Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T12:46:56.226Z Has data issue: false hasContentIssue false

Part Two - Chemical and Mineralogical Diversity

Published online by Cambridge University Press:  25 February 2017

Linda T. Elkins-Tanton
Affiliation:
Arizona State University
Benjamin P. Weiss
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Planetesimals
Early Differentiation and Consequences for Planets
, pp. 69 - 266
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anderson, J. D., Columbo, G., Esposito, P. B., Lau, P. B., and Trager, G. B. 1987. The mass, gravity field and ephemeris of Mercury. Icarus, 71, 337349.CrossRefGoogle Scholar
Anderson, J. D., Jurgens, R. F., Lau, E. L., Slade, M. A. III, Schubert, G., 1996. Shape and orientation of Mercury from radar ranging data. Icarus, 124, 690697.CrossRefGoogle Scholar
Bannister, F. A. 1941. Osbornite, meteoritic titanium nitride. Mineralogical Magazine, 26, 3644.CrossRefGoogle Scholar
Benz, W., Slattery, W. L. and Cameron, A. G. W., 1988. Collisional stripping of Mercury’s mantle. Icarus, 74, 516528.CrossRefGoogle Scholar
Berthet, S., Malavergne, V., and Righter, K. 2009. Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochimica et Cosmochimica Acta, 73, 64026420.Google Scholar
Blewett, D. T., Lucey, P. G., Hawke, B. R., et al. 1997. A comparison of Mercurian reflectance and spectral quantities with those of the Moon. Icarus, 129, 217231.Google Scholar
Blewett, D. T., Hawke, B. R., Lucey, P. G., 2002. Lunar pure anorthosite as a spectral analog for Mercury. Meteoritics & Planetary Science, 37, 12451254.CrossRefGoogle Scholar
Brett, R. and Keil, K. 1986. Enstatite chondrites and enstatite achondrites (aubrites) were not derived from the same parent body. Earth and Planetary Science Letters, 81, 16.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Meibom, A., et al. 2002a. Meteoritic parent bodies: Their number and identification. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 653667.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., et al., 2002b. Spectra of extremely reduced assemblages: Implications for Mercury. Meteoritics & Planetary Science, 37, 12331244.Google Scholar
Cameron, A. G. W., Fegley, B. Jr., Benz, W. et al., 1988. The strange density of Mercury: Theoretical considerations. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: Univ. of Arizona Press, pp. 692708.Google Scholar
Casanova, I. 1990. Geochemistry of metal segregation in aubrites and the origin of their metallic phases. Ph.D. dissertation, University of New Mexico.Google Scholar
Casanova, I., Keil, K., and Newsom, H. E. 1993. Composition of metal in aubrites: Constraints on core formation. Geochimica et Cosmochimica Acta, 57, 675682.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Clayton, R. N., Mayeda, T. K., and Rubin, A. E., 1984. Oxygen-isotopic composition of enstatite chondrites and aubrites. Lunar and Planetary Science Conference, 15, C245C249.Google Scholar
Essene, E. J. and Fisher, D. C. 1986. Lightning strike fusion: Extreme reduction and metal–silicate liquid immiscibility. Science, 234, 189193.CrossRefGoogle ScholarPubMed
Evans, L. G., Peplowski, P. N., Rhodes, E., et al. 2012. Major-element abundances on the surface of Mercury: Results from the MESSENGER gamma-ray spectrometer. Journal of Geophysical Research, 117, E00L07.CrossRefGoogle Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., et al. 2015. Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427.Google Scholar
Floss, C., Fogel, R. A., Lin, Y. T., et al. 2003. Diopside-bearing EL6 EET 90102: Insights from rare earth element distributions. Geochimica et Cosmochimica Acta, 67, 543555.Google Scholar
Fogel, R. A. 1997a. The enstatite chondrite–achondrite link reforged: Solution of the titanium in troilite problem (abstract). Meteoritics & Planetary Science, Supplement, A43.Google Scholar
Fogel, R. A. 1997b. On the significance of diopside and oldhamite in enstatite chondrites and aubrites. Meteoritics & Planetary Science, 32, 577591.Google Scholar
Fogel, R. A. 2001. The role of roedderite in the formation of aubrites (abstract). Lunar and Planetary Science Conference, 32, 2177.Google Scholar
Fogel, R. A. 2005. Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochimica et Cosmochimica Acta, 69, 16331648.Google Scholar
Fogel, R. A., Hess, P. C., and Rutherford, M. J. 1988. The enstatite chondrite–achondrite link (abstract). Lunar and Planetary Science Conference, 19, 342343.Google Scholar
Fuchs, L. H. 1966. Djerfisherite, alkali copper–iron sulfide: A new mineral from enstatite chondrites. Science, 153, 166167.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., et al. 2013. The curious case of Merucry’s internal structure. Journal of Geophysical Research – Planets, 118, 12041220.CrossRefGoogle Scholar
Hiesinger, H., Helbert, J. and MERTIS Co-I Team, 2010. The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planetary and Space Science, 58, 144165.CrossRefGoogle Scholar
Hsu, W. 1998. Geochemical and petrographic studies of oldhamite, diopside, and roedderite in enstatite meteorites. Meteoritics & Planetary Science, 33, 291301.CrossRefGoogle Scholar
Keil, K. 1968. Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 69456976.Google Scholar
Keil, K. 1969. Titanium distribution in enstatite chondrites and achondrites and its bearing on their origin. Earth and Planetary Science Letters, 7, 243248.CrossRefGoogle Scholar
Keil, K., 2007. Occurrence and origin of keilite, (Fe>0.5,Mg<0.5)S, in enstatite chondrite impact-melt rocks and impact-melt breccias. Chemie der Erde, 67, 3754.CrossRefGoogle Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroid parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Keil, K., McCoy, T.J., Wilson, L., et al. 2011. A composite Fe,Ni–FeS and enstatite–forsterite–glass vitrophyre clast in the Larkman Nunatak 04316 aubrite: Origin by pyroclastic volcanism. Meteoritics & Planetary Science, 46, 17191741.CrossRefGoogle Scholar
Killen, R., Cremonese, G., Lammer, H., et al. 2007. Processes that promote and deplete the exosphere of Mercury. Space Science Reviews, 132, 433509.Google Scholar
Kurat, G., Zinner, E., and Brandstätter, F. 1992. An ion microprobe study of an unique oldhamite–pyroxenite fragment from the Bustee aubrite (abstract). Meteoritics, 27, 246247.Google Scholar
Lewis, J. S. 1972. Metal/silicate fractionation in the solar system. Earth and Planetary Science Letters, 15, 286290.CrossRefGoogle Scholar
Lewis, J. S. 1974. Chemistry of the planets. Annual Review of Physical Chemistry, 24, 339351.Google Scholar
Lodders, K. and Fegley, B. 1998. The Planetary Scientists’s Companion. Oxford: Oxford University Press.Google Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., et al. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710714.CrossRefGoogle ScholarPubMed
McCoy, T. J. 1998. A pyroxene–oldhamite clast in Bustee: Igneous aubritic oldhamite and a mechanism for the Ti enrichment in aubritic troilite. Antarctic Meteorite Research, 11, 3248.Google Scholar
McCoy, T. J. and Nittler, L. R. 2014. Mercury. In Planets, Asteroids, Comets and the Solar System, ed. Davis, A. M.. Oxford: Elsevier-Pergamon, pp. 119126.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.CrossRefGoogle Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E., et al. 2012. Is Mercury a volatile-rich planet? Geophysical Research Letters, 39, L09202.CrossRefGoogle Scholar
Morgan, J. W. and Anders, E. 1980. Chemical composition of Earth, Venus, and Mercury. In Proceedings of the National Academy of Sciences, 77, 69736977.CrossRefGoogle ScholarPubMed
Nittler, L. R., Starr, R. D., Weider, S. Z., et al. 2011. The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850.Google Scholar
Okada, A., Keil, K., Taylor, G. J., et al. 1988. Igenous history of the aubrite parent asteroid: Evidence from the Norton County enstatite achondrite. Meteoritics, 23, 5974.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, et al. 2011. Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.Google Scholar
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., et al. 2014. Enhanced sodium abundance in Mercury’s north polar regions revealed by the MESSENGER gamma-ray spectrometer. Icarus, 228, 8695.CrossRefGoogle Scholar
Potter, A. and Morgan, T. H. 1985. Discovery of sodium in the atmosphere of Mercury. Science, 229, 651653.CrossRefGoogle ScholarPubMed
Potter, A. and Morgan, T. H. 1986. Potassium in the atmosphere of Mercury. Icarus, 67, 336340.CrossRefGoogle Scholar
Roedder, E. W. 1951. The system K2O–MgO–SiO2. American Journal of Science, 249, 81130.Google Scholar
Rosenshein, E. B., Ivanova, M. A., Dickinson, T. L., et al. 2006. Oxide-bearing and FeO-rich clasts in aubrites. Meteoritics & Planetary Science, 41, 495503.CrossRefGoogle Scholar
Sack, R. O. and Ebel, D. S. 2006. Thermochemistry of sulfide mineral solutions. Reviews in Mineralogy and Geochemistry, 61, 265364.Google Scholar
Sears, D. W., Kallemeyn, G. W., and Wasson, J. T. 1982. The compositional classification of chondrites: II. The enstatite chondrite groups. Geochimica et Cosmochimica Acta, 46, 597608.Google Scholar
Skinner, B. J. and Luce, F. D. 1971. Solid solutions of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist, 56, 12691296.Google Scholar
Smith, D. E., Zuber, M. T., Phillips, R. J., et al. 2012. Gravity field and internal structure of Mercury from MESSENGER. Science, 336, 214217.CrossRefGoogle ScholarPubMed
Sprague, A., Warrell, J., and Cremonese, G., et al. 2007. Mercury’s surface composition and character as measured by ground-based observations. Space Science Reviews, 132, 399431.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R. et al. 2012. Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. Journal of Geophysical Research: Planets, 117(E12), E004140.Google Scholar
Story-Maskelyne, N. 1870. On the mineral constituents of meteorites: The Busti aerolite of 1852. Philosophical Transactions of the Royal Society of London, 160, 189214.Google Scholar
Taylor, G. J. and Scott, E. R. D. 2003. Mercury. In Meteorites, Comets and Planets, ed. Davis, A. M.. Oxford: Elsevier-Pergamon, pp. 477485.Google Scholar
Taylor, G. J., Keil, K., Newsom, H., et al. 1988. Magmatism and impact on the aubrite parent body: Evidence from the Norton County enstatite achondrite (abstract). Lunar and Planetary Science Conference, 19, 11851186.Google Scholar
Ulff-Møller, F. 1990. Formation of native iron in sediment-contaminated magma: 1. A case study of the Hanekammen Complex on Disko Island, West Greenland. Geochimica et Cosmochimica Acta, 54, 5770.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. 2015. Sulfur solubility in silicate melts under highly reducing conditions relevant to Mercury. Lunar and Planetary Science Conference, 46, 1040.Google Scholar
Wasson, J. T. 1988. The building stones of the planets. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, 622650.Google Scholar
Watters, T. R. and Prinz, M. 1979. Aubrites: Their origin and relationship to enstatite chondrites. Lunar and Planetary Science Conference, 10, 10731093.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., et al. 2015. Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth and Planetary Science Letters, 416, 109120.Google Scholar
Wetherill, G. W. 1988. Accumulation of Mercury from planetesimals. In Mercury, ed. Vilas, F., Chapman, C. R., and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 670691.Google Scholar
Wheelock, M. ., Keil, K., Floss, C., et al. 1994. REE geochemistry of oldhamite-dominated clasts from the Norton County aubrite: Igneous origin of oldhamite. Geochimica et Cosmochimica Acta, 58, 449458.CrossRefGoogle Scholar
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.CrossRefGoogle Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar

