., Rose, K. E. & Guinness, F. E. (1999). Early determinants of lifetime reproductive success differ between the sexes in red deer. Proceedings of the Royal Society of London, Series B, Biological Sciences, 266, 1655–1661.CrossRefGoogle ScholarPubMed
Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. (2008). Nutritional control of reproductive status in honeybees via DNA methylation. Science, 319, 1827–1830.CrossRefGoogle ScholarPubMed
Kurth, R. & Bannert, N. (eds) (2010). Retroviruses: Molecular Biology, Genomics and Pathogenesis, Norfolk, UK: Caister Academic Press.Google Scholar
Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments?American Journal of Human Biology, 17, 5–21.CrossRefGoogle ScholarPubMed
Lachmann, M. & Jablonka, E. (1996). The inheritance of phenotypes: an adaptation to fluctuating environments. Journal of Theoretical Biology, 181, 1–9.CrossRefGoogle ScholarPubMed
Laforsch, C., Beccara, L. & Tollrian, R. (2006). Inducible defenses: the relevance of chemical alarm cues in Daphnia. Limnology and Oceanography, 51, 1466–1472.CrossRefGoogle Scholar
Laland, K. N. & Galef, B. G. (eds) (2009). The Question of Animal Culture, Cambridge, MA: Harvard University Press.Google Scholar
Laland, K. N., Odling-Smee, J. & Myles, S. (2010). How culture shaped the human genome: bringing genetics and the human sciences together. Nature Reviews Genetics, 11, 137–148.CrossRefGoogle ScholarPubMed
Lee, T. M. & Zucker, I. (1988). Vole infant development is influenced perinatally by maternal photoperiodic history. American Journal of Physiology, 255, R831–R38.Google ScholarPubMed
Lehrman, D. S. (1970). Semantic and conceptual issues in the nature–nurture problem. In Development and Evolution of Behavior, ed. Aronson, L. R., Tobach, E., Lehrman, D. S. & Rosenblatt, J. S.. San Francisco: Freeman, 17–52.Google Scholar
Lelievre-Pegorier, M., Vilar, J., Ferrier, M.-L., et al. (1998). Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney International, 54, 1455–1462.CrossRefGoogle ScholarPubMed
Lerner, R. (1984). On The Nature of Human Plasticity, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Leroi, A. M. (2003). Mutants: On the Form, Varieties and Errors of the Human Body, London: HarperCollins.Google Scholar
Levine, S. (1957). Infantile experience and resistance to physiological stress. Science, 126, 405.CrossRefGoogle ScholarPubMed
Levine, S. (1969). An endocrine theory of infantile stimulation. In Stimulation in Early Infancy, ed. Ambrose, A.. London: Academic Press, 45–63.Google Scholar
Lewontin, R. C. (1978). Adaptation. Scientific American, 239, 212–231.CrossRefGoogle ScholarPubMed
Lewontin, R. C. (1983). Gene, organism and environment. In Evolution from Molecules to Men, ed. Bendall, D. S.. Cambridge, UK: Cambridge University Press, 273–285.Google Scholar
Li, E. & Bird, A. (2007). DNA methylation in mammals. In Epigenetics, ed. Allis, C. D., Jenuwein, T. & Reinberg, D.. New York: Cold Spring Harbor Laboratory Press, 341–356.Google ScholarPubMed
Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S. & Carthew, R. W. (2009). A microRNA imparts robustness against environmental fluctuation during development. Cell, 137, 273–282.CrossRefGoogle ScholarPubMed
Lillycrop, K. A., Slater-Jefferies, J. L., Hanson, M. A., Godfrey, K. M., Jackson, A. A. & Burdge, G. C. (2007). Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. British Journal of Nutrition, 97, 1064–1073.CrossRefGoogle Scholar
Linquist, S., Machery, E., Griffiths, P. E. & Stotz, K. (2011). Exploring the folkbiological conception of human nature. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 366, 444–453.CrossRefGoogle ScholarPubMed
Liu, D., Diorio, J., Tannenbaum, B., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.CrossRefGoogle ScholarPubMed
Liu, S., Yeh, C.-T., Ji, T., et al. (2009). Mu transposon insertion sites and meiotic recombination events co-localize with epigenetic marks for open chromatin across the maize genome. PLoS Genetics, 5, e1000733.CrossRefGoogle ScholarPubMed
Liu, Y. L., Jia, W. G., Gu, Q. & Cynader, M. (1994). Involvement of muscarinic actetyl-choline receptors in regulation of kitten visual-cortex plasticity. Brain Research. Developmental Brain Research, 79, 63–71.CrossRefGoogle ScholarPubMed
Lloyd, G. E. R. (2007). Cognitive Variations: Reflections on the Unity and Diversity of the Human Mind, Oxford: Oxford University Press.CrossRefGoogle Scholar
