Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T08:21:02.374Z Has data issue: false hasContentIssue false

8 - Impact of plant-provided food on herbivore–carnivore dynamics

Published online by Cambridge University Press:  15 December 2009

Paul C. J. Van Rijn
Affiliation:
Netherlands Institute of Ecology (NIOO-KNAW) Department for Multitrophic Interactions (MTI) The Netherlands
Maurice W. Sabelis
Affiliation:
Section Population Biology Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam The Netherlands
F. L. Wäckers
Affiliation:
Netherlands Institute of Ecology
P. C. J. van Rijn
Affiliation:
Netherlands Institute of Ecology
J. Bruin
Affiliation:
Universiteit van Amsterdam
Get access

Summary

Introduction

Arthropod predators and parasitoids play an important role in reducing herbivore damage to plants. Although most of these arthropods are mainly carnivorous, they also use plant-provided food (PPF) as a source of nutrients during at least part of their life cycle. These foods affect longevity, fecundity, and the distribution of carnivores (Olson et al., Chapter 5 and Eubanks and Styrsky, Chapter 6), and thus also the population dynamics of herbivore–carnivore systems.

Despite the importance of this type of omnivory for herbivore–carnivore interactions in general and biological control in particular, its population-dynamical consequences are not fully understood. Relatively few population studies have addressed the topic (Bakker and Klein 1992; Alomar and Wiedemann 1996; Stapel et al. 1997; Eubanks and Denno 2000; Van Rijn et al. 2002; Wäckers 2003), and even fewer theoretical studies (Krivan and Sirot 1997; Van Baalen et al. 2001; Van Rijn et al. 2002; Kean et al. 2003). Omnivory in general, however, has gained much attention since Polis' seminal papers (Polis et al. 1989; Polis and Holt 1992), both among empirical (Diehl 1995; Holyoak and Sachdev 1998; Pringle and Hamazaki 1998; Gillespie and McGregor 2000; Coll and Guershon 2002) and theoretical ecologists (Pimm and Lawton 1978; Holt and Polis 1997; McCann and Hastings 1997; Polis 1998; Mylius et al. 2001). These studies have mainly focussed on the consequences of omnivory for population persistence and community stability, and much less on the consequences for herbivory.

Type
Chapter
Information
Plant-Provided Food for Carnivorous Insects
A Protective Mutualism and its Applications
, pp. 223 - 266
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, P. A. and Vos, M.. 2003. Adaptation, density dependence and the responses of trophic level abundances to mortality. Evolutionary Ecology Research 5: 1113–1132.Google Scholar
Addison, J. A., Hardman, J. M., and Walde, S. J.. 2000. Pollen availability for predaceous mites on apple: spatial and temporal heterogeneity. Experimental and Applied Acarology 24: 1–18.CrossRefGoogle ScholarPubMed
Alomar, O. and Wiedemann, R. N. (eds.). 1996. Zoophytophagous Heteroptera: Implications for Life History and Integrated Pest Management. Lanham, MD: Entomological Society of America.Google Scholar
Bakker, F. M. and Klein, M. E.. 1992. Transtrophic interactions in cassava. Experimental and Applied Acarology 14: 299–311.CrossRefGoogle Scholar
Bascompte, J. and Sole, R. V.. 1998. Effects of habitat destruction in a prey–predator metapopulation model. Journal of Theoretical Biology 195: 383–393.CrossRefGoogle Scholar
Berec, L. and Krivan, V.. 2000. A mechanistic model for partial preferences. Theoretical Population Biology 58: 279–289.CrossRefGoogle ScholarPubMed
Bogran, C. E., Heinz, K. M., and Ciomperlik, M. A.. 2002. Interspecific competition among insect parasitoids: field experiments with whiteflies as hosts in cotton. Ecology 83: 653–668.CrossRefGoogle Scholar
Briggs, C. J. and Collier, T. R.. 2001. Autoparasitism, interference and parasitoid–pest population dynamics. Theoretical Population Biology 60: 33–57.CrossRefGoogle ScholarPubMed
Brodeur, J. and Rosenheim, J. A.. 2000. Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata 97: 93–108.CrossRefGoogle Scholar
Caswell, H. 1989. Matrix Population Models. Sunderland, MA: Sinauer Associates.Google Scholar