References

Abramov, O. and Mojzsis, S. (2011) Abode for life in carbonaceous asteroids? Icarus, 213, 273279.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity does not equal permeability. Earth and Planetary Science Letters, 287, 559568.Google Scholar
Bland, P. A., Travis, B. J., Dyl, K. A., and Schubert, G. 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 44, 1447l.Google Scholar
Bottke, W. F., Nesvorny, D., Grimm, R. E., Morbidelli, A., and O’Brien, D. P. 2006. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region. Nature, 439, 821824.Google Scholar
Brearley, A. J. 2006. The action of water. In Meteorites of the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 587624.CrossRefGoogle Scholar
Brearley, A. J. and Krot, A. N. 2013. Metasomatism in the early solar system: The record from chondritic meteorites. Metasomatism and the Chemical Transformation of Rock, Lecture Notes in Earth System Sciences, 659–789.Google Scholar
Briani, G., Quirico, E., Gounelle, M., et al. 2013. Short duration thermal metamorphism in CR chondrites. Geochimica et Cosmochimica Acta, 122, 267279.Google Scholar
Britt, D. T. and Consolmagno, G. J. 1997. The porosity of meteorites and asteroids: Results from the Vatican collection of meteorites. Lunar and Planetary Science, 28, 159160.Google Scholar
Browning, L. B., McSween, H. Y. Jr., and Zolensky, M. E. 1996. Correlated alteration effects in CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 60, 26212633.Google Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459. doi:10.1016/j.icarus.2009.04.008.Google Scholar
Castillo-Rogez, J. C. and Schmidt, B. E. 2010. Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.Google Scholar
Castillo-Rogez, J. C. 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599602.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and Lunine, J. I. 2013. Small worlds habitability. In: Astrobiology: The Next Frontier, ed Impey, C., Lunine, J., Funes, J.. Cambridge: Cambridge University Press, 201208.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151161.CrossRefGoogle Scholar
Clayton, R. N. and Mayeda, T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Corrigan, C. M., Zolensky, M. E., Dahl, J., et al. 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science, 32, 509515.Google Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. 2010. Towards initial mass functions for asteroids and Kuiper belt objects. Icarus, 208, 518538.CrossRefGoogle Scholar
De León, J., Pinilla-Alonso, N., Campins, H., Licandro, J., and Marzo, G. A. 2012. Near-infrared spectroscopic survey of B-type asteroids: compositional analysis. Icarus, 218, 196206.Google Scholar
DeMeo, F. E. and Carry, B. 2014. Solar system evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.CrossRefGoogle ScholarPubMed
De Sanctis, M. C., Ammannito, E., Raponi, A., et al. 2015. Ammoniated phyllosilicates with a likely outer solar system origin on (1) Ceres. Nature, 528, 241244.CrossRefGoogle Scholar
Dodson-Robinson, S. E., Willacy, K., Bodenheimer, P., Turner, N. J., and Beichman, C. A. 2009. Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus, 200, 672693.CrossRefGoogle Scholar
Drummond, J. D., Carry, B., Merline, W. J., et al. 2014. Dwarf planet Ceres: Ellipsoid dimensions and rotational pole from Keck and VLT adaptive optics images. Icarus, 236, 2837.Google Scholar
Dyl, K. A., Manning, C. E., and Young, E. D. 2010. The implications of cronstedtite formation in water-rich planetesimals and asteroids. Astrobiology Science Conference, 5627.Google Scholar
Dyl, K. A., Schmidt, B. E., and Bland, P. A. 2013. Linking scales of carbonaceous chondrite alteration and asteroid differentiation. Workshop on Planetesimal Formation and Differentiation, 8031.Google Scholar
Dyl, K. A., Boyce, J. W., Guan, Y., Bland, P. A., and Eiler, J. M. 2014. Characterizing early solar system fluids on the Allende (CV3) parent body: NanoSIMS study of phosphate volatile contents. Paper presented at the 77th Annual Meeting of the Meteoritical Society, September 7–12, Casablanca, Morocco. LPI Contribution No. 1800, id. 5386.Google Scholar
Ehlmann, B. L., Bish, D. L., Ruff, S. W., and Mustard, J. F. 2012. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars. Journal of Geophysical Research, 117, E00J16.Google Scholar
Engel, S. and Lunine, J. I. 1994. Silicate interactions with ammonia–water fluids on early Titan. Journal of Geophysical Research, 99, 37453752.Google Scholar
Flynn, G. J., Moore, L. B., and Klock, W. 1999. Density and porosity of stone meteorites: Implications for the density, porosity, cratering, and collisional disruption of asteroids. Icarus, 142, 97105.Google Scholar
Fries, M., Messenger, S., Steele, A., and Zolensy, M. 2014. The H chondrite halite parent body: Warm, wet, organic-rich, rather habitable and possibly Ceres. Workshop on the Habitability of Icy Worlds, February 5–7, Pasadena, CA, #4078.Google Scholar
Gounelle, M. and Zolensky, M. E. 2001. A terrestrial origin for sulfate veins in CI1 chondrites. Meteoritics & Planetary Science, 36, 13211329.CrossRefGoogle Scholar
Grazier, K. R., Castillo-Rogez, J. C., and Sharp, P. W. 2014. Dynamical delivery of volatiles to the outer main belt. Icarus, 232, 1321.Google Scholar
Gregory, R. T. and Criss, R. E. 1986. Isotopic exchange in open and closed systems. In Stable Isotopes in High Temperature Geological Processes, ed. Valley, J. W., Taylor, H. P., and O’Neil, J. R.. Washington DC: Mineralogical Society of America, 91127.Google Scholar
Grimm, R. E. and McSween, H. Y. Jr. 1993. Heliocentric zoning of the asteroid belt by aluminum-26 heating. Science, 259, 653655.Google Scholar
Guo, W. and Eiler, J. M. 2007. Temperature of aqueous alteration and evidence for methane generation on the parent bodies of the CM chondrites. Geochimica et Cosmochimica Acta, 71, 55655575.Google Scholar
Haghighipour, N. 2009. Dynamical constraints on the origin of the main belt comets. Meteorites and Planetary Science, 44, 18631869.Google Scholar
Hand, K. P. and Carlson, R. W. 2015. Europa’s surface color indicates an ocean rich with sodium chloride. Geophysical Research Letters, 42, 31743178.Google Scholar
Herndon, J. M. and Herndon, M. A. 1977. Aluminum-26 as a planetoid heat source in the early solar system. Meteoritics, 12, 459465.Google Scholar
Hiroi, T., 1996. Asteroid surface materials detected from their reflectance spectra. Journal of the Mineralogical Society of Japan, 25, 6167.Google Scholar
Jewitt, D. and Guilbert-Lepoutre, A.. 2012. Limits to ice on asteroids (24) Themis and (65) Cybele. Astronomical Journal, 143, 21.Google Scholar
Jewitt, D., Hsieh, H., and Agarwal, J. 2015. The active asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 221242.Google Scholar
Johansen, A., Blum, J., Tanaka, H., et al. 2014. The multifaceted planetesimal formation process. In Protostars and Planets VI, ed. Beuther, H., Klessen, R. S, Dullemond, C. P, and Henning, T.. Tucson, AZ: University of Arizona Press, 547570.Google Scholar
Johansen, A., Jacquet, E., Cuzzi, J. N., Morbidelli, A., and Gounelle, M. 2015. New paradigms for asteroid formation, In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 471492.Google Scholar
Jones, C. L. and Brearley, A. J. 2006. Experimental aqueous alteration of the Allende meteorite under oxidizing conditions: Constraints on asteroidal alteration. Geochimica et Cosmochimica Acta, 70, 10401058.CrossRefGoogle Scholar
Jones, T. D., Lebosky, L. A., Lewis, J. S., and Marley, M. S. 1990. The composition and origin of the C, P, and D asteroids: Water as a tracer of thermal evolution in the outer belt, Icarus, 88, 172192.Google Scholar
Jura, M., Xu, S., and Young, E. D. 2013. 26Al in the early solar system: not so unusual after all. Astrophysical Journal Letters, 775, L41.CrossRefGoogle Scholar
Kallemeyn, G. W. and Wasson, J. T. 1981. The compositional classification of chondrites: I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.CrossRefGoogle Scholar
Kargel, J. S. 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94, 368390.Google Scholar
Kargel, J. S., Kaye, J. Z., Head, J. W. III, et al. 2000. Europa’s crust and ocean: Origin, composition, and the prospect for life. Icarus, 148, 226265.Google Scholar
Keil, K. 2000. Thermal alteration of asteroids: Evidence from meteorites. Planetary and Space Science, 48, 887903.Google Scholar
Kerekgyarto, M. G., Jeffcoat, C. R., Lapen, T. J., et al. 2015. Supra-canonical initial 26Al/27Al from a reprocessed Allende CAI. Lunar and Planetary Science Conference, 46, 2918.Google Scholar
Krot, A. N., Makide, K., and Nagashima, K., et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from refractory grains and inclusions. Meteoritics & Planetary Science, 47, 19481979.CrossRefGoogle Scholar
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., et al., 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777780.Google Scholar
Kueppers, M., O’Rourke, L., Bockelee-Morvan, D., et al. 2014. Localized sources of water vapour on the dwarf planet (1) Ceres. Nature, 505, 525527.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. 1977. Aluminum-26 in the early solar system: fossil or fuel? Astrophysical Journal, 211, L107L110.Google Scholar
Leshin, L. A., Rubin, A. E. and McKeegan, K. D. 1997. The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochimica et Cosmochimica Acta, 61, 835845.Google Scholar
Levison, H. F., Bottke, W. F., Gounelle, M., et al. 2009. Contamination of the asteroid belt by primordial trans-Neptunian objects, Nature, 460, 364366.Google Scholar
Licandro, J., Campins, H., Kelley, M., et al., 2011. (65) Cybele: Detection of small silicate grains, water-ice, and organics. Astronomy & Astrophysics, 525, A34.Google Scholar
Li, Z.-X. A. and Lee, C.-T. A. 2006. Geochemical investigation of serpentinized oceanic mantle lithospheric mantle in the Feather River ophiolite, California: Implications for the recycling rate of water by subduction. Chemical Geology, 235, 161185.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al., 2012. Heterogeneous distribution of 26Al at the birth of the solar system: Evidence from corundum-bearing refractory inclusions in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 110, 190215.Google Scholar
McAdam, M. M., Sunshine, J. M., Howard, K. T., and McCoy, T. J. 2015. Aqueous alteration on asteroids: Linking the mineralogy and spectroscopy of CM and CI chondrites. Icarus, 245, 320332.Google Scholar
McCord, T. B. and Sotin, C. 2005. Ceres: Evolution and current state. Journal of Geophysical Research, 110, E05009.CrossRefGoogle Scholar
McCord, T. B., Castillo-Rogez, J. C., and Rivkin, A. S. 2011. Ceres: Its origin, evolution and structure and Dawn’s potential contribution. Space Science Reviews, 163, 6376.Google Scholar
McKinnon, W. B. 2008. Could Ceres be a refugee from the Kuiper belt? Paper presented at Asteroids, Comets, Meteors 2008, Baltimore, MD, July 14–18, LPI Contribution No. 1405, paper 8389.Google Scholar
McKinnon, W. B. 2012. Where did ceres accrete - in situ in the asteroid belt, among the giant planets, or in the primordial trans-neptunian belt? Paper presented at the American Astronomical Society, Division for Planetary Sciences 44th meeting, Reno, NV, October 14–19, paper 111.14.Google Scholar
McKinnon, W. B. and Zolensky, M. E. 2003. Sulfate content of Europa’s ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology, 3, 879897.Google Scholar
McSween, H. Y. Jr. 1979. Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix, Geochimica et Cosmochimica Acta, 43, 17611770.CrossRefGoogle Scholar
Morbidelli, A., Bottke, W. F., Nesvorny, D., Levison, H. F., 2009. Asteroids were born big. Icarus, 204, 558575.Google Scholar
Mousis, O. and Alibert, Y. 2005. On the composition of ices incorporated in Ceres. Monthly Notices of the Royal Astronomical Society, 358, 188192.Google Scholar
Neveu, M., Desch, S., and Castillo-Rogez, J. C. 2015. Core cracking and hydrothermal circulation can profoundly affect Ceres’ geophysical evolution. Journal of Geophysical Research, 120, 123154.Google Scholar
Neveu, M. and Desch, S.,2015. Geochemistry, thermal evolution, and cryovolcanism on Ceres with a muddy ice mantle. Geophysical Research Letters, 42, 1019710206.Google Scholar
IIINuth, J. A., Johnson, N. M., and Hill, H. G. M., 2014. CO Self-shielding as a mechanism to make 16O-enriched solids in the solar nebula. Challenges, 5, 152158.Google Scholar
Ouellette, N., Desch, S. J., Hester, J. J., 2007. Interaction of supernova ejecta with nearby protoplanetary disks. Astrophysical Journal, 662, 12681281.CrossRefGoogle Scholar
Palguta, J., Schubert, G., and Travis, B. J. 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters, 296, 235243.Google Scholar
Pizzarello, S., Williams, L. B., Lehman, J., Holland, G. P., and Yarger, J. L. 2011. Abundant ammonia in primitive asteroids and the case for a possible exobiology. Proceedings of the National Academy of Sciences of the United States of America, 108, 43034306.Google Scholar
Postberg, F., Kempf, S., Schmidt, J., et al., 2009. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459, 10981101.Google Scholar
Rambaux, N., Chambat, F., Castillo-Rogez, J. C. 2015. Third-order development of shape, gravity, and moment of inertia for highly flattened celestial bodies: Application to Ceres. Astronomy & Astrophysics, 584, A127.Google Scholar
Rivkin, A. S. and Emery, J. P. 2010. Detection of ice and organics on an asteroidal surface. Nature, 464, 13221323.CrossRefGoogle Scholar
Rosenberg, N. D., Browning, L., and Bourcier, W. L. 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239244.Google Scholar
Schlichting, H. E., Ofek, E. O., Re’em, S., et al. 2012. Measuring the abundance of sub-kilometer-sized Kuiper belt objects using stellar occultations. Astrophysical Journal, 761, 150.Google Scholar
Schorghofer, N. 2008. The lifetime of ice on main belt asteroids. Astrophysical Journal, 682, 697705.Google Scholar
Scott, H. P., Williams, Q., and Ryerson, F. J. 2002. Experimental constraints on the chemical evolution of large icy satellites. Earth and Planetary Science Letters, 203, 399412.Google Scholar
Shock, E., Sassani, D. C., and Betz, H. 1997. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta, 61, 42454266.Google Scholar
Sonnett, S., Kleyna, J., Jedicke, R., Masiero, J., 2011. Limits on the size and orbit distribution of main belt comets. Icarus, 215, 534546.Google Scholar
Sugiura, N., Brar, N. S., and Strangway, D. W. 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B651B644.Google Scholar
Takir, D. and Emery, J. P. 2012. Outer main belt asteroids: Identification and distribution of four 3-μm spectral groups. Icarus, 219, 641654.Google Scholar
Takir, D., Emery, J. P., and McSween, H. Y. Jr. 2015. Toward an understanding of phyllosilicate mineralogy in the outer main asteroid belt. Icarus, 257, 185193.Google Scholar
Thomas, P. C., Parker, J. Wm., McFadden, L. A., et al., 2005. Differentiation of the asteroid Ceres as revealed by its shape. Nature, 437, 224226.Google Scholar
Vernazza, P., Marsset, M., Beck, P., et al. 2015. Interplanetary dust particles as samples of icy satellites. Astrophysical Journal, 806, 204.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2012. Populating the asteroid belt from two parent source regions due to the migration of giant planets – “The Grand Tack.” Meteoritics & Planetary Science, 47, 19411947.Google Scholar
Weidenschilling, S. J. 2011. Initial sizes of planetesimals and accretion of the asteroids. Icarus, 214, 671684, 2011.Google Scholar
Wilson, L., Keil, K., Browning, L. B., Krot, A. N., and Bourcher, W. 1999. Early aqueous alteration, explosive disruption, and reprocessing of asteroids. Meteoritical & Planetary Sciences, 34, 541557.Google Scholar
Young, E. D., 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosophical Transactions of the Royal Society of London A, 359, 20952110.Google Scholar
Young, E. D., Simon, J. I., Galy, A., et al. 2005. Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk. Science, 308, 223227.Google Scholar
Young, E. D. 2014. Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth and Planetary Science Letters, 392, 16027.Google Scholar
Young, E. D., Ash, R. D., England, P., and Rumble, D. III, 1999. Fluid flow in chondrite parent bodies: deciphering the compositions of planetesimals. Science, 286, 13311335.Google Scholar
Young, E. D., Zhang, K. K., and Schubert, G., 2003. Conditions for pore water convection within carbonaceous chondrite parent bodies: Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of thermal history of Vesta. Geochemica et Cosmochimica Acta, 110, 152175.Google Scholar
Zolensky, M. E., Bodnar, R. J., Gibson, E. K. Jr., et al, 1999. Asteroidal water within fluid inclusion-bearing halite in an H4 chondrite, Monahans (1998). Science, 285, 13771379.Google Scholar
Zolensky, M. E., Bourcier, W. L., and Gooding, J. L. 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411425.Google Scholar
Zolotov, M. Y. and Shock, E. L. 2001. Composition and stability of salts on the surface of Europa and their oceanic origin. Journal of Geophysical Research, 106, 3281532828..Google Scholar
Zolotov, M. Y. 2012. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessment in closed systems. Icarus, 220, 713729.Google Scholar