Lloyd Morgan, C. (1896). Habit and Instinct, London: Arnold.CrossRefGoogle Scholar
Lorenz, K. (1935). Der kumpan in der umwelt des vogels. Journal für Ornithologie, 83, 137–213, 289–413.CrossRefGoogle Scholar
Lorenz, K. (1965). Evolution and Modification of Behavior, Chicago: University of Chicago Press.Google Scholar
Lorincz, M. C., Dickerson, D. R., Schmitt, M. & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology, 11, 1068–1075.CrossRefGoogle ScholarPubMed
Lucas, A. & Sampson, H. A. (2006). Infant nutrition and primary prevention: Current and future perspectives. In Primary Prevention by Nutrition Intervention in Infancy and Childhood, ed. Lucas, A. & Sampson, H. A.. Basel: Karger, 1–13.CrossRefGoogle Scholar
Maher, B. (2008). Personal genomes: the case of the missing heritability. Nature, 456, 18–21.CrossRefGoogle ScholarPubMed
Male, D., Brostoff, J., Roth, D. B. & Roitt, I. (2006). Immunology, Edinburgh: Elsevier.Google Scholar
Maleszka, R. (2008). Epigenetic integration of environmental and genomic signals in honey bees: the critical interplay of nutritional, brain and reproductive networks. Epigenetics, 3, 188–192.CrossRefGoogle ScholarPubMed
Mameli, M. (2005). The inheritance of features. Biology & Philosophy, 20, 365–399.CrossRefGoogle Scholar
Mameli, M. & Bateson, P. (2006). Innateness and the sciences. Biology & Philosophy, 21, 155–188.CrossRefGoogle Scholar
Mameli, M. & Bateson, P. (2011). An evaluation of the concept of innateness. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 366, 436–443.CrossRefGoogle ScholarPubMed
Mancini, D., Singh, S., Ainsworth, P. & Rodenhiser, D. (1997). Constitutively methylated CpG dinucleotides as mutation hot spots in the retinoblastoma gene (RB1). American Journal of Human Genetics, 61, 80–87.CrossRefGoogle Scholar
Marler, P. (2004). Innateness and the instinct to learn. Anais da Academia Brasileira de Ciências, 76, 189–200.CrossRefGoogle Scholar
Marler, P. & Peters, S. (1977). Selective vocal learning in a sparrow. Science, 198, 519–521.CrossRefGoogle Scholar
Marler, P. & Slabbekoorn, H. (2004). Nature's Music: The Science of Birdsong, London: Elsevier Academic.Google Scholar
Marshall, D. J. & Uller, T. (2007). When is a maternal effect adaptive?Oikos, 116, 1957–1963.CrossRefGoogle Scholar
Martin, P., & Bateson, P. (2007). Measuring Behaviour, 3rd edition. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Martin, P. & Caro, T. M. (1985). On the functions of play and its role in behavioral development. Advances in the Study of Behavior, 15, 59–103.CrossRefGoogle Scholar
Mateo, J. M. (2007). Ecological and hormonal correlates of antipredator behavior in adult Belding's ground squirrels (Spermophilus beldingi). Behavioral Ecology and Sociobiology, 62, 37–49.CrossRefGoogle Scholar
Mathis, A., Ferrari, M. C. O., Windel, N., Messier, F. O. & Chivers, D. P. (2008). Learning by embryos and the ghost of predation future. Proceedings of the Royal Society of London, Series B, Biological Sciences, 275, 2603–2607.CrossRefGoogle ScholarPubMed
Mattick, J. S. (2010). RNA as the substrate for epigenome–environment interactions. Bioessays, 32, 548–552.CrossRefGoogle ScholarPubMed
Matzke, M. A., Mette, M. F. & Matzke, A. J. M. (2000). Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43, 401–415.CrossRefGoogle ScholarPubMed
Maynard Smith, J. (1982). Evolution and the Theory of Games, Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Maynard Smith, J. & Szathmáry, E. (1995). The Major Transitions in Evolution, New York: Oxford University Press.Google Scholar
Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A. & Alon, U. (2006). Plasticity of the cis-regulatory input function of a gene. PLoS Biology, 4, 555–561.CrossRefGoogle ScholarPubMed
Mayr, E. (1963). Animal Species and Evolution, Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
McGrath, B. (2007). Muscle memory: the next generation of bionic prostheses. New Yorker, 30 July 2007, 40–45.Google ScholarPubMed
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience, 24, 1161–1192.CrossRefGoogle Scholar
Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81, 41–79.CrossRefGoogle ScholarPubMed