Chan, M. S. and Godfray, H. C. J.. 1993. Host-feeding strategies of parasitoid wasps. Evolutionary Ecology 7: 593–604.CrossRefGoogle Scholar
Chang, Y. D., Lee, J. Y., and Youn, Y. N.. 1994. Primary parasitoids and hyperparasitoids of the soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae). Korean Journal of Applied Entomology 33(2): 51–55.Google Scholar
Coll, M. and Guershon, M.. 2002. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annual Review of Entomology 47: 267–297.CrossRefGoogle ScholarPubMed
Collier, T. R. 1995. Host feeding, egg maturation, resorption and longevity in the parasitoid Aphytis melinus (Hymenoptera, Aphelinidae). Annals of the Entomological Society of America 88: 206–214.CrossRefGoogle Scholar
Collier, T. R. and Hunter, M. S.. 2001. Lethal interference competition in the whitefly parasitoids Eretmocerus eremicus and Encarsia sophia. Oecologia 129: 147–154.CrossRefGoogle ScholarPubMed
Corbett, A. and Plant, R. E.. 1993. Role of movement in the response of natural enemies to agroecosystem diversification: a theoretical evaluation. Environmental Entomology 22: 519–531.CrossRefGoogle Scholar
Roos, A. M. and Persson, L.. 2001. Physiologically structured models: from versatile technique to ecological theory. Oikos 94: 51–71.CrossRefGoogle Scholar
Diehl, S. 1995. Direct and indirect effects of omnivory in a littoral lake community. Ecology 76: 1727–1740.CrossRefGoogle Scholar
Diekmann, O., Metz, J. A. J., and Sabelis, M. W.. 1988. Mathematical models of predator–prey–plant interactions in a patchy environment. Experimental and Applied Acarology 5: 319–342.CrossRefGoogle Scholar
Drukker, B., Scutareanu, P., and Sabelis, M. W.. 1995. Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomologia Experimentalis et Applicata 77: 193–203.CrossRefGoogle Scholar
Dunning, J. B., Danielson, B. J., and Pulliam, H. R.. 1992. Ecological processes that affect populations in complex landscapes. Oikos 65: 169–175.CrossRefGoogle Scholar
Duso, C., Malagnini, V., Paganelli, A., et al. 2004. Pollen availability and abundance of predatory phytoseiid mites on natural and secondary hedgerows. BioControl 49: 397–415.CrossRefGoogle Scholar
Eber, S. 2001. Multitrophic interactions: the population dynamics of spatially structured plant–herbivore–parasitoid systems. Basic and Applied Ecology 2: 27–33.CrossRefGoogle Scholar
Ellner, S. P., McCauley, E., Kendall, B. E., et al. 2001. Habitat structure and population persistence in an experimental community. Nature 412: 538–543.CrossRefGoogle Scholar
Eubanks, M. D. and Denno, R. F.. 1999. The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80: 1253–1266.CrossRefGoogle Scholar
Eubanks, M. D. and Denno, R. F.. 2000. Host plants mediate omnivore–herbivore interactions and influence prey suppression. Ecology 81: 936–947.Google Scholar
Evans, E. W. and England, S.. 1996. Indirect interactions in biological control of insects: pests and natural enemies in alfalfa. Ecological Applications 6: 920–930.CrossRefGoogle Scholar
Evans, E. W. and Richards, D. R.. 1997. Managing the dispersal of ladybird beetles (Col.: Coccinellidae): use of artificial honeydew to manipulate spatial distributions. Entomophaga 42: 93–102.CrossRefGoogle Scholar
Evans, E. W. and Swallow, J. G.. 1993. Numerical responses of natural enemies to artificial honeydew in Utah alfalfa. Environmental Entomology 22: 1392–1401.CrossRefGoogle Scholar
Fagan, W. E., Cantrell, R. S., and Cosner, C.. 1999. How habitat edges change species interactions. American Naturalist 153: 165–182.CrossRefGoogle ScholarPubMed
Gilbert, F. and Jervis, M.. 1998. Functional, evolutionary and ecological aspects of feeding-related mouthpart specializations in parasitoid flies. Biological Journal of the Linnean Society 63: 495–535.CrossRefGoogle Scholar
Gillespie, D. R. and McGregor, R. R.. 2000. The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecological Entomology 25: 380–386.CrossRefGoogle Scholar
Giron, D., Rivero, A., Mandon, N., Darrouzet, E., and Casas, J.. 2002. The physiology of host feeding in parasitic wasps: implications for survival. Functional Ecology 16: 750–757.CrossRefGoogle Scholar