References

Agee, C. B., Li, J., Shannon, M. C., et al. 1995. Pressure–temperature phase diagram for the Allende meteorite. Journal of Geophysical Research, 100, 1772517740.Google Scholar
Akai, J. 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120135.Google Scholar
Alexander, C. M. O., Barber, D. J., and Hutchison, R. 1989. The microstructure of Semarkona and Bishunpur. Geochimica et Cosmochimica Acta, 53, 30453057.Google Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. 2011. Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.Google Scholar
Bai, Q. and Kohlstedt, D. L. 1993. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Physics and Chemistry of Minerals, 19, 460471.Google Scholar
Benedix, G., Leshin, L. A., Farquhar, J., et al. 2003. Carbonates in CM2 chondrites: Constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochimica et Cosmochimica Acta, 67, 15771588.Google Scholar
Bland, P. A., Travis, B. J., Dyl, K. A., et al. 2013. Giant convecting mudballs of the early solar system. Lunar and Planetary Science Conference, 45, 1447.Google Scholar
Bland, P. A., Jackson, M. D., Coker, R. F., et al. 2009. Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559568.Google Scholar
Bland, P. A. and Ciesla, F. J. 2010. The impact of nebular evolution on volatile depletion trends observed in differentiated objects. In Lunar and Planetary Science Conference, 41, 1817.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagna, G. 2006. Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter, Geochimica Cosmochimica Acta, 70, 18491863.Google Scholar
Brearley, A. J. and Krot, A. N. 2012. Metasomatism in the early solar system: The record from chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock, ed. Harlov, D. E. and Austrheim, H.. Berlin: Springer-Verlag, 659789.Google Scholar
Brenker, F. E. and Krot, A. N. 2004. Late-stage, high-temperature processing in the Allende meteorite: Record from Ca,Fe-rich silicate rims around dark inclusions. American Mineralologist, 89, 12801289.Google Scholar
Britt, D. and Consolmagno, G. J. 2003. Stony meteorite porosities and densities: A review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.Google Scholar
Canup, R. M. 2012. Forming the Moon with Earth-like composition via a giant impact. Science, 338, 10521055.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 63866389.Google Scholar
Castillo-Rogez, J. C. 2011. Ceres: Neither a porous nor salty ball. Icarus, 215, 599602.CrossRefGoogle Scholar
Castillo-Rogez, J. C. and Schmidt, B. E. 2010. Geophysical evolution of the Themis family parent body. Geophysical Research Letters, 37, L10202.Google Scholar
Choi, B.-G., McKeegan, K. D., Leshin, L. A., et al. 1997. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine. Earth and Planetary Science Letters, 337–349.Google Scholar
Choi, B.-G., McKeegan, K. D., Krot, A. N., et al. 1998. Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature, 392, 577579.Google Scholar
Ciesla, F. J. 2008. Radial transport in the solar nebula: Implications for moderately volatile element depletions in chondritic meteorites. Meteoritics & Planetary Science, 43, 639655.Google Scholar
Clauser, C. 1992. Permeability of crystalline rocks. Eos Transactions of the AGU, 73, 233238.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1984. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth and Planetary Science Letters, 67, 151161.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1999. Oxygen isotope studies of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 63, 20892104.Google Scholar
Clayton, R. N., Onuma, N., and Grossman, L. et al. 1977. Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters, 34, 209224.Google Scholar
Corrigan, C. M. et al. 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science, 32, 509515.Google Scholar
Cournede, C., Zolensky, M. E., Dahl, J., et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.Google Scholar
Dykhius, M. J. and Greenberg, R. 2015. Collisional family structure within the Nyse–Polana complex. Icarus, 252, 199211.Google Scholar
Dyl, K. A., Bischoff, A., Ziegler, K., et al. 2012. Early solar system hydrothermal activity in chondritic asteroids on 1–10-year timescales. Proceedings of the National Academy of Sciences of the United States of America, 109, 1830618311.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M.T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.Google Scholar
Formisano, M., Turrini, D., Federico, C., et al. 2013. The onset of differentiation and internal evolution: the case of 21 Lutetia. Astrophysical Journal, 770, 50.Google Scholar
Fu, R. R., Hager, B. H., Ermakov, A. I. et al. 2014. Efficient early global relaxation of asteroid Vesta. Icarus, 240, 133145.Google Scholar
Fu, R. R. and Elkins-Tanton, L.T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.Google Scholar
Gaffey, M. J., Reed, K.L., and Kelley, M. S. 1992. Relationship of E-type Apollo asteroid 3103 (1982 BB) to the enstatite achondrite meteorites and the Hungaria asteroids. Icarus, 100, 95109.Google Scholar
Ghosh, A. and McSween, H. Y. 1998. A thermal model for the differentiation of asteroid 4 Vesta based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Gregory, R. T. and Criss, R. E. 1986. Isotopic exchange in open and closed systems. Reviews in Mineralology and Geochemistry, 16, 91127.Google Scholar
Grimm, R. E. and McSween, H. Y. 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus, 82, 244280.Google Scholar
Hauri, E. H., Gaetani, G. A., and Green, T. H. 2006. Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth and Planetary Science Letters, 248, 715734.Google Scholar
Henke, S., Gail, H.-P., Trieloff, M., et al. 2012. Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, p.A135.Google Scholar
Huenges, E., Erzinger, J., Kück, J., et al. 1997. The permeable crust: Geohydraulic properties down to 9101 m depth. Journal of Geophysical Research, 102, 18,25518,265.Google Scholar
Humayun, M. and Clayton, R.N. 1995. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochimica et Cosmochimica Acta, 59, 21312148.Google Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.Google Scholar
Jarosewich, E. 1990. Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteoritics, 25, 323337.Google Scholar
Jenniskens, P., Fries, M. D., Yin, Q-Z. et al. 2012. Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science, 1583, 15831587.Google Scholar
Johnson, C. A., Prinz, M., Weisberg, M. K., et al. 1990. Dark inclusions in Allende, Leoville, and Vigarano: Evidence for nebular oxidation of CV3 constituents. Geochimica et Cosmochimica Acta, 54, 819830.Google Scholar
Kallemeyn, G. W. and Wasson, J. T. 1981. The compostional classification of chondrites – I. The carbonaceous chondrite groups. Geochimica et Cosmochimica Acta, 45, 12171230.Google Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. 1998. Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteoritics & Planetary Science, 33, 10651085.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G.J. 1976. Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophysical Research Letters, 3, 4144.Google Scholar
Leshin, L. A., Farquhar, J., Guan, Y., et al. 2001. Oxygen isotopic anatomy of Tagish Lake: relationship to primary and secondary minerals in CI and CM chondrites. Lunar and Planetary Science Conference, 32, 1843.Google Scholar
McCoy, T. J., Keil, K., Muenow, D. W., et al. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McCoy, T., Mittlefehldt, D. W., and Wilson, L. 2003. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. and McSween, H. Y.. Tucson, AZ: University of Arizona Press, 733745.Google Scholar
McCoy, T. J., Ketcham, R. A., Wilson, L., et al. 2006. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102108.Google Scholar
Muenow, D. W., Keil, K., and Wilson, L. 1992. High-temperature mass spectrometric degassing of enstatite chondrites: Implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 42674280.Google Scholar
Muenow, D. W., Keil, K., and McCoy, T. J. 1995. Volatiles in unequilibrated ordinary chondrites: Abundances, sources and implications for explosive volcanism on differentiated asteroids. Meteoritics & Planetary Science, 30, 639645.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2013. The thermo-chemical evolution of Asteroid 21 Lutetia. Icarus, 224, 126143.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Öberg, K., Murray-Clay, R., and Bergin, E. A. 2011. The effects of snowlines on C/O in planetary atmospheres. Astrophysical Journal Letters, 743, L16.Google Scholar
Ootsubo, T., Kawakita, H., and Hamada, S., et al. 2012. AKARI near-infrared spectroscopic survey for CO2 in 18 comets. Astrophysical Journal, 752, 112.Google Scholar
Palguta, J., Schubert, G., and Travis, B. J. 2010. Fluid flow and chemical alteration in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters, 296, 235243.Google Scholar
Papale, P. 1997. Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids. Contributions to Mineralology and Petrology, 126, 237251.Google Scholar
Rosenberg, N. D., Browning, L., and Bourcier, W. L. 2001. Modeling aqueous alteration of CM carbonaceous chondrites. Meteoritics & Planetary Science, 36, 239244.Google Scholar
Sakamoto, N., Seto, Y., Itoh, S., et al. 2007. Remnants of the early solar system water enriched in heavy oxygen isotopes. Science, 317, 231233.Google Scholar
Sarafian, A. R., Roden, M. F., and Patiño-Douce, A. E. 2013. The volatile content of Vesta: Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 21352154.Google Scholar
Sarafian, A. R., Nielson, S. G., Berger, E. L., et al. 2015. Wet angrites? A D/H and Pb–Pb study of silicates and phosphates. Lunar and Planetary Science Conference, 46, 1542.Google Scholar
Schiller, M., Connelly, J. N., Glad, A. C., et al. 2015. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 420, 4554.Google Scholar
Schultz, R. A., 1993. Brittle strength of basaltic rock masses with applications to Venus. Journal of Geophysical Research, 98, 10,810–883,895.Google Scholar
Sears, D. W. G. 1998. The case for rarity of chondrules and calcium–aluminum-rich inclusions in the early solar system and some implications for astrophysical models. Astrophysical Journal, 498, 773778.Google Scholar
Šrámek, O., Milelli, L., Ricard, Y., et al. 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.Google Scholar
Sugiura, N., Brar, N. S., and Strangway, D. W. 1984. Degassing of meteorite parent bodies. Journal of Geophysical Research, 89, B641B644.Google Scholar
Sugiura, N. and Strangway, D.W. 1985. NRM directions around a centimeter-sized dark inclusion in Allende. Lunar and Planetary Science Conference, 15, C729–C738.Google Scholar
Taitel, Y. and Witte, L. 1996. The role of surface tension in microgravity slug flow. Chemical Engineering Science, 51, 695700.Google Scholar
Tang, H. and Dauphas, N. 2012. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters, 359–360, pp.248263.Google Scholar
Turcotte, D. L. and Schubert, G. 2002. Geodynamics. New York: Cambridge University Press.Google Scholar
Urey, H. C. 1955. The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127144.Google Scholar
Walker, D. and Grove, T. L. 1993. Ureilite smelting. Meteoritics, 28, 629636.Google Scholar
Webster, J. D. 1997. Chloride solubility in felsic melts and the role of chloride in magmatic degassing. Journal of Petrology, 38, 17931807.Google Scholar
Weiss, B. P., Elkins-Tanton, L. T., Barucci, M. A., et al., 2012. Possible evidence for partial differentiation of asteroid Lutetia from Rosetta. Planetary and Space Science, 66, 137146.Google Scholar
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.Google Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.Google Scholar
Wilson, L., Keil, K., and McCoy, T. J. 2010. Pyroclast loss or retention during explosive volcanism on asteroids: Influence of asteroid size and gas content of melt. Meteoritics & Planetary Science, 45, 12841301.Google Scholar
Wood, J. A. 1964. The cooling rates and parent bodies of several iron meteorites. Icarus, 3, 429459.Google Scholar
Xu, T., Sonnenthal, E., Spycher, N., et al. 2004. TOUGHREACT – A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Compututers & Geosciences, 32, 145165.Google Scholar
Young, E. D. 2001. The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philosphical Transactions of the Royal Society of London A, 359, 20952110.Google Scholar
Young, E. D. and Russell, S. S., 1998. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science, 282, 452455.Google Scholar
Young, E. D., Ash, R. D., England, P., and Rumble, D. III. 1999. Fluid flow in chondritic parent bodies: Deciphering the compositions of planetesimals. Science, 286, 13311335.Google Scholar
Young, E. D., Zhang, K., and Schubert, G., 2003. Conditions for pore water convection within carbonaceous chondrite parent bodies: Implications for planetesimal size and heat production. Earth and Planetary Science Letters, 213, 249259.Google Scholar
Zolensky, M. E., Bourcier, W. L., and Gooding, J. L. 1989. Aqueous alteration on the hydrous asteroids: Results of EQ3/6 computer simulations. Icarus, 78, 411425.Google Scholar