Miles, J. L., Landon, J., Davison, M., Krageloh, C. U., Thompson, N. M., Triggs, C. M. & Breier, B. H. (2009). Prenatally undernourished rats show increased preference for wheel running v. lever pressing for food in a choice task. British Journal of Nutrition, 101, 902–908.CrossRefGoogle Scholar
Milinski, M. (1999). Glasses for children: are they curing the wrong symptoms for the wrong reason? In Evolution in Health and Disease, ed. Stearns, S. C.. Oxford: Oxford University Press, 121.Google Scholar
Miller, C. A., Gavin, C. F., White, J. A., et al. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664–666.CrossRefGoogle ScholarPubMed
Minelli, A. & Fusco, G. (2010). Developmental plasticity and the evolution of animal complex life cycles. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 365, 631–640.CrossRefGoogle ScholarPubMed
Misawa, K., Kamatani, N. & Kikuno, R. F. (2008). The universal trend of amino acid gain–loss is caused by CpG hypermutability. Journal of Molecular Evolution, 67, 334–342.CrossRefGoogle ScholarPubMed
Misawa, K. & Kikuno, R. F. (2009). Evaluation of the effect of CpG hypermutability on human codon substitution. Gene, 431, 18–22.CrossRefGoogle ScholarPubMed
Mohd-Sarip, A. & Verrijzer, C. P. (2004). A higher order of silence. Science, 306, 1484–1485.CrossRefGoogle ScholarPubMed
Monaghan, P. (2008). Early growth conditions, phenotypic development and environmental change. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 363, 1635–1645.CrossRefGoogle ScholarPubMed
Mondal, T., Rasmussen, M., Pandey, G. K., Isaksson, A. & Kanduri, C. (2010). Characterization of the RNA content of chromatin. Genome Research, 20, 899–907.CrossRefGoogle ScholarPubMed
Moore, B R. (2004). The evolution of learning. Biological Reviews, 79, 301–335.CrossRefGoogle ScholarPubMed
Moran, N. A. (1992). The evolutionary maintenance of alternative phenotypes. American Naturalist, 139, 971–989.CrossRefGoogle Scholar
Moss, L. (2002). What Genes Can't Do, Cambridge, MA: MIT Press.Google Scholar
Mrosovsky, N. (1990). Rheostasis: The Physiology of Change, New York: Oxford University Press.Google Scholar
Murgatroyd, C., Patchev, A. V., Wu, Y., et al. (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 12, 1559–1566.CrossRefGoogle ScholarPubMed
Nadeau, J. H. (2009). Transgenerational genetic effects on phenotypic variation and disease risk. Human Molecular Genetics, 18, R202–R210.CrossRefGoogle ScholarPubMed
Nelson, V. R., Spiezio, S. H. & Nadeau, J. H. (2010). Transgenerational genetic effects of the paternal Y chromosome on daughters' phenotypes. Epigenomics, 2, 513–521.CrossRefGoogle ScholarPubMed
Nettle, D., Coall, D. A. & Dickins, T. E. (2010). Birthweight and paternal involvement predict early reproduction in British women: evidence from the National Child Development Study. American Journal of Human Biology, 22, 172–179.Google ScholarPubMed
Neuberger, M. S. (2008). Antibody diversification by somatic mutation: from Burnet onwards. Immunology & Cell Biology, 86, 124–132.CrossRefGoogle ScholarPubMed
Newman, S. A. (2007). William Bateson's physicalist ideas. In From Embryology to Evo-Devo: A History of Evolutionary Development, ed. Laubichler, M. & Maienschein, J.. Cambridge, MA: MIT Press,Google Scholar
Nijhout, H. F. (2002). The nature of robustness in development. Bioessays, 24, 553–563.CrossRefGoogle ScholarPubMed
Nishimura, K. (2006). Inducible plasticity: optimal waiting time for the development of an inducible phenotype. Evolutionary Ecology Research, 8, 553–559.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S. & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97–106.CrossRefGoogle ScholarPubMed
Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. (2003). Niche Construction: The Neglected Process of Evolution, Princeton, NJ: Princeton University Press.Google Scholar
Osborn, H. F. (1896). A mode of evolution requiring neither natural selection nor the inheritance of acquired characters. Transactions of the New York Academy of Sciences, 15, 141–142, 148.Google Scholar
Oyama, S. (2000). The Ontogeny of Information: Developmental Systems and Evolution, 2nd edition, Durham, NC: Duke University Press.CrossRefGoogle Scholar
Oyama, S., Griffiths, P. E. & Gray, R. D. (2001). Cycles of Contingency: Developmental Systems and Evolution, Cambridge, MA: MIT Press.Google Scholar
Paenke, I., Kawecki, T. J. & Sendhoff, B. (2009). The influence of learning on evolution: a mathematical framework. Artificial Life, 15, 227–245.CrossRefGoogle ScholarPubMed