Hagvar, E. B. 1988. Multiparasitism of the green peach aphid, Myzus persicae: competition in the egg stage between Aphidius matricariae and Ephedrus cerasicola. Entomologia Experimentalis et Applicata 47: 275–282.CrossRefGoogle Scholar
Hanski, I. 1998. Metapopulation dynamics. Nature 396: 41–49.CrossRefGoogle Scholar
Harmon, J. P., Ives, A. R., Losey, J. E., Olson, A. C., and Rauwald, K. S.. 2000. Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia 125: 543–548.CrossRefGoogle ScholarPubMed
Heimpel, G. E. and Collier, T. R.. 1996. The evolution of host-feeding behaviour in insect parasitoids. Biological Reviews of the Cambridge Philosophical Society 71: 373–400.CrossRefGoogle Scholar
Heimpel, G. E., Rosenheim, J. A., and Kattari, D.. 1997. Adult feeding and lifetime reproductive success in the parasitoid Aphytis melinus. Entomologia Experimentalis et Applicata 83: 305–315.CrossRefGoogle Scholar
Hindayana, D., Meyhofer, R., Scholz, D., and Poehling, H. M.. 2001. Intraguild predation among the hoverfly Episyrphus balteatus de Geer (Diptera: Syrphidae) and other aphidophagous predators. Biological Control 20: 236–246.CrossRefGoogle Scholar
Holt, R. D. 1977. Predation, apparent competition and the structure of predator–prey communities. Theoretical Population Biology 12: 197–229.CrossRefGoogle Scholar
Holt, R. D. 1983. Optimal foraging and the form of the predator isocline. American Naturalist 122: 521–541.CrossRefGoogle Scholar
Holt, R. D. 1997. On the evolutionary stability of sink populations. Evolutionary Ecology 11: 723–731.CrossRefGoogle Scholar
Holt, R. D. and Kotler, B. P.. 1987. Short-term apparent competition. American Naturalist 130: 412–430.CrossRefGoogle Scholar
Holt, R. D. and Lawton, J. H.. 1994. The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics 25: 495–520.CrossRefGoogle Scholar
Holt, R. D. and Polis, G. A.. 1997. A theoretical framework for intraguild predation. American Naturalist 149: 745–764.CrossRefGoogle Scholar
Holt, R. D., Grover, J., and Tilman, D.. 1994. Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist 144: 741–771.CrossRefGoogle Scholar
Holyoak, M. 2000. Habitat patch arrangement and metapopulation persistence of predators and prey. American Naturalist 156: 378–389.CrossRefGoogle Scholar
Holyoak, M. and Sachdev, S.. 1998. Omnivory and the stability of simple food webs. Oecologia 117: 413–419.CrossRefGoogle ScholarPubMed
Huffaker, C. B. 1958. Experimental studies on predation: dispersion factors and predator–prey oscillations. Hilgardia 27: 343–383.CrossRefGoogle Scholar
Hunter, M. S. and Woolley, J. B.. 2001. Evolution and behavioral ecology of heteronomous aphelinid parasitoids. Annual Review of Entomology 46: 251–290.CrossRefGoogle ScholarPubMed
Hunter, M. S., Collier, T. R., and Kelly, S. E.. 2002. Does an autoparasitoid disrupt host suppression provided by a primary parasitoid?Ecology 83: 1459–1469.CrossRefGoogle Scholar
Ives, A. R. and Settle, W. H.. 1997. Metapopulation dynamics and pest control in agricultural systems. American Naturalist 149: 220–246.CrossRefGoogle Scholar
Jacob, H. S. and Evans, E. W.. 1998. Effects of sugar spray and aphid honeydew on field populations of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environmental Entomology 27: 1563–1568.CrossRefGoogle Scholar
Jansen, V. A. A. and Yoshimura, J.. 1998. Populations can persist in an environment consisting of sink habitats only. Proceedings of the National Academy of Sciences of the USA 95: 3696–3698.CrossRefGoogle Scholar
Janssen, A. and Sabelis, M. W.. 1992. Phytoseiid life-histories, local predator–prey dynamics and strategies for control of tetranychid mites. Experimental and Applied Acarology 14: 233–250.CrossRefGoogle Scholar
Jervis, M. 1998. Functional and evolutionary aspects of mouthpart structure in parasitoid wasps. Biological Journal of the Linnean Society 63: 461–493.CrossRefGoogle Scholar
Kean, J., Wratten, S., Tylianakis, J., and Barlow, N.. 2003. The population consequences of natural enemy enhancement and implications for conservation biological control. Ecology Letters 6: 604–612.CrossRefGoogle Scholar