References

Agee, C. B., Ziegler, K., and Muttik, N., 2015. New unique pyroxene pallasite: Northwest Africa 10019. LPI Contribution, 1856, abstract # 5084.Google Scholar
Albarède, F., Bouchet, R. A., and Blichert-Toft, J. 2013. Siderophile elements in IVA irons and the compaction of their parent asteroidal core. Earth and Planetary Science Letters, 362, 122129.Google Scholar
Asphaug, E., Agnor, C.B., Williams, Q., 2006. Hit-and-run planetary collisions. Nature 439, 155-160.Google Scholar
Baker, J., Bizzarro, M., Wittig, N., Connelly, J., Haack, H., 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites. Nature, 436, 1127-1131.Google Scholar
Baker, J.A., Schiller, M., Bizzarro, M., 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System? Geochimica et Cosmochimica Acta, 77, 415-431.Google Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB-Winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., and Lundgaard, K. L. 2005. Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astrophysical Journal Letters, 632, L41.Google Scholar
Boesenberg, J. S., Davis, A. M., Prinz, M. et al. 2000. The pyroxene pallasites, Vermillion and Yamato 8451: Not quite a couple. Meteoritics & Planetary Science, 35, 757769.Google Scholar
Boesenberg, J. S., Delaney, J. S., Hewins, R. H., 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.Google Scholar
Bogard, D.D. and Garrison, D.H. 1998. 39Ar–40Ar ages and thermal history of mesosiderites. Geochimica et Cosmochimica Acta, 62, 14591468.Google Scholar
Buchwald, V. F. 1975. Handbook of Iron Meteorites, Their History, Distribution, Composition, and Structure. Center for Meteorite Studies, Arizona State University. For digital version see http://evols.library.manoa.hawaii.edu/handle/10524/33750Google Scholar
Bunch, T. E., Rumble, D. III, Wittke, J. H., and Irving, A. J., 2005. Pyroxene-rich pallasites, Zinder and NWA 1911: Not like the others. Meteoritics & Planetary Science, 40, Abstract #5219.Google Scholar
Buseck, P.R. 1977. Pallasite meteorites – mineralogy, petrology and geochemistry. Geochimica et Cosmochimica Acta, 41, 711721.Google Scholar
Campbell, A. J. and Humayun, M. 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta, 69, 47334744.Google Scholar
Chabot, N. L. 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 36073618.Google Scholar
Chabot, N. L. and Drake, M. J. 2000. Crystallization of magmatic iron meteorites: The effects of phosphorus and liquid immiscibility. Meteoritics & Planetary Science, 35, 807816.Google Scholar
Chabot, N. L. and Haack, H. 2006. Evolution of asteroidal cores. In: Meteorites and the Early Solar System II, ed. Lauretta, D.S. and McSween, H.Y. Jr. Tucson, AZ: University of Arizona Press, 747771.Google Scholar
Chabot, N. L. and Jones, J. H. 2003. The parameterization of solid metal–liquid metal partitioning of siderophile elements. Meteoritics & Planetary Science, 38, 14251436.Google Scholar
Chabot, N. L., Campbell, A. J., Jones, J. H., Humayun, M., and Lauer, H. V. 2006. The influence of carbon on partitioning behavior during planetary evolution. Geochimica et Cosmochimica Acta, 70, 13221335.Google Scholar
Chabot, N. L., Wollack, E. A., McDonough, W. F., and Ash, R. 2014.The effect of light elements in metallic liquids on partitioning behavior. Lunar and Planetary Science Conference, 45, 1165.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1978. Genetic relations between iron and stony meteorites. Earth and Planetary Science Letters, 40, 168174.Google Scholar
Clayton, R. N. and Mayeda, T. K. 1996. Oxygen isotope studies of achondrites. Geochimica et Cosmochimica Acta, 60, 19992017.Google Scholar
Clayton, R.N., Mayeda, T. K., Olsen, E. J., and Prinz, M. 1983. Oxygen isotope relationships in iron meteorites. Earth and Planetary Science Letters, 65, 229232.Google Scholar
Corrigan, C. M., Chabot, N. L., McCoy, T. J . et al. 2009. The iron–nickel–phosphorus system: Effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica et Cosmochimica Acta, 73, 26742691.Google Scholar
Davis, A. M. and Olsen, E. J. 1991. Phosphates in pallasite meteorites as probes of mantle processes in small planetary bodies. Nature, 353, 637640.Google Scholar
Franchi, I. A. 2008. Oxygen isotopes in asteroidal materials. Reviews in Mineralogy and Geochemistry, 68, 345397.Google Scholar
Ghosh, A., Weidenschilling, S. J., McSween, H. Y. Jr., and Rubin, A. 2006. Asteroidal heating and thermal stratification of the asteroid belt. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr., Tucson, AZ: University of Arizona Press, 555566.Google Scholar
Gilmour, J. D., Pravdivtseva, O. V., Busfield, A., and Hohenberg, C. M., 2006. The I–Xe chronometer and the early solar system. Meteoritics & Planetary Science, 41, 1931.Google Scholar
Goldstein, J. I., Scott, E. R. D., and Chabot, N. L. 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.Google Scholar
Goldstein, J. I., Yang, J., and Scott, E. R. D. 2014. Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces. Geochimica et Cosmochimica Acta, 140, 297320.Google Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., Barrat, J. A., and Burbine, T. H. 2006. Oxygen isotope variation in stony-iron meteorites. Science, 313, 17631765.Google Scholar
Greenwood, R.C., Barrat, J.A., Scott, E.R.D., et al. 2015. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection. Geochimica et Cosmochimica Acta, 169, 115136.Google Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.Google Scholar
Haack, H. and Scott, E. R. D. 1993. Chemical fractionations in group IIIAB iron meteorites: Origin by dendritic crystallization of an asteroidal core. Geochimica et Cosmochimica Acta, 57, 34573472.Google Scholar
Haack, H., Scott, E. R. D., and Rasmussen, K. L. 1996. Thermal and shock history of mesosiderites and their large parent asteroid. Geochimica et Cosmochimica Acta, 60, 26092619.Google Scholar
Hassanzadeh, J., Rubin, A. E., and Wasson, J. T. 1990. Compositions of large metal nodules in mesosiderites: Links to iron meteorite group IIIAB and the origin of mesosiderite subgroups. Geochimica et Cosmochimica Acta, 54, 31973208.Google Scholar
Hevey, P. J. and Sanders, I. A. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Hewins, R. H. 1983. Impact versus internal origins for mesosiderites. Journal of Geophysical Research, 88, Suppl., B257B266.Google Scholar
Hopfe, W. D. and Goldstein, J. I. 2001. The metallographic cooling rate method revised: Application to iron meteorites and mesosiderites. Meteoritics & Planetary Science, 36, 135154.Google Scholar
Jones, J. H. and Drake, M. J. 1983. Experimental investigations of trace element fractionation in iron meteorites, II: The influence of sulfur. Geochimica et Cosmochimica Acta, 47, 11991209.Google Scholar
Jones, J. H. and Malvin, D. J. 1990. A nonmetal interaction-model for the segregation of trace-metals during solidification of Fe–Ni–S, Fe–Ni–P, and Fe–Ni–S–P alloys. Metallurgical Materials Transactions B, 21, 697706.Google Scholar
Hutchison, R. 2004. Meteorites: A Petrologic, Chemical and Isotopic Synthesis. Cambridge: Cambridge University Press.Google Scholar
Jones, R. H., Wasson, J. T. Larson, T., and Sharp, Z. D., 2003. Milton: A new, unique pallasite. Lunar and Planetary Science Conference, 34, 1683.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Larsen, K.K., Trinquier, A., Paton, C., et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.Google Scholar
Larsen, K.K., Schiller, M., and Bizzarro, M., 2016. Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295315.Google Scholar
Lugmair, G.W. and Shukolyukov, A. 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
MBD 2015. Meteoritical Bulletin Database. http://www.lpi.usra.edu/meteor/metbull.php. Accessed July 7, 2015.Google Scholar
McDermott, K.H., Greenwood, R.C., Franchi, I.A., Anand, M., Scott, E.R.D., 2015. A petrological, geochemical and oxygen isotope study of silicate inclusions in IIE iron meteorites and their relationship with the H chondrites. Geochimica et Cosmochimica Acta, 173, 97113.Google Scholar
Mittlefehldt, D. W. McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch. 4.Google Scholar
Moroz, L. V., Ustinov, V. I., Kononkova, N. N., Zaslavskaya, N. I., and Shukolyukov, Y. A. 1988. Oxygen isotopes of chromite and chemical composition of the minerals from polymineral nodules in Sikhote-Alin meteorite. Lunar and Planetary Science Conference, 19, 809.Google Scholar
Petaev, M. I., Clarke, R. S. Jr., Jarosewich, E. et al. 2000. The Chaunskij anomalous mesosiderite: petrology, chemistry, oxygen isotopes, classification and origin. Geochemistry International, 38, S322S350.Google Scholar
Powell, B. N. 1969. Petrology and chemistry of mesosiderites – I. Textures and composition of nickel–iron. Geochimica et Cosmochimica Acta, 33, 789810.Google Scholar
Powell, B. N. 1971. Petrology and chemistry of mesosiderites – II. Silicate textures and compositions and metal–silicate relationships. Geochimica et Cosmochimica Acta, 35, 534.Google Scholar
Olsen, E., Davis, A., Clarke, R. S. et al. 1994. Watson: A new link in the IIE iron chain. Meteoritics, 29, 200213.Google Scholar
Quitté, G. and Birck, J. L. 2004. Tungsten isotopes in eucrites revisited and the initial 182Hf/180Hf of the solar system based on iron meteorite data. Earth and Planetary Science Letters, 219, 201207.Google Scholar
Quitté, G., Birck, J-L., and Allègre, C. J. 2005. Stony-iron meteorites: History of the metal phase according to tungsten isotopes. Geochimica et Cosmochimica Acta, 69, 13211332.Google Scholar
Rasmussen, K. L., Malvin, D. J., Buchwald, V. F., and Wasson, J. T. 1984. Compositional trends and cooling rates of group IVB iron meteorites. Geochimica et Cosmochimica Acta, 48, 805813.Google Scholar
Rasmussen, K.L. 1989a. Cooling rates and parent bodies of iron meteorites from group IIICD, IAB, and IVB. Physica Scripta, 39, 410416.Google Scholar
Rasmussen, K.L. 1989b. Cooling rates of IIIAB iron meteorites. Icarus, 80, 315325.Google Scholar
Rubin, A. E. and Mittlefehldt, D. W., 1993. Evolutionary history of the mesosiderite asteroid: A chronologic and petrologic synthesis. Icarus, 101, 201212.Google Scholar
Ruzicka, A. 2014. Silicate-bearing iron meteorites and their implications for the origin of asteroidal parent bodies. Chemie der Erde, 74, 348.Google Scholar
Ruzicka, A. and Hutson, M. 2006. Differentiation and evolution of the IVA meteorite parent body: Clues from pyroxene geochemistry in the Steinbach stony-iron meteorite. Meteoritics & Planetary Science, 41, 19591987.Google Scholar
Ruzicka, A. and Hutson, M. 2010. Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: Implications for the origin of silicate-bearing irons. Geochimica et Cosmochimica Acta, 74, 394433.Google Scholar
Ruzicka, A., Boynton, W.V., Ganguly, J., 1994. Olivine coronas, metamorphism, and the thermal history of the Morristown and Emery mesosiderites. Geochimica et Cosmochimica Acta, 58, 27252741.Google Scholar
Schulz, T., Upadhyay, D., Münker, C., and Mezger, K. 2012. Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes. Geochimica et Cosmochimica Acta, 85, 200212.Google Scholar
Scott, E. R. D. 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.Google Scholar
Scott, E. R. D. 1977. Pallasites—metal composition, classification and relationships with iron meteorites. Geochimica et Cosmochimica Acta, 41, 349360.Google Scholar
Scott, E. R. D., Haack, H., and Love, S. G. 2001. Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroid. Meteoritics & Planetary Science, 36, 869881.Google Scholar
Scott, E. R. D., Bottke, W. F., Marchi, S., and Delaney, J. S. 2014. How did the mesosiderites form and do they come from Vesta or a Vesta-like body. Lunar and Planetary Science, 45, abstract #2260.Google Scholar
Stewart, B. W., Papanastassiou, D. A. and Wasserburg, G. J. 1994. Sm–Nd chronology and petrogenesis of mesosiderites. Geochimica et Cosmochimica Acta, 58, 34873509.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.Google Scholar
Trinquier, A., Birck, J.-L., Allégre, C. J., Göpel, C., and Ulfbeck, D. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Ulff-Møller, F. 1998. Effects of liquid immiscibility on trace element fractionation in magmatic iron meteorites: A case study of group IIIAB. Meteoritics & Planetary Science, 33, 207220.Google Scholar
van Niekerk, D. 2005. Zinder: A new pyroxene-bearing pallasite. Meteoritics & Planetary Science, 40, 5328.Google Scholar
Vogel, N. and Renne, P. R. 2008. 40Ar–39Ar dating of plagioclase grain size separates from silicate inclusions in IAB iron meteorites and implications for the thermochronological evolution of the IAB parent body. Geochimica et Cosmochimica Acta, 72, 12311255.Google Scholar
Wadhwa, M., Shukolyukov, A., Davis, A. M., Lugmair, G. W., and Mittlefehldt, D.W. 2003. Differentiation history of the mesosiderite parent body: Constraints from trace elements and manganese–chromium isotope systematics in Vaca Muerta silicate clasts. Geochimica et Cosmochimica Acta, 67, 50475069.Google Scholar
Wang, P. L., Rumble, D., and McCoy, T. J. 2004. Oxygen isotopic compositions of IVA iron meteorites: implications for the thermal evolution derived from in situ ultraviolet laser microprobe analyses. Geochimica et Cosmochimica Acta, 68, 11591171.Google Scholar
Warren, P. H. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Wasson, J. T. 1999. Trapped melt in IIIAB irons; solid/liquid elemental partitioning during the fractionation of the IIIAB magma. Geochimica et Cosmochimica Acta, 63, 28752889.Google Scholar
Wasson, J. T. and Wang, J. 1986. A nonmagmatic origin of group-IIE iron meteorites. Geochimica et Cosmochimica Acta, 50, 725732.Google Scholar
Wasson, J. T. and Richardson, J. W. 2001. Fractionation trends among IVA iron meteorites: Contrasts with IIIAB trends. Geochimica et Cosmochimica Acta, 65, 951970.Google Scholar
Wasson, J. T. and Kallemeyn, G. W. 2002. The IAB iron-meteorite complex: a group, five subgroups, numerous grouplets, closely related, mainly formed by crystal segregation in rapidly cooling melts. Geochimica et Cosmochimica Acta, 66, 24452473.Google Scholar
Wasson, J. T. and Choi, B.-G. 2003. Main-group pallasites – chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 30793096.Google Scholar
Wasson, J.T. and Hoppe, P. 2012. Co/Ni ratios at taenite/kamacite interfaces and relative cooling rates in iron meteorites. Geochimica et Cosmochimica Acta, 84, 508524.Google Scholar
Wasson, J. T., Schaudy, R., Bild, R. W., and Chou, C. L. 1974. Mesosiderites – I. Compositions of their metallic portions and possible relationship to other metal-rich meteorite groups. Geochimica et Cosmochimica Acta, 38, 135149.Google Scholar
Wasson, J. T., Choi, B. G., Jerde, E. A., and Ulff-Møller, F. 1998. Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochimica et Cosmochimica Acta, 62, 715724.Google Scholar
Wasson, J. T., Huber, H., and Malvin, D. J. 2007. Formation of IIAB iron meteorites. Geochimica et Cosmochimica Acta, 71, 760781.Google Scholar
Willis, J. and Goldstein, J. I. 1982. The effects of C, P, and S on trace element partitioning during solidification in Fe–Ni alloys. Journal of Geophysical Research, 87, Supplement, 435445.Google Scholar
Yang, J. and Goldstein, J. I. 2006. Metallographic cooling rates of the IIIAB iron meteorites. Geochimica et Cosmochimica Acta, 70, 31973215.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature, 446, 888891.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R.D. 2008. Metallographic cooling rates of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.Google Scholar
Yang, J., Goldstein, J.I., Scott, E. R. D., 2010a. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., and Scott, E. R. D. 2010b. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 44934506.Google Scholar