Painter, R. C., Roseboom, T. J. & Bleker, O. P. (2005). Prenatal exposure to the Dutch famine and disease in later life: an overview. Reproductive Toxicology, 20, 345–352.CrossRefGoogle ScholarPubMed
Paley, W. (1802). Natural Theology: Or, Evidences of The Existence and Attributes of The Deity, Collected From The Appearances of Nature, London: Faulder.Google Scholar
Paz-Yaacov, N., Levanon, E. Y., Nevo, E., et al. (2010). Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proceedings of the National Academy of Sciences of the USA, 107, 12174–12179.CrossRefGoogle ScholarPubMed
Peleg, S., Sananbenesi, F., Zovoilis, A., et al. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science, 328, 753–756.CrossRefGoogle ScholarPubMed
Pellegrini, A. D. (2009). The Role of Play in Human Development, Oxford: Oxford University Press.CrossRefGoogle Scholar
Pepperberg, I. M. (2008). Alex and Me: How a Scientist and a Parrot Discovered a Hidden World of Animal Intelligence – and Formed a Deep Bond in The Process, New York: Collins.Google Scholar
Perera, F., Tang, W.-Y., Herbstman, J., et al. (2009). Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One, 4, e4488.CrossRefGoogle ScholarPubMed
Perry, M. W., Boettiger, A. N., Bothma, J. P., & Levine, M. (2010). Shadow enhancers foster robustness of Drosophila gastrulation. Current Biology, 20, 1562–1567.CrossRefGoogle ScholarPubMed
Pfeifer, G. P. (2006). Mutagenesis at methylated CpG sequences. Current Topics in Microbiology and Immunology, 301, 259–281.Google ScholarPubMed
Pfennig, D. W. & McGee, M. (2010). Resource polyphenism increases species richness: a test of the hypothesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 577–591.CrossRefGoogle ScholarPubMed
Pfennig, D. W., Wund, M. A., Snell-Rood, E. C., Cruickshank, T., Schlichting, C. D. & Moczek, A. P. (2010). Phenotypic plasticity's impacts on diversification and speciation. Trends in Ecology and Evolution, 25, 459–467.CrossRefGoogle ScholarPubMed
Piaget, J. (1979). Behaviour and Evolution, London: Routledge & Kegan Paul.Google Scholar
Pigliucci, M. (2001). Phenotypic Plasticity: Beyond Nature and Nurture, Baltimore: Johns Hopkins University Press.Google Scholar
Pigliucci, M. (2010). Genotype–phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 557–566.CrossRefGoogle ScholarPubMed
Pigliucci, M. & Müller, G. B. (eds) (2010). Evolution: The Extended Synthesis, Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Pigliucci, M. & Murren, C. J. (2003). Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by?Evolution, 57, 1455–1464.CrossRefGoogle Scholar
Plagemann, A., Harder, T., Brunn, M., et al. (2009). Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. Journal of Physiology, 587, 4963–4976.CrossRefGoogle ScholarPubMed
Polosina, Y. Y. & Cupples, C. G. (2010). MutL: conducting the cell's response to mismatched and misaligned DNA. Bioessays, 32, 51–59.CrossRefGoogle ScholarPubMed
Price, T. D., Qvarnström, A. & Irwin, D. E. (2003). The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society of London, Series B, Biological Sciences, 270, 1433–1440.CrossRefGoogle ScholarPubMed
Rampon, C., Tang, Y.-P., Goodhouse, J., Shimizu, E., Kyin, M. & Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nature Neuroscience, 3, 238–244.CrossRefGoogle ScholarPubMed
Rassoulzadegan, M., Grandjean, V., Gounon, P., Vincent, S., Gillot, I. & Cuzin, F. (2006). RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature, 441, 469–474.CrossRefGoogle ScholarPubMed
Rauschecker, J. P. & Marler, P. (eds) (1987). Imprinting and Cortical Plasticity: Comparative Aspects of Sensitive Periods, New York: John Wiley & Sons.Google Scholar
Reader, S. M. & Laland, K. N. (2002). Social intelligence, innovation, and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the USA, 99, 4436–41.CrossRefGoogle ScholarPubMed
Remy, J. J. & Hobert, O. (2005). An interneuronal chemoreceptor required for olfactory imprinting in C. elegans. Science, 309, 787–790.CrossRefGoogle ScholarPubMed
Ridley, M. (2003). Nature via Nurture: Genes, Experience, and What Makes Us Human, New York: HarperCollins.Google Scholar
Roberts, T. F., Tschida, K. A., Klein, M. E. & Mooney, R. (2010). Rapid spine stabilization and synaptic enhancement at the onset of behavioural learning. Nature, 463, 948–952.CrossRefGoogle ScholarPubMed