Kean, J. M. and Barlow, N. D.. 2001. A spatial model for the successful biological control of Sitona discoideus by Microctonus aethiopoides. Journal of Applied Ecology 38: 162–169.Google Scholar
Kidd, N. A. C. and M. A. Jervis. 1996. Population dynamics. In Jervis, M. A. and Kidd, N. A. C. (eds.) Insect Natural Enemies. London: Chapman and Hall, pp. 293–379.CrossRefGoogle Scholar
Kreiter, S., Tixier, M. S., Croft, B. A., Auger, P., and Barret, D.. 2002. Plants and leaf characteristics influencing the predaceous mite Kampimodromus aberrans (Acari: Phytoseiidae) in habitats surrounding vineyards. Environmental Entomology 31: 648–660.CrossRefGoogle Scholar
Krivan, V. and Sirot, E.. 1997. Searching for food or hosts: the influence of parasitoid behavior on host–parasitoid dynamics. Theoretical Population Biology 51: 201–209.CrossRefGoogle ScholarPubMed
Lambin, M., Ferran, A., and Maugan, K.. 1996. Perception of visual information in the ladybird Harmonia axyridis Pallas. Entomologia Experimentalis et Applicata 79: 121–130.CrossRefGoogle Scholar
Lei, G. C. and Hanski, I.. 1997. Metapopulation structure of Cotesia melitaearum, a specialist parasitoid of the butterfly Melitaea cinxia. Oikos 78: 91–100.CrossRefGoogle Scholar
Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America 15: 237–240.CrossRefGoogle Scholar
Lewis, W., Stapel, J., Cortesero, A., and Takasu, K.. 1998. Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control 11: 175–183.CrossRefGoogle Scholar
Limburg, D. D. and Rosenheim, J. A.. 2001. Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environmental Entomology 30: 595–604.CrossRefGoogle Scholar
Lucas, E., Coderre, D., and Brodeur, J.. 1998. Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 79: 1084–1092.CrossRefGoogle Scholar
Mackauer, M., Bai, B., Chow, A., and Danyk, T.. 1992. Asymmetric larval competition between two species of solitary parasitoid wasps: the influence of superparasitism. Ecological Entomology 17: 233–236.CrossRefGoogle Scholar
Mansfield, S. and Mills, N. J.. 2002. Host egg characteristics, physiological host range and parasitism following inundative releases of Trichogramma platneri (Hymenoptera: Trichogrammatidae) in walnut orchards. Environmental Entomology 31: 723–731.CrossRefGoogle Scholar
McAuslane, H. J. and Nguyen, R.. 1996. Reproductive biology and behavior of a thelytokous species of Eretmocerus (Hymenoptera: Aphelinidae) parasitizing Bemisia argentifolii (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 89: 686–693.CrossRefGoogle Scholar
McCann, K. and Hastings, A.. 1997. Re-evaluating the omnivory-stability relationship in food webs. Proceedings of the Royal Society of London Series B 264: 1249–1254.CrossRefGoogle Scholar
McEwen, P. K., Jervis, M. A., and Kidd, N. A. C.. 1993. Influence of artificial honeydew on larval development and survival in Chrysoperla carnea (Neur., Chrysopidae). Entomophaga 38: 241–244.CrossRefGoogle Scholar
McEwen, P. K., Jervis, M. A., and Kidd, N. A. C.. 1996. The influence of an artificial food supplement on larval and adult performance in the green lacewing Chrysoperla carnea (Stephens). International Journal of Pest Management 42: 25–27.CrossRefGoogle Scholar
Murdoch, W. W., Nisbet, R. M., Blythe, S. M., Gurney, W. S. C., and Reeve, J. D.. 1987. An invulnerable age class and stability in delay-differential parasitoid–host models. American Naturalist 129: 263–282.CrossRefGoogle Scholar
Mylius, S. D., Klumpers, K., Roos, A. M., and Persson, L.. 2001. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. American Naturalist 158: 259–276.CrossRefGoogle ScholarPubMed
Nachman, G. and Zemek, R.. 2003. Interactions in a tritrophic acarine predator–prey metapopulation system. V. Within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology 29: 35–68.CrossRefGoogle Scholar
Nakano, S. and Murakami, M.. 2001. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of the USA 98: 166–170.CrossRefGoogle ScholarPubMed