References

Agee, C. B., Longhi, J., eds. 1992. Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03). Houston, TX: Lunar and Planetary Institute.Google Scholar
Akai, J. 1992. T–T–T diagram of serpentine and saponite, and estimation of metamorphic heating degree of Antarctic carbonaceous chondrites. Proceedings of the NIPR Symposium on Antarctic Meteorites, 5, 120135.Google Scholar
Asphaug, E. 2014. Impact origin of the Moon? Annual Review of Earth and Planetary Science, 42, 551–78.Google Scholar
Benedix, G. K., McCoy, T. J., Keil, K., Bogard, D. D., and Garrison, D.H. 1998. A petrologic and isotopic study of winonaites: Evidence for early partial melting, brecciation, and metamorphism. Geochimica et Cosmochimica Acta, 62, 25352553.Google Scholar
Benedix, G. K., McCoy, T. J., Keil, K., and Love, S. G. 2000. A petrologic study of the IAB iron meteorites: Constraints on the formation of the IAB–winonaite parent body. Meteoritics & Planetary Science, 35, 11271141.Google Scholar
Binzel, R. P. and Xu, S. 1993. Chips off of asteroid 4 Vesta: Evidence for the parent body of basaltic achondrite meteorites. Science, 260, 186191.Google Scholar
Britt, D. T. and Consolmagno, G. J. 2003. Stony meteorite porosities and densities: a review of the data through 2001. Meteoritics & Planetary Science, 38, 11611180.Google Scholar
Brown, M. 2004. The mechanisms of melt extraction from lower continental crust of orogens: is it a selforganized critical phenomenon? Transactions of the Royal Society of Edinburgh, Earth Sciences, 95, 3548.Google Scholar
Bruhn, D., Groebner, N., and Kohlstedt, D. L. 2000. An interconnected network of coreforming melts produced by shear deformation. Nature, 403, 883886.Google Scholar
Canup, R. 2004. Dynamics of lunar formation. Annual Review of Astronomy & Astrophysics, 42, 441475.Google Scholar
Castillo-Rogez, J., Johnson, T. V., and Lee, M. H., et al. 2009. 26Al decay: heat production and a revised age for Iapetus. Icarus, 204, 658662.Google Scholar
Castillo-Rogez, J. C. and McCord, T. B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205, 443459.Google Scholar
Consolmagno, G. J., and Drake, M. J. 1977. Composition and evolution of the eucrite parent body: Evidence from rare earth elements. Geochimica et Cosmochimica Acta, 41, 12711282.Google Scholar
Consolmagno, G. J., Britt, D. T., and Macke, R. J. 2008. The significance of meteorite density and porosity. Chemie der Erde, 68, 129.Google Scholar
Davison, T. M., Ciesla, F. J., Collins, G. S., 2010. Post-impact thermal evolution of porous planetesimals. Geochimica et Cosmochimica Acta, 95, 252269.Google Scholar
Davison, T. M., Collins, G. S., Ciesla, F. J., 2012. Numerical modeling of heating in porous planetesimal collisions. Icarus 208, 468481.Google Scholar
Day, J. M. D., Walker, R. J., Qin, L., and Rumble, D. 2012a. Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.Google Scholar
Day, J. M. D., Walker, R. J., Ash, R. D., et al. 2012b. Origin of felsic achondrites Graves Nunataks 06128 and 06129, and ultramafic brachinites and brachinite-like achondrites by partial melting of volatile-rich primitive parent bodies. Geochimica et Cosmochimica Acta, 81, 94128.Google Scholar
Ermakov, A. I., Zuber, M. T., Smith, D. E., et al. 2014. Constraints on Vesta’s interior structure using gravity and shape models from the Dawn mission. Icarus, 240, 146160.Google Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.Google Scholar
Gaetani, G. A. and Grove, T. L. 1999. Wetting of mantle olivine by coreforming melts: The influence of variable fO2/fS2 conditions. Earth and Planetary Science Letters, 169, 147163.Google Scholar
Ghosh, A. and McSween, H. Y. 1998. A thermal model for the differentiation of asteroid 4 Vesta, based on radiogenic heating. Icarus, 134, 187206.Google Scholar
Goodrich, C. A., Van Orman, J., and Wilson, L. 2007. Fractional melting and smelting on the Ureilite parent body. Geochimica et Cosmochimica Acta, 71, 28762895.Google Scholar
Greenwood, R. C., Franchi, I. A., Jambon, A., and Buchanan, P. 2005. Widespread magma oceans on asteroidal bodies in the early solar system. Nature, 435, 916918.Google Scholar
Greenwood, R. C., Barrat, J.-A., Scott, E. R. D., et al. 2012a. Has Dawn gone to the wrong asteroid? Oxygen constraints on the nature and composition of the HED parent body. Lunar and Planetary Science Conference, 43, 2711.Google Scholar
Greenwood, R. C., Franchi, I. A., Gibson, J. M., and Benedix, G. K., 2012b. Oxygen isotope variation in primitive achondrites: The influence of primordial, asteroidal and terrestrial processes. Geochimica et Cosmochimica Acta, 94, 146163.Google Scholar
Greenwood, R. C., Barrat, J.-A., Yamaguchi, A., et al. 2014. The oxygen isotope composition of diogenites: Evidence for early global melting on a single, compositionally diverse, HED parent body. Earth and Planetary Science Letters, 390, 165174.Google Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal melt down by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Ikeda, Y. and Takeda, H., 1985. A model for the origin of basaltic achondrites based on the Yamato 7308 howardite. Journal of Geophysical Research, 90, C649C663.Google Scholar
Janots, E., Gnos, E., Hofmann, B., et al. 2012. Jiddat al Harasis 556: A howardite impact breccia with an H chondrite component. Meteoritics & Planetary Science, 47, 15581574.Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W., and Jones, J. H. 1993. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochimica et Cosmochimica Acta, 57, 21232139.Google Scholar
Jurewicz, A. J. G., Jones, J. H., Mittlefehldt, D. W., and Longhi, J. 2004. Devolatilized-Allende partial melts as an analog for primitive angrite magmas. Lunar and Planetary Science Conference, 35, 1417.Google Scholar
Keil, K. 2002. Geological history of asteroid 4 Vesta: The “smallest terrestrial planet”. In Asteroids III, ed. Bottke, W. F. Jr., Cellino, A., Paolicchi, P., and Binzel, R. P.. Tucson, AZ: University of Arizona Press, 573584.Google Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Keil, K. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated asteroidal volcanic-plutonic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191218.Google Scholar
Keil, K., 2014. Brachinite meteorites: Partial melt residues from an FeO-rich asteroid. Chemie der Erde, 74, 311329.Google Scholar
Keil, K. and Bischoff, A. 2008. Northwest Africa 2526: a partial melt residue of enstatite chondrite parentage. Meteoritics & Planetary Science, 43, 12331240.Google Scholar
Keil, K. and Wilson, L. 1993. Explosive volcanism and the compositions of cores of differentiated asteroids. Earth and Planetary Science Letters, 117, 111124.Google Scholar
Keil, K., Ntaflos, T., Taylor, G. J., et al. 1989. The Shallowater aubrite: Evidence for origin by planetesimal impacts. Geochimica et Cosmochimica Acta, 53, 32913307.Google Scholar
Keil, K., Stöffler, D., Love, S. G., Scott, E. R. D., 1997. Constraints on the role of impact heating and melting in asteroids. Meteoritics & Planetary Science, 32 349363.Google Scholar
Kita, N. T., Yin, Q.-Z., MacPherson, G. J., et al. 2013. 26Al–26Mg isotope systematics of the first solids in the early solar system. Meteoritics & Planetary Science. 48, 13831400.Google Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kubaschewski, O. 1982. Iron–Binary Phase Diagrams. New York: Springer.Google Scholar
Lunning, N. G., McSween, H. Y., Tenner, T. J., Kita, N. T., and Bodnar, R. J. 2015. Olivine and pyroxene from the mantle of asteroid 4 Vesta. Earth and Planetary Science Letters, 418, 126135.Google Scholar
Maaloe, S. 2003. Melt dynamics of a partially molten mantle with randomly oriented veins. Joural of Petrology, 44, 11931210.Google Scholar
Mandler, B. E. and Elkins-Tanton, L.T. 2013. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Mare, E. R., Tomkins, A. G., and Godel, B. M. 2014. Restriction of parent body heating by metal–troilite melting: Thermal models for the ordinary chondrites. Meteoritics & Planetary Science, 49, 636651.Google Scholar
Mayne, R. G., McSween, H. Y. Jr., McCoy, T. J., Gale, A., 2009. Petrology of the unbrecciated eucrites. Geochimica et Cosmochimica Acta, 73, 794819.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. 1996. A petrologic, chemical, and isotopic study of Monument Draw and comparison with other acapulcoites: Evidence for formation by incipient partial melting. Geochimica et Cosmochimica Acta, 60, 26812708.Google Scholar
McCoy, T. J., Keil, K., Clayton, R. N., et al. 1997a. A petrologic and isotopic study of lodranites: Evidence for early formation as partial melt residues from heterogeneous precursors. Geochimica et Cosmochimica Acta, 61, 623637.Google Scholar