Robinson, B.W. & Dukas, R. (1999). The influence of phenotypic modification on evolution: the Baldwin effect and modern perspectives. Oikos, 85, 582–589.CrossRefGoogle Scholar
Rosen, J. M. & Jordan, C. T. (2009). The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670–1673.CrossRefGoogle ScholarPubMed
Rosenfield, R. L., Cooke, D. W. & Radovick, S. (2008). Puberty and its disorders in the female. In Pediatric Endocrinology, 3rd edition, ed. Sperling, M.. Philadelphia, PA: Saunders, 530–609.CrossRefGoogle Scholar
Rowell, C. H. F. (1971). The variable coloration of the Acridoid grasshoppers. Advances in Insect Physiology, 8, 145–198.CrossRefGoogle Scholar
Rutherford, S. L. & Lindquist, S. (1998). Hsp90 as a capacitor for morphological evolution. Nature, 396, 336–342.CrossRefGoogle ScholarPubMed
Sameroff, A. (2010). A unified theory of development: a dialectic integration of nature and nurture. Child Development, 81, 6–22.CrossRefGoogle ScholarPubMed
Scarr, S. & McCartney, K. (1983). How people make their own environments: a theory of genotype → environment effects. Child Development, 54, 424–435.Google ScholarPubMed
Schlichting, C. D. & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective, Sunderland, MA: Sinauer Associates.Google Scholar
Schmalhausen, I. I. (1949). Factors of Evolution, Philadelphia, PA: Blakiston.Google Scholar
Schorderet, D. F. & Gartler, S. M. (1992). Analysis of CpG suppression in methylated and nonmethylated species. Proceedings of the National Academy of Sciences of the USA, 89, 957–961.CrossRefGoogle ScholarPubMed
Schwarz, R. H. & Yaffe, S. J. (Eds.) (1980). Drug and Chemical Risks to the Fetus and Newborn, New York: Alan Liss.Google Scholar
Segerstrom, S. C. (2007). Stress, energy, and immunity. Current Directions in Psychological Science, 16, 326–330.CrossRefGoogle Scholar
Sgrò, C. M., Wegener, B. & Hoffmann, A. A. (2010). A naturally occurring variant of Hsp90 that is associated with decanalization. Proceedings of the Royal Society of London, Series B, Biological Sciences, 277, 2049–2057.CrossRefGoogle ScholarPubMed
Shenk, D. (2010). The Genius in All of Us, New York: Doubleday.Google Scholar
Sheriff, M. J., Krebs, C. J. & Boonstra, R. (2009). The sensitive hare: sublethal effects of predator stress on reproduction in snowshoe hares. Journal of Animal Ecology, 78, 1249–1258.CrossRefGoogle ScholarPubMed
Sheriff, M. J., Krebs, C. J. & Boonstra, R. (2010). The ghosts of predators past: population cycles and the role of maternal programming under fluctuating predation risk. Ecology, 91, 2982–2994.CrossRefGoogle ScholarPubMed
Sherratt, T. N. (2002). The coevolution of warning signals. Proceedings of the Royal Society of London, Series B, Biological Sciences, 269, 741–746.CrossRefGoogle ScholarPubMed
Shettleworth, S. J. (2010). Cognition, Evolution and Behavior, 2nd edition, New York: Oxford University Press.Google Scholar
Simpson, G. G. (1953). The Major Features of Evolution, New York: Columbia University Press.Google Scholar
Slatkin, M. (1974). Hedging one's evolutionary bets. Nature, 250, 704–705.CrossRefGoogle Scholar
Slijper, E. J. (1942). Biologic-anatomical investigations on the bipedal gait and upright posture in mammals, with special reference to a little goat, born without forelegs. I and II. Proceedings of the Koninklijke Nederlandse Akademie Wetenschappen, 45, 288–295, 407–415.Google Scholar
Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E. & Hickey, M. (2007). Age at menarche: influences of prenatal and postnatal growth. Journal of Clinical Endocrinology and Metabolism, 92, 46–50.CrossRefGoogle ScholarPubMed
Sloboda, D. M., Howie, G. J., Pleasants, A., Gluckman, P. D. & Vickers, M. H. (2009). Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One, 4, e6744.CrossRefGoogle ScholarPubMed
Slotkin, R. K. & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8, 272–285.CrossRefGoogle ScholarPubMed
Smyth, M. J., Dunn, G. P. & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Advances in Immunology, 90, 1–50.CrossRefGoogle ScholarPubMed
Sokolov, E. N. (1963). Perception and the Conditioned Reflex, Oxford: Pergamon.Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences, 102, 5460–5465.CrossRefGoogle ScholarPubMed
Sollars, V., Lu, X., Xiao, L., Wang, X., Garfinkel, M. D. & Ruden, D. M. (2003). Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature Genetics, 33, 70–74.CrossRefGoogle ScholarPubMed