Nisbet, R. M. 1997. Delay-differential equations for structured populations. In Tuljapurkar, S. and Caswell, H. (eds.) Structured-Population Models in Marine, Terrestrial and Freshwater Systems. New York: Chapman and Hall, pp. 89–118.CrossRefGoogle Scholar
Oksanen, L., Fretwell, S. D., Arruda, J., and Niemela, P.. 1981. Exploitation ecosystems in gradients of primary productivity. American Naturalist 118: 240–261.CrossRefGoogle Scholar
Pels, B., Roos, A. M., and Sabelis, M. W.. 2002. Evolutionary dynamics of prey exploitation in a metapopulation of predators. American Naturalist 159: 172–189.CrossRefGoogle Scholar
Pijls, J., Hofker, K. D., Staalduinen, M. J., and Alphen, J. J. M.. 1995. Interspecific host discrimination and competition in Apoanagyrus (Epidinocarsis) lopezi and A. (E.) diversicornis, parasitoids of the cassava mealybug Phenacoccus manihoti. Ecological Entomology 20: 326–332.CrossRefGoogle Scholar
Pilcher, C. D., Obrycki, J. J., Rice, M. E., and Lewis, L. C.. 1997. Preimaginal development, survival and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology 26: 446–454.CrossRefGoogle Scholar
Pimm, S. L. and Lawton, J. H.. 1978. On feeding on more than one trophic level. Nature 27: 542–544.CrossRefGoogle Scholar
Polis, G. A. 1994. Food webs, trophic cascades and community structure. Australian Journal of Ecology 19: 121–136.CrossRefGoogle Scholar
Polis, G. A. 1998. Ecology: stability is woven by complex webs. Nature 395: 744–745.CrossRefGoogle Scholar
Polis, G. A. 1999. Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos 86: 3–15.CrossRefGoogle Scholar
Polis, G. A. and Holt, R. D.. 1992. Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology and Evolution 7: 151–154.CrossRefGoogle ScholarPubMed
Polis, G. A. and Strong, D. R.. 1996. Food web complexity and community dynamics. American Naturalist 147: 813–846.CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B., and Holt, R. D.. 1997. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics 28: 289–316.CrossRefGoogle Scholar
Polis, G. A., Myers, C. A., and Holt, R. D.. 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology and Systematics 20: 297–330.CrossRefGoogle Scholar
Pringle, C. M. and Hamazaki, T.. 1998. The role of omnivory in a neotropical stream: separating diurnal and nocturnal effects. Ecology 79: 269–280.CrossRefGoogle Scholar
Pulliam, H. R. 1988. Sources, sinks and population regulation. American Naturalist 132: 652–661.CrossRefGoogle Scholar
Rogers, M. E. and Potter, D. A. 2004. Potential for sugar sprays and flowering plants to increase parasitism of white grubs (Coleoptera: Scarabeidae) by tiphiid wasps (Hymenoptera: Tiphiidae). Environmental Entomology 33: 619–626.CrossRefGoogle Scholar
Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annual Review of Entomology 43: 421–447.CrossRefGoogle ScholarPubMed
Rosenheim, J. A. 2001. Source–sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecological Monographs 71: 93–116.Google Scholar
Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., and Jaffee, B. A.. 1995. Intraguild predation among biological-control agents: theory and evidence. Biological Control 5: 303–335.CrossRefGoogle Scholar
Sabelis, M. W. 1992. Arthropod predators. In Crawley, M. J. (ed.) Natural Enemies: The Population Biology of Predators, Parasites and Diseases. Oxford, UK: Blackwell Scientific Publications, pp. 225–264.CrossRefGoogle Scholar
Sabelis, M. W. and J. van der Meer. 1986. Local dynamics of the interaction between predatory mites and two-spotted spider mites. In Metz, J. A. J. and Diekmann, O. (eds.) Dynamics of Physiologically Structured Populations. Berlin, Germany: Springer-Verlag, pp. 322–344.CrossRefGoogle Scholar
Sabelis, M. W. and P. C. J. van Rijn. 1997. Predation by insects and mites. In Lewis, T. (ed.) Thrips as Crop Pests. Wallingford, UK: CAB International, pp. 259–354.Google Scholar
Snyder, W. E. and Ives, A. R.. 2001. Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82: 705–716.CrossRefGoogle Scholar