McCoy, T., Keil, K., Muenow, D. W., and Wilson, L. 1997b. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. 1999. Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteoritics & Planetary Science, 34, 735746.Google Scholar
McCoy, T. J., Mittlefehldt, D. W., and Wilson, L. 2006a. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 733745,Google Scholar
McCoy, T. J., Ketcham, R. A., and Wilson, L. et al., 2006b. Formation of vesicles in asteroidal basaltic meteorites. Earth and Planetary Science Letters, 246, 102108.Google Scholar
McSween, H. Y. Jr., Binzel, R. P., De Sanctis, M. C., et al. 2013. Dawn; the Vesta–HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteoritics & Planetary Science, 48, 20902104.Google Scholar
Merk, R., Breuer, D., and Spohn, T. 2002. Numerical modeling of Al-26-induced radioactive melting of asteroids considering accretion. Icarus, 159, 183191.Google Scholar
Minarik, W. G., Ryerson, F. J., and Watson, E. B. 1996. Textural entrapment of core-forming melts. Science, 272, 530533.Google Scholar
Muenow, D. M., Keil, K., and Wilson, L. 1992. High-temperature mass spectrometric degassing of enstatite chondrites: implications for pyroclastic volcanism on the aubrite parent body. Geochimica et Cosmochimica Acta, 56, 42674280.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Nicolas, A., 1986. A melt extraction model based on structural studies in mantle peridotites. Journal of Petrology, 27, 9991022.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rubie, D. C., Jacobson, S. A., Morbidelli, A., et al. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed solar system bodies and accretion of water. Icarus, 248, 89108.Google Scholar
Rushmer, T., Minarik, W. G., and Taylor, G. J. 2000. Physical processes of core formation. In Origin of the Earth and Moon, ed. Canup, R. M. and Righter, K.. Tucson, AZ: University of Arizona Press, 227245.Google Scholar
Rushmer, T., Petford, N., Humayun, M., and Campbell, A. J. 2005. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth and Planetary Science Letters, 239, 185202.Google Scholar
Ruzicka, A. 2014. Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies. Chemie der Erde, 74, 348.Google Scholar
Ruzicka, A., Snyder, G. A., and Taylor, L. A. 1997. Vesta as the howardite, eucrite and diogenite parent body: Implications for the size of a core and for large-scale differentiation. Meteoritics & Planetary Science, 32, 825840.Google Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 48444864.Google Scholar
Scott, E. R. D., Greenwood, R. C., Franchi, J. A., and Sanders, I. S. 2009. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochimica et Cosmochimica Acta, 73, 58355853.Google Scholar
Shannon, M. C. and Agee, C.B. 1996. High pressure constraints on percolative core formation. Geophysical Research Letters, 23, 27172720.Google Scholar
Sleep, N. H. 1988. Tapping of melt by veins and dikes. Journal of Geophysical Research, 93, 1025510272.Google Scholar
Šrámek, O., Milelli, L, Ricard, Y., and Labrosse, S. 2012. Thermal evolution and differentiation of planetesimals and planetary embryos. Icarus, 217, 339354.Google Scholar
Stevenson, D. J. 1990. Fluid dynamics of core formation. In Origin of the Earth, ed. Newsom, H. E., and Jones, J. H.. New York: Oxford University Press, pp. 231249.Google Scholar
Schwartz, J. M. and McCallum, I. S. 2005. Comparative study of equilibrated and unequilibrated eucrites; subsolidus thermal histories of Haraiya and Pasamonte. American Mineralogist, 90, 18711886.Google Scholar
Tait, A. W., Tomkins, A. G., Godel, B. M., et al. 2014. Investigation of the H7 ordinary chondrite, Watson 012: Implications for recognition and classification of type 7 meteorites. Geochimica et Cosmochimica Acta, 134, 175196.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.Google Scholar
Taylor, G. J. 1992. Core formation on asteroids. Journal of Geophysical Research, 97, 14,71714,726.Google Scholar
Taylor, G. J. and Norman, M. D. 1991. Evidence of magma oceans on asteroids, the Moon and Earth. In Workshop of the Physics and Chemistry of Magma Oceans from 1 bar to 4 Mbar (LPI Technical Report 92-03), ed. Agee, C.B. and Longhi, J.. Houston, TX: Lunar and Planetary Institute, 5865.Google Scholar
Taylor, G. J., Keil, K., McCoy, T., Haack, H., and Scott, E. R. D. 1993. Asteroid differentiation: Pyroclastic volcanism to magma oceans. Meteoritics, 28, 3452.Google Scholar
Toplis, M. J., Mizzon, H., Monnereau, M., et al. 2013. Chondritic models of 4 Vesta: Implications for geochemical and geophysical properties. Meteoritics & Planetary Science, 48, 23002315.Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. 2006. Timescales of planetesimal differentiation in the early Solar System. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 715731.Google Scholar
Walte, N. P., Rubie, D. C., Bons, P. D., and Frost, D. J. 2011. Deformation of a crystalline aggregate with a small percentage of high-dihedral-angle liquid: implications for core–mantle differentiation during planetary formation. Earth and Planetary Science Letters, 305, 124134.Google Scholar
Walter, M. J. 2000. A shear pathway to the core. Nature, 403, 839840.Google Scholar
Warren, P. H. 1985. The magma ocean concept and lunar evolution. Annual Reviews Earth and Planetary Science, 13, 201240.Google Scholar
Warren, P. H. 2011. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth and Planetary Science Letters, 311, 93100.Google Scholar
Wasson, J. T. 2013. No magma ocean on Vesta (or elsewhere in the astereoid belt: Volatile loss from HEDs (abstract). Lunar and Planetary Science Conference, 44, 2836.Google Scholar
Whittington, A. G., Hofmeister, A. M., and Nabelek, P. I. 2009. Temperature-dependent thermal diffusivity of the Earth’s crust and implications for magmatism. Nature, 458, 319321.Google Scholar
Wiechert, U. H., Halliday, A. H., Palme, H., and Rumble, D. 2004. Oxygen isotopic evidence for rapid mixing of the HED parent body. Earth and Planetary Science Letters, 221, 373382.Google Scholar
Wilson, L. and Goodrich, C. A. 2012. Melt formation, migration and rapid extraction from differentiated asteroid interiors: lessons from ureilites extended to all asteroids. Lunar and Planetary Science Conference, 43, 1128.Google Scholar
Wilson, L. and Keil, K. 1991. Consequences of explosive eruptions on small solar system bodies: The case of the missing basalts on the aubrite parent body. Earth and Planetary Science Letters, 104, 505512.Google Scholar
Wilson, L. and Keil, K., 1996a. Volcanic eruptions and intrusions on the asteroid 4 Vesta. Journal of Geophysical Research – Planets, 101, 18,92718,940.Google Scholar
Wilson, L. and Keil, K., 1996b. Clast sizes of ejecta from explosive eruptions on asteroids: implications for the fate of the basaltic products of differentiation. Earth and Planetary Science Letters, 140, 191200.Google Scholar
Wilson, L. and Keil, K., 1997. The fate of pyroclasts produced in explosive eruptions on the asteroid Vesta. Meteoritics & Planetary Science 32, 813823.Google Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: a review and analysis. Chemie der Erde, 72, 289321.Google Scholar
Wilson, L. and Keil, K. 2014. Fast melt production and easy melt migration in differentiated asteroids implies giant sills, not magma oceans (abstract). Workshop on Planetesimal Formation and Differentiation. Department of Terrestrial Magnetism, Carnegie Institution, Washington, DC.Google Scholar
Wilson, L., Goodrich, C. A., and Van Orman, J. A. 2008. Thermal evolution and physics of melt extraction on the ureilite parent body. Geochimica et Cosmochimica Acta, 72, 61546176.Google Scholar
Wilson, L., Keil, K., McCoy, T. J., 2010. Pyroclast loss or retention during explosive volcanism on asteroids: influence of asteroid size and gas content of melt. Meteoritics & Planetary Science 45, 12841301.Google Scholar
Wilson, L., Bland, P., Buczkowski, D., Keil, K., and Krot, S. 2015. Hydrothermal and magmatic fluid flow in asteroids. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 553572.Google Scholar
Yamaguchi, A, Barrat, J. A., Ito, M., and Bohn, M. 2011. Posteucritic magmatism on Vesta: Evidence from the petrology and thermal history of diogenites. Journal of Geophysical Research – Planets, 116, E08009.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D., 2010. Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yoshino, T., Walter, M. J., and Katsura, T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154157.Google Scholar
Yoshino, T., Walter, M. J., and Katsura, T. 2004. Connectivity of molten Fe alloy in peridotite based on in situ electrical conductivity measurements: implications for core formation in terrestrial planets. Earth and Planetary Science Letters, 222, 625643.Google Scholar
Zhang, J., Dauphas, N., Davis, A. M., et al. 2012. The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251255.Google Scholar