Spalding, D. A. (1873). Instinct: with original observations on young animals. Macmillan's Magazine, 27, 282–293 (Reprinted in 1954 in the British Journal of Animal Behaviour, 2, 1–11).Google Scholar
Spemann, H. (1938). Embryonic Development and Induction, New Haven, NJ: Yale University Press.Google Scholar
Spencer, H. G., Hanson, M. A. & Gluckman, P. D. (2006). Response to Wells: phenotypic responses to early environmental cues can be adaptive in adults. Trends in Ecology & Evolution, 21, 425–426.CrossRefGoogle Scholar
Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25, 207–22.CrossRefGoogle ScholarPubMed
Stockard, C. R. (1921). Developmental rate and structural expression: an experimental study of twins, ‘double monsters’ and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 28, 115–275.CrossRefGoogle Scholar
Stocum, D. L. (2006). Regenerative Biology and Medicine, New York: Elsevier.Google Scholar
Stouder, C. & Paoloni-Giacobino, A. (2010). Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction, 139, 373–379.CrossRefGoogle ScholarPubMed
Suemori, H. & Noguchi, S. (2000). Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Developmental Biology, 220, 333–342.CrossRefGoogle ScholarPubMed
Sultan, S. E., Barton, K. & Wilczek, A. M. (2009). Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology, 90, 1831–1839.CrossRefGoogle ScholarPubMed
Sultan, S. E. & Spencer, H. G. (2002). Metapopulation structure favors plasticity over local adaptation. American Naturalist, 160, 271–283.CrossRefGoogle ScholarPubMed
Suzuki, R. & Arita, T. (2007). The dynamic changes in roles of learning through the Baldwin effect. Artificial Life, 13, 31–43.CrossRefGoogle ScholarPubMed
Suzuki, Y. & Nijhout, H. F. (2006). Evolution of a polyphenism by genetic accommodation. Science, 311, 650–652.CrossRefGoogle ScholarPubMed
Suzuki, Y. & Nijhout, H. F. (2008). Genetic basis of adaptive evolution of a polyphenism by genetic accommodation. Journal of Evolutionary Biology, 21, 57–66.CrossRefGoogle ScholarPubMed
Tahiliani, M., Koh, K. P., Shen, Y. H., et al. (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324, 930–935.CrossRefGoogle ScholarPubMed
Tautz, J. (2008). The Buzz about Bees: Biology of a Superorganism, Berlin: Springer.CrossRefGoogle Scholar
Tebbich, S., Sterelny, K. & Teschke, I. (2010). The tale of the finch: adaptive radiation and behavioural flexibility. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 365, 1099–1109.CrossRefGoogle ScholarPubMed
Tebbich, S., Taborsky, M., Fessl, B. & Blomquist, D. (2001). Do woodpecker finches acquire tool-use by social learning?Proceedings of the Royal Society of London, Series B, Biological Sciences, 268, 2189–2193.CrossRefGoogle ScholarPubMed
ten Cate, C. (1986). Does behavior contingent stimulus movement enhance filial imprinting in Japanese quail?Developmental Psychobiology, 19, 607–614.CrossRefGoogle ScholarPubMed
,The Chimpanzee Sequencing and Analysis Consortium (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.CrossRefGoogle Scholar
Thelen, E. (1989). Self-organization in developmental processes: Can systems approaches work? In Systems and Development: The Minnesota Symposia on Child Psychology. Vol. 22, ed. Gunnar, M. R. & Thelen, E.. Hillsdale, NJ: Erlbaum, 77–117.Google Scholar
Thoman, E. B. & Levine, S. (1970). Hormonal and behavioral changes in the rat mother as a function of early experience treatments of the offspring. Physiology & Behavior, 5, 1417–21.CrossRefGoogle ScholarPubMed
Thompson, J. D. (1991). Phenotypic plasticity as a component of evolutionary change. Trends in Ecology & Evolution, 6, 246–249.CrossRefGoogle ScholarPubMed
Thorndike, E. L. (1898). Animal intelligence. Psychological Review, Supplement 2, 1–109.Google ScholarPubMed
Thorpe, W. H. (1956). Learning and Instinct in Animals, London: Methuen.Google Scholar
Tieri, P., Castellani, G., Remondini, D., Valensin, S., Loroni, J., Salvioli, S. & Franceschi, C. (2007). Capturing degeneracy in the immune system. In In Silico Immunology, ed. Flower, D. D. R. and Timmis, J.. New York: Springer, 109–118.CrossRefGoogle Scholar
Tinbergen, N. (1963). On aims and methods of ethnology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
Trivers, R. L. (1974). Parent–offspring conflict. American Zoologist, 14, 249–264.CrossRefGoogle Scholar