Stapel, J. O., Cortesero, A. M., DeMoraes, C. M., Tumlinson, J. H., and Lewis, W. J.. 1997. Extrafloral nectar, honeydew and sucrose effects on searching behavior and efficiency of Microplitis croceipes (Hymenoptera: Braconidae) in cotton. Environmental Entomology 26: 617–623.CrossRefGoogle Scholar
Steffan-Dewenter, I. and Tscharntke, T.. 2002. Insect communities and biotic interactions on fragmented calcareous grasslands: a mini review. Biological Conservation 104: 275–284.CrossRefGoogle Scholar
Stelzl, M. 1991. Investigations on food of Neuroptera adults (Neuropteroidea, Insecta) in Central Europe: with a short discussion of their role as natural enemies of insect pests. Journal of Applied Entomology / Zeitschrift für angewandte Entomologie 111: 469–477.Google Scholar
Sullivan, D. J. and Volkl, W.. 1999. Hyperparasitism: multitrophic ecology and behavior. Annual Review of Entomology 44: 291–315.CrossRefGoogle ScholarPubMed
Takimoto, G., Iwata, T., and Murakami, M.. 2002. Seasonal subsidy stabilizes food web dynamics: balance in a heterogeneous landscape. Ecological Research 17: 433–439.CrossRefGoogle Scholar
Tilman, D. 1982. Resource Competition and Community Structure. Princeton, NJ: Princeton University Press.Google ScholarPubMed
Tylianakis, J. M., Didnam, R. K., and Wratten, S. D.. 2004. Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85: 658–666.CrossRefGoogle Scholar
Ueno, T. 1999a. Host-feeding and acceptance by a parasitic wasp (Hymenoptera: Ichneumonidae) as influenced by egg load and experience in a patch. Evolutionary Ecology 13: 33–44.CrossRefGoogle Scholar
Ueno, T. 1999b. Multiparasitism and host feeding by solitary parasitoid wasps (Hymenoptera: Ichneumonidae) based on the pay-off from parasitized hosts. Annals of the Entomological Society of America 92: 601–608.CrossRefGoogle Scholar
Baalen, M. and Sabelis, M. W.. 1995. The milker–killer dilemma in spatially structured predator–prey interactions. Oikos 74: 391–400.CrossRefGoogle Scholar
Baalen, M., Krivan, V., Rijn, P. C. J., and Sabelis, M. W.. 2001. Alternative food, switching predators and the persistence of predator–prey systems. American Naturalist 157: 512–524.Google ScholarPubMed
Bosch, F. and Diekmann, O. 1986. Interactions between egg-eating predator and prey: the effect of the functional response and of age structure. IMA Journal of Mathematics Applied in Medicine and Biology 3: 53–69.CrossRefGoogle Scholar
Nouhuys, S. and Hanski, I.. 2002. Colonization rates and distances of a host butterfly and two specific parasitoids in a fragmented landscape. Journal of Animal Ecology 71: 639–650.CrossRefGoogle Scholar
Rijn, P. C. J. and Tanigoshi, L. K.. 1999. Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experimental and Applied Acarology 23: 785–802.CrossRefGoogle Scholar
Rijn, P. C. J., Bakker, F. M., Hoeven, W. A. D., and Sabelis, M. W.. 2005. Is arthropod predation exclusively satiation-driven? Oikos 109: 101–116.CrossRefGoogle Scholar
Rijn, P. C. J., Houten, Y. M., and Sabelis, M. W.. 2002. How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83: 2664–2679.CrossRefGoogle Scholar
Veech, J. A. 2001. The foraging behavior of granivorous rodents and short-term apparent competition among seeds. Behavioral Ecology 12: 467–474.CrossRefGoogle Scholar
Vet, L. E. M., Jong, A. G., Franchi, E., and Papaj, D. R.. 1998. The effect of complete versus incomplete information on odor discrimination in a parasitic wasp. Animal Behaviour 55: 1271–1279.CrossRefGoogle Scholar
Vos, M., Kooi, B. W., DeAngelis, D. L., and Mooij, W. M.. 2004. Inducible defences and the paradox of enrichment. Oikos 105: 471–480.CrossRefGoogle Scholar
Wäckers, F. L. 2003. The effect of food supplements on parasitoid–host dynamics. Proc. Int. Symp. Biological Control of Arthropods, Honolulu, pp. 226–231.
Williams, T. and Polaszek, A.. 1996. A re-examination of host relations in the Aphelinidae (Hymenoptera: Chalcidoidea). Biological Journal of the Linnean Society 57: 35–45.CrossRefGoogle Scholar
Xia, J. Y., Rabbinge, R., and Werf, W.. 2003. Multistage functional responses in a ladybeetle–aphid system: scaling up from the laboratory to the field. Environmental Entomology 32: 151–162.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×