References

Acuña, M. H., Anderson, B. J., Russell, C.T., et al. 2002. NEAR magnetic field observations at 433 Eros: First measurements from the surface of an asteroid. Icarus, 155, 220228.Google Scholar
Acuña, M. H., Kletetschka, G., and Connerney, J. E. P. 2008. Mars’ crustal magnetization: A window into the past. In The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. Bell, J.F.. Cambridge: Cambridge University Press, 242262.Google Scholar
Anderson, B. J., Johnson, C. L., Korth, H., et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862.Google Scholar
Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.Google Scholar
Auster, H. U., Richter, I., Glassmeier, K.-H., et al. 2010. Magnetic field investigations during Rosetta’s 2867 Šteins flyby. Planetary and Space Science, 58, 11241128.Google Scholar
Auster, H. U., Apathy, I., Berghofer, G., et al. 2015. The nonmagnetic nucleus of comet 67P/Churyumov–Gerasimenko. Science, 349, aaa5102-1.Google Scholar
Bai, X.-N. and Stone, J. M. 2013. Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophysical Journal, 769, 76.Google Scholar
Baumgartel, K., Sauer, K., Story, T. R., and Mckenzie, J. F. 1997. Solar wind response to a magnetized asteroid: Linear theory. Icarus, 129, 94-105.Google Scholar
Bland, P. A., Collins, G. S., Davison, T. M., et al. 2014. Pressure–temperature evolution of primordial solar system solids during impact-induced compaction. Nature Communications, 5, 5451.Google Scholar
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2003. Hybrid simulations of solar wind interaction with magnetized asteroids: Comparison with Galileo observations near Gaspra and Ida. Journal of Geophysical Research, 108, 1216.Google Scholar
Brett, R. and Bell, P. M. 1969. Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure, Earth and Planetary Science Letters, 6, 479482.Google Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-Albillos, J., et al., 2015. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Burke, B. F. and Franklin, K. L. 1955. Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213217.Google Scholar
Butler, R. F. 1972. Natural remanent magnetization and thermomagnetic properties of Allende meteorite. Earth and Planetary Science Letters, 17, 120128.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T. et al. 2011. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences of the United States of America, 108, 63866389.Google Scholar
Cerantola, V., Walte, N. P., and Rubie, D. C. 2015. Deformation of a crystalline olivine aggregate containing two immiscible liquids: Implications for early core–mantle differentiation. Earth and Planetary Science Letters, 417, 6777.Google Scholar
Chabot, N. L. and Haack, H. 2006. Evolution of asteroidal cores. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 747771.Google Scholar
Chan, K. H., Zhang, K., Li, L., and Liao, X. 2007. A new generation of convection-driven spherical dynamos using EBE finite element method. Physics of the Earth and Planetary Interiors, 163, 14.Google Scholar
Christensen, U. R., 2010. Dynamo scaling laws and applications to the planets. Space Science Reviews, 152, 565590.Google Scholar
Christensen, U. R. 2014. Iron snow dynamo models for Ganymede. Icarus, 247, 248259.Google Scholar
Christensen, U. R. and Wicht, J. 2007. Numerical dynamo simulations. In Treatise on Geophysics, ed. Olson, P. L.. Amsterdam: Elsevier, 245282.Google Scholar
Christensen, U. R., Olson, P., and Glatzmaier, G. 1999. Numerical modeling of the geodynamo: A systematic parameter study. Geophysical Journal International, 138, 393409.Google Scholar
Christensen, U. R., Holzwarth, V., and Reiners, A. 2009. Energy flux determines magnetic field strength of planets and stars. Nature, 457, 167169.Google Scholar
Cisowski, S. M. 1991. Remanent magnetic properties of unbrecciated eucrites. Earth and Planetary Science Letters, 107, 173181.Google Scholar
Collinson, D. W. and Morden, S. J. 1994. Magnetic-properties of howardite, eucrite and diogenite (HED) meteorites: Ancient mgnetizing fields and meteorite evolution. Earth and Planetary Science Letters, 126, 421434.Google Scholar
Cournède, C., Gattacceca, J., Zanda, B., and Rochette, P. 2012. Magnetic study of CM chondrites. EGU General Assembly, Vienna, April 22–27, paper no. 9740.Google Scholar
Cournède, C., Gattacceca, J., and Rochette, P. 2014. Partial asteroid differentiation revealed by paleomagnetism of R-chondrite meteorites. EGU General Assembly. Vienna, April 27–May 2, paper no. 4155.Google Scholar
Cournède, C., Gattacceca, J., Gounelle, M., et al. 2015. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters, 410, 6274.Google Scholar
Cowling, T. G. 1934. The magnetic field of sunspots. Monthly Notices of the Royal Astronomical Society, 34, 3948.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.Google Scholar
Emmerton, S., Muxworthy, A. R., Hezel, D. C., and Bland, P. A. 2011. Magnetic characteristics of CV chondrules with paleointensity implications. Journal of Geophysical Research, 116, E12007.Google Scholar
Fei, Y., Bertka, C. M., and Finger, L. W. 1997. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science, 275, 16211623.Google Scholar
Fischer, S. R., Fu, R. R., Weiss, B. P., et al. 2013. Paleomagnetic detection of magnetic fields on a differentiated asteroid during the dynamo epoch. AGU Fall Meeting, San Francisco, December 9–13, abstract GP41D–1166.Google Scholar
Fu, R. R. and Elkins-Tanton, L. T. 2014. The fate of magmas in planetesimals and the retention of primitive chondritic crusts. Earth and Planetary Science Letters, 390, 128137.Google Scholar
Fu, R. R. and Weiss, B. P. 2012. Detrital remanent magnetization in the solar nebula. Journal of Geophysical Research, 117, E02003.Google Scholar
Fu, R. R., Weiss, B. P., Shuster, D. L., et al. 2012. An ancient core dynamo in asteroid Vesta. Science, 338, 238241.Google Scholar
Fu, R. R., Lima, E. A., and Weiss, B. P. 2014a. No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters, 404, 5466.Google Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. 2014b. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science, 346, 10891092.Google Scholar
Gattacceca, J., Rochette, P., and Bourot-Denise, M. 2003. Magnetic properties of a freshly fallen LL ordinary chondrite: the Bensour meteorite. Physics of the Earth and Planetary Interiors, 140, 343358.Google Scholar
Gattacceca, J. and Rochette, P. 2004. Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth and Planetary Science Letters, 227, 377393.Google Scholar
Gattacceca, J. Berthe, L. Boustie, M., et al. 2008. On the efficiency of shock magnetization processes. Physics of the Earth and Planetary Interiors, 166, 110.Google Scholar
Greenstadt, E. W. 1971a. Conditions for magnetic interaction of asteroids with the solar wind. Icarus, 14, 374381.Google Scholar
Greenstadt, E. W. 1971b. Possible magnetic interaction of asteroids with the solar wind. Proceedings of IAU Colloquium, 12, 567575.Google Scholar
Grove, T. L. 1982. Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: An experimental calibration. American Mineralologist, 67, 251268.Google Scholar
Goldstein, J. I., Scott, E. R. D. and Chabot, N. L 2009. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.Google Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.Google Scholar
Haisch, K. E., Lada, E. A., and Lada, C. J. 2001. Disk frequencies and lifetimes in young clusters. Astrophysical Journal Letters, 553, L153L156.Google Scholar
Hauck, S. A., Aurnou, J. M., and Dombard, A. J. 2006. Sulfur’s impact on core evolution and magnetic field generation on Ganymede. Journal of Geophysical Research, 111, E09008.Google Scholar
Kerswell, R. R. 1993. The instability of precessing flow. Geophysical & Astrophysical Fluid Dynamics, 72, 107144.Google Scholar
Kivelson, M. G., Bargatze, L. F., Khurana, K. K., et al. 1993. Magnetic field signatures near Galileo’s closest approach to Gaspra. Science, 261, 331334.Google Scholar
Kivelson, M. G., Wang, Z., Joy, S. P., et al. 1995. Solar wind interaction with small bodies. 2. What can Galileo’s detection of magnetic rotations tell us about Gaspra and Ida. Advances in Space Research, 16, 4757.Google Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., et al. 1996. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537541.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Gödde, M., et al. 2014. Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kullerud, G. and Yoder, H. S. 1959. Pyrite stability relations in the Fe–S system. Economic Geology, 54, 533572.Google Scholar
Laneuville, M., Wieczorek, M. A., Breuer, D., et al. 2014. A long-lived lunar dynamo powered by core crystallization. Earth and Planetary Science Letters, 401, 251260.Google Scholar
Le Bars, M., Wieczorek, M. A., Karatekin, O., Cebron, D., and Laneuville, M. 2011. An impact-driven dynamo for the early Moon. Nature, 479, 215218.Google Scholar
McCoy, T. J., Keil, K., Muenow, D.W., and Wilson, L. 1997. Partial melting and melt migration in the acapulcoite–lodranite parent body. Geochimica et Cosmochimica Acta, 61, 639650.Google Scholar
Monteux, J., Jellinek, A. M., and Johnson, C. L. 2011. Why might planets and moons have early dynamos? Earth and Planetary Science Letters, 310, 349359.Google Scholar
Morden, S. J. 1992. A magnetic study of the Millbillillie (eucrite) achondrite: Evidence for dynamo-type magnetising field. Meteoritics, 27, 560567.Google Scholar
Morden, S. J. and Collinson, D. W. 1992. The implications of the magnetism of ordinary chondrite meteorites. Earth and Planetary Science Letters, 109, 185204.Google Scholar
Nagata, T. 1979. Natural remanent magnetization of the fusion crust of meteorites. Memoirs of National Institute of Polar Research, 15, 253272.Google Scholar
Narayan, C. and Goldstein, J. I. 1982. A dendritic solidification model to explain Ge–Ni variations in iron meteorite chemical groups. Geochimica et Cosmochimica Acta, 46, 259268.Google Scholar
Ness, N. F. 2010. Space exploration of planetary magnetism. Space Science Reviews, 152, 522.Google Scholar
Nimmo, F. 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.Google Scholar
Omidi, N., Blanco-Cano, X., Russell, C. T., Karimabadi, H., and Acuna, M. 2002. Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics. Journal of Geophysical Research, 107, 1487.Google Scholar
Pesonen, L. J., Terho, M., and Kukkonen, I. T. 1993. Physical properties of 368 meteorites: Implications for meteorite magnetism and planetary geophysics. Proceedings of the NIPR Symposium on Antarctic Meteorites, 6, 401416.Google Scholar
Richter, I., Brinza, D. E., Cassel, M., et al. 2001. First direct magnetic field measurements of an asteroidal magnetic field: DS1 at Braille. Geophysical Research Letters, 28, 19131916.Google Scholar
Richter, I., Auster, H. U., Glassmeier, K. H., et al. 2012. Magnetic field measurements during the Rosetta flyby at asteroid (21) Lutetia. Planetary and Space Science, 66, 155164.Google Scholar
Rückriemen, T., Breuer, D., and Spohn, T. 2015. The Fe snow regime in Ganymede’s core: A deep-seated dynamo below a stable snow zone. Journal of Geophysical Research: Planets, 120, 10951118.Google Scholar
Scheinberg, A., Fu, R. R., Elkins-Tanton, E. T., and Weiss, B. P. 2015. Asteroid differentiation: melting and large-scale structure. In Asteroids IV, ed. Michel, P., DeMeo, F., and Bottke, W. F.. Tucson, AZ: University of Arizona Press, 533552.Google Scholar
Scheinberg, A., Elkins-Tanton, E. T., Schubert, G., and Bercovici, D. 2016. Core solidification and dynamo evolution in a mantle-stripped planetesimal. Journal of Geophysical Research: Planets, 121, 220.Google Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S., and Masarik, J. 2006. Hf‚W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.Google Scholar
Sears, D. W. 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology, 5, 155164.Google Scholar
Shea, E. K., Weiss, B. P., Cassata, W. S., et al. 2012. A long-lived lunar core dynamo. Science, 335, 453456.Google Scholar
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013a. Turbulence in the outer regions of protoplanetary disks. I. Weak accretion with no vertical magnetic flux. Astrophysical Journal, 764, 66.Google Scholar
Simon, J. B., Bai, X.-N., Stone, J. M., Armitage, P. J., and Beckwith, K. 2013b. Turbulence in the outer regions of protoplanetary disks. II. Strong accretion driven by a vertical magnetic field. Astrophysical Journal, 775, 73.Google Scholar
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors, 214, 5373.Google Scholar
Stevenson, D. J. 2001. Mars’ core and magnetism. Nature, 412, 214219.Google Scholar
Stevenson, D. J. 2003. Planetary magnetic fields. Earth and Planetary Science Letters, 208, 111.Google Scholar
Stöffler, D., Keil, K., and Scott, E. R. D. 1991. Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 38453867.Google Scholar
Suavet, C., Gattacceca, J., Rochette, P., et al. 2009. Magnetic properties of micrometeorites. Journal of Geophysical Research, 114, B04102.Google Scholar
Sugiura, N., Lanoix, M., and Strangway, D. W. 1979. Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Physics of the Earth and Planetary Interiors, 20, 342349.Google Scholar
Swindle, T. D. 1998. Implications of iodine-xenon studies for the timing and location of secondary alteration. Meteoritics & Planetary Science, 33, 11471155.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al. 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939942.Google Scholar
Tarduno, J. A. and Cottrell, R. D. 2012. Single crystal paleointensity analyses of olivine–diogenites: Implications for a past Vestan dynamo. Lunar and Planetary Science Conference, 43, 2663.Google Scholar
Tilgner, A. 2005. Precession driven dynamos. Physics of Fluids, 17, 034104.Google Scholar
Tomkins, A. G., Mare, E. R., and Raveggi, M. 2013. Fe-carbide and Fe-sulfide liquid immiscibility in IAB meteorite, Campo del Cielo: Implications for iron meteorite chemistry and planetesimal core compositions. Geochimica et Cosmochimica Acta, 117, 8098.Google Scholar
Turner, N. J. Fromang, S., Gammie, C., et al., 2014. Transport and accretion in planet-forming disks. In Protostars and Planets VI, ed. Beuther, H., Klessen, R. S, Dullemond, C. P, and Henning, T.. Tucscon, AZ: University of Arizona Press, 411434.Google Scholar
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J., 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.Google Scholar
Wasilewski, P. 1981. New magnetic results from Allende C3(V). Physics of the Earth and Planetary Interiors, 26, 134148.Google Scholar
Wasilewski, P., Acuña, M. H., and Kletetschka, G. 2002. 433 Eros: Problems with the meteorite magnetism record in attempting an asteroid match. Meteoritics & Planetary Science, 37, 937950.Google Scholar
Wei, X., Arlt, R., and Tilgner, A. 2014. A simplified model of collision-driven dynamo action in small bodies. Physics of the Earth and Planetary Interiors, 231, 3038.Google Scholar
Weisberg, M. K., McCoy, T. J., and Krot, A. N., 2006. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 1952.Google Scholar
Weiss, B. P. and Tikoo, S. M. 2014. The lunar dynamo. Science, 346, 1246753, doi: 10.1126/science.1246753.Google Scholar
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L. T., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.Google Scholar
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. 2010. Paleomagnetic records of meteorites and early planetesimal differentiation. Space Science Reviews, 152, 341390.Google Scholar
Weiss, B. P., Wang, H., Downey, B. G., et al., 2014. An unmagnetized early planetary body. AGU Fall Meeting, San Francisco, December 15–19, abstract GP51B–3733.Google Scholar
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.Google Scholar
Yang, J., Goldstein, J. I., Michael, J. R., Kotula, P. G., and Scott, E. R. D. 2010. Thermal history and origin of the IVB iron meteorites and their parent body. Geochimica et Cosmochimica Acta, 74, 44934506.Google Scholar
Yoshino, T., Walter, M. ., and Katsura, T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422, 154157.Google Scholar
Zhan, X., Zhang, K., and Zhu, R. 2011. A full-sphere convection-driven dynamo: Implications for the ancient geomagnetic field. Physics of the Earth and Planetary Interiors, 187, 328335.Google Scholar
Ziegler, L. B. and Stegman, D. R. 2013. Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochemistry, Geophysics, Geosystems, 14, 47354742.Google Scholar