True, H. L. & Lindquist, S. L. (2000). A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature, 407, 477–483.CrossRefGoogle ScholarPubMed
Trut, L., Oskina, I. & Kharlamova, A. (2009). Animal evolution during domestication: the domesticated fox as a model. Bioessays, 31, 349–360.CrossRefGoogle Scholar
Vajo, Z., Francomano, C. A. & Wilkin, D. J. (2000). The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocrine Reviews, 21, 23–39.Google ScholarPubMed
Vallortigara, G., Regolin, L. & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3, 1–5.CrossRefGoogle ScholarPubMed
Venditti, C., Meade, A. & Pagel, M. (2010). Phylogenies reveal new interpretation of speciation and the Red Queen. Nature, 463, 349–352.CrossRefGoogle ScholarPubMed
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. & Gluckman, P. D. (2000). Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. American Journal of Physiology, 279, E83–E87.Google ScholarPubMed
Vickers, M. H., Breier, B. H., McCarthy, D. & Gluckman, P. D. (2003). Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. American Journal of Physiology, 285, R271–R273.Google ScholarPubMed
Vickers, M. H., Gluckman, P. D., Coveny, A. H., et al. (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology, 146, 4211–4216.CrossRefGoogle ScholarPubMed
Bertalanffy, L. (1974). Perspectives on General System Theory, New York: Brazillier.Google Scholar
Moltke, H. J. & Olbing, H. (1989). Die Ausbildungs – und Berufssituation contergangeschadigter junger Erwachsener. Rehabilitation, 28, 78–82.Google Scholar
Waddington, C. H. (1953). Genetic assimilation of an acquired character. Evolution, 7, 118–126.CrossRefGoogle Scholar
Waddington, C. H. (1957). The Strategy of the Genes, London: Allen & Unwin.Google Scholar
Waddington, C. H. (1959). Evolutionary systems: animal and human. Nature, 183, 1634–1638.CrossRefGoogle ScholarPubMed
Wagner, A. (2008). Gene duplications, robustness and evolutionary innovations. Bioessays, 30, 367–373.CrossRefGoogle ScholarPubMed
Wagner, A. R. (1981). SOP: a model of automatic memory processing in animal behavior. In Information Processing in Animal Behavior, ed. Spear, W. E. & Miller, R. R.. Hillsdale, NJ: Erlbaum, 5–47.Google Scholar
Wagner, G. P. & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.CrossRefGoogle ScholarPubMed
Wagner, G. P., Pavlicev, M. & Cheverud, J. M. (2007). The road to modularity. Nature Reviews Genetics, 8, 921–931.CrossRefGoogle ScholarPubMed
Wagner, K. D., Wagner, N., Ghanbarian, H., et al. (2008). RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Developmental Cell, 14, 962–969.CrossRefGoogle ScholarPubMed
Wake, G. C., Pleasants, A. B., Beedle, A. S. & Gluckman, P. D. (2010). A model for phenotype change in a stochastic framework. Mathematical Biosciences and Engineering, 7, 721–730.CrossRefGoogle Scholar
Walker, R., Gurven, M., Hill, K., et al. (2006). Growth rates and life histories in twenty-two small-scale societies. American Journal of Human Biology, 18, 295–311.CrossRefGoogle ScholarPubMed
Wallace, B. (1986). Can embryologists contribute to an understanding of evolutionary mechanisms? In Integrating Scientific Disciplines, ed. Bechtel, W.. Dordrecht, The Netherlands: Martinus Nijhoff,Google Scholar
Wallace, M. R., Andersen, L. B., Saulino, A. M., Gregory, P. E., Glover, T. W. & Collins, F. S. (1991). A de novo Alu insertion results in neurofibromatosis type 1. Nature, 353, 864–866.CrossRefGoogle Scholar
Walser, J.-C. & Furano, A. V. (2010). The mutational spectrum of non-CpG DNA varies with CpG content. Genome Research.CrossRefGoogle ScholarPubMed
Walser, J.-C., Ponger, L. C. & Furano, A. V. (2008). CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Research, 18, 1403–1414.CrossRefGoogle ScholarPubMed
Walton, A. J. & Hammond, J. (1938). The maternal effects on growth and conformation in Shire horses–Shetland pony crosses. Proceedings of the Royal Society of London, Series B, Biological Sciences, 125, 311–335.CrossRefGoogle Scholar
Wang, H.-Y., Tang, H., Shen, C. K. J. & Wu, C.-I. (2003). Rapidly evolving genes in human. I. The glycophorins and their possible role in evading malaria parasites. Molecular Biology & Evolution, 20, 1795–1804.CrossRefGoogle Scholar
Waterland, R. A. & Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293–5300.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Cervoni, N., Champagne, F. A., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7, 847–854.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., Champagne, F. A., Brown, S. E., et al. (2005). Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. Journal of Neuroscience, 25, 11045–11054.CrossRefGoogle ScholarPubMed
Weaver, I. C. G., D'Alessio, A. C., Brown, S. E., et al. (2007). The transcription factor nerve growth factor-inducible protein A mediates epigenetic programming: altering epigenetic marks by immediate-early genes. Journal of Neuroscience, 27, 1756–1768.CrossRefGoogle ScholarPubMed
Weismann, A. (1885). Die Kontinuität des Keimplasmas als Grundlage einer Theorie der Vererbung, Jena, Germany: Gustav Fischer.Google Scholar
Wells, J. C. K. (2006). Is early development in humans a predictive adaptive response anticipating the adult environment?Trends in Ecology & Evolution, 21, 424–425.CrossRefGoogle ScholarPubMed
Wells, M. J. (1967). Sensitization and the evolution of associative learning. In Symposium on Neurobiology of Invertebrates, ed. Salanki, J.. New York: Plenum, 391–411.Google Scholar
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution, New York: Oxford University Press.Google Scholar
West-Eberhard, M. J. (2005a). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences of the USA, 102, 6543–6549.CrossRefGoogle ScholarPubMed
West-Eberhard, M. J. (2005b). Phenotypic accommodation: adaptive innovation due to developmental plasticity. Journal of Experimental Zoology, Part B, Molecular and Developmental Evolution, 304B, 610–618.CrossRefGoogle Scholar
Whimbey, A. E. & Denenberg, V. H. (1967). Experimental programming of life histories: factor structure underlying experimentally created individual differences. Behaviour, 29, 296–314.CrossRefGoogle ScholarPubMed
Wilson, E. O. (1971). Social Insects. Science, 172, 406.CrossRefGoogle ScholarPubMed
Wilson, E. O. (1975). Sociobiology: The New Synthesis, Cambridge, MA: Harvard University Press.Google Scholar
Wilson, E. O. (1976). Author's reply to multiple review of Wilson's Sociobiology. Animal Behaviour, 24, 716–718.CrossRefGoogle Scholar
Wolterek, R. (1909). Weitere experimentelle untersüchungen über Artveränderung, speziell über das wesen quantitativer Artunterschiede bei Daphniden. Verhandlungen de Deutschen Zooligischen Gesellschaft, 19, 110–172.Google Scholar
Wong, C. C. Y., Caspi, A., Williams, B., et al. (2010). A longitudinal study of epigenetic variation in twins. Epigenetics, 5, 1–11.CrossRefGoogle ScholarPubMed
,World Bank (2009). World Development Report 2009, Washington, DC: World Bank.Google Scholar
Wright, C. L., Schwarz, J. S., Dean, S. L. & McCarthy, M. M. (2010). Cellular mechanisms of estradiol-mediated sexual differentiation of the brain. Trends in Endocrinology & Metabolism, 21, 553–561.CrossRefGoogle ScholarPubMed
Wyles, J. S., Kunkel, J. G. & Wilson, A. C. (1983). Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences of the USA, 80, 4394–4397.CrossRefGoogle ScholarPubMed
Yazbek, S. N., Nadeau, J. H. & Buchner, D. A. (2010). Ancestral paternal genotype controls body weight and food intake for multiple generations. Human Molecular Genetics.CrossRefGoogle ScholarPubMed
Yntema, C. L. & Mrosovsky, N. (1982). Critical periods and pivotal temperatures for sexual differentiation in loggerhead sea turtles. Canadian Journal of Zoology, 60, 1012–1016.CrossRefGoogle Scholar
Zuckerkandl, E. & Cavalli, G. (2007). Combinatorial epigenetics, ‘junk DNA’, and the evolution of complex organisms. Gene, 390, 232–242.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Patrick Bateson, University of Cambridge, Peter Gluckman, University of Auckland
  • Book: Plasticity, Robustness, Development and Evolution
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842382.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Patrick Bateson, University of Cambridge, Peter Gluckman, University of Auckland
  • Book: Plasticity, Robustness, Development and Evolution
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842382.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Patrick Bateson, University of Cambridge, Peter Gluckman, University of Auckland
  • Book: Plasticity, Robustness, Development and Evolution
  • Online publication: 05 August 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511842382.011
Available formats
×