References

Asphaug, E. 2010. Similar-sized collisions and the diversity of planets. Chemie der Erde, 70, 199219.Google Scholar
Asti, G., Solzi, M., Ghidini, M., and Neri, F. 2004. Micromagnetic analysis of exchange-coupled hard–soft planar nanocomposites. Physical Review B, 69, 174401.Google Scholar
Boesenberg, J. S., Delaney, J. S., and Hewins, R. H. 2012. A petrological and chemical reexamination of main group pallasite formation. Geochimica et Cosmochimica Acta, 89, 134158.Google Scholar
Brecher, A. and Albright, L. 1977. The thermoremanence hypothesis and the origin of magnetization in iron meteorites. Journal of Geomagnetism and Geoelectricity, 29, 379400.Google Scholar
Bryson, J. F., Church, N. S., Kasama, T., and Harrison, R. 2014a. Nanomagnetic intergrowths in Fe–Ni meteoritic metal: The potential for time-resolved records of planetesimal dynamo fields. Earth and Planetary Science Letters, 388, 237248.Google Scholar
Bryson, J. F., Herrero-Albillos, J., Kronast, F., et al. 2014b. Nanopaleomagnetism of meteoritic Fe–Ni studied using X-ray photoemission electron microscopy. Earth and Planetary Science Letters, 396, 125133.Google Scholar
Bryson, J. F. J., Nichols, C. I. O., Herrero-albillos, J., et al. 2015. Long-lived magnetism from solidifcation-driven convection on the pallasite parent body. Nature, 517, 472475.Google Scholar
Cisowski, S. M. 1987. Magnetism of meteorites. In Geomagnetism, ed. Jacobs, J. A.. New York: Academic Press, vol. 2, 525560.Google Scholar
Clarke, R. S. and Scott, E. R. D. 1980. Tetrataenite – ordered FeNi, a new mineral in meteorites. American Mineralogist, 65, 624630.Google Scholar
Dang, M., Dubé, M., and Rancourt, D. 1995. Local moment magnetism of fcc Fe–Ni alloys II. Ising approximation Monte Carlo. Journal of Magnetism and Magnetic Materials, 147, 133140.Google Scholar
Dang, M. and Rancourt, D. 1996. Simultaneous magnetic and chemical order-disorder phenomena in Fe3Ni, FeNi, and FeNi3. Physical Review B, 53, 2291.Google Scholar
Dos Santos, E., Gattacceca, J., Rochette, P., Scorzelli, R. B., and Fillion, G. 2014. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Physics of Earth and Planetary Interiors, 242, 5064.Google Scholar
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. 2011. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters, 305, 110.Google Scholar
Fearn, D. R. and Loper, D. E. 1981. Compositional convection and stratification of Earth’s core. Nature, 289, 393394.Google Scholar
Goldstein, J. and Michael, J. 2006. The formation of plessite in meteoritic metal. Meteoritics & Planetary Science, 41, 553570.Google Scholar
Goldstein, J., Scott, E., and Chabot, N. 2009a. Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chemie der Erde, 69, 293325.Google Scholar
Goldstein, J., Yang, J., Kotula, P., Michael, J., and Scott, E. 2009b. Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteoritics & Planetary Science, 44, 343358.Google Scholar
Haack, H. and Scott, E. R. D. 1992. Asteroid core crystallization by inward dendritic growth. Journal of Geophysical Research, 97, 1472714734.Google Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
James, P., Eriksson, O., Johansson, B., and Abrikosov, I. 1999. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Physical Review B, 59, 419430.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kneller, E. and Hawig, R. 1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Transactions on Magnetics, 27, 35883600.Google Scholar
Leroux, H., Doukhan, J.-C., and Perron, C. 2000. Microstructures of metal grains in ordinary chondrites: Implications for their thermal histories. Meteoritics & Planetary Science, 35, 569580.Google Scholar
Lewis, L. H., Mubarok, A., Poirier, E., et al. 2014. Inspired by nature: Investigating tetrataenite for permanent magnet applications. Journal of Physics Condensed Matter, 26, 064213.Google Scholar
Locatelli, A. and Bauer, E. 2008. Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. Journal of Physics Condensed Matter, 20, 093002.Google Scholar
McCoy, T. J., Walker, R. J., Goldstein, J. I., et al., 2011. Group IVA irons: New constraints on the crystallization and cooling history of an asteroidal core with a complex history. Geochimica et Cosmochimica Acta, 75, 68216843.Google Scholar
Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., and Dautreppe, D. 1964. Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. Journal of Applied Physics, 35, 873876.Google Scholar
Nimmo, F., 2009. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters, 36, L10201.Google Scholar
Olson, P. and Christensen, U. R. 2006. Dipole moment scaling for convection-driven planetary dynamos. Earth and Planetary Science Letters, 250, 561571.Google Scholar
Rancourt, D., Lagarec, K., Densmore, A., et al., 1999. Experimental proof of the distinct electronic structure of a new meteoritic Fe–Ni alloy phase. Journal of Magnetism and Magnetic Materials, 191, L255L260.Google Scholar
Rancourt, D. G. and Scorzelli, R. B. 1995. Low-spin γ-Fe–Ni (γ LS) proposed as a new mineral in Fe–Ni-bearing meteorites: epitaxial intergrowth of γ LS and tetrataenite as a possible equilibrium state at∼ 20–40 at% Ni. Journal of Magnetism and Magnetic Materials, 150, 3036.Google Scholar
Reuter, K. B., Williams, D. B., and Goldstein, J. I. 1988. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochimica et Cosmochimica Acta, 52, 617626.Google Scholar
Sterenborg, M. G. and Crowley, J. W. 2013. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of Earth and Planetary Interiors, 214, 5373.Google Scholar
Tarduno, J. A., Cottrell, R. D., Nimmo, F., et al., 2012. Evidence for a dynamo in the main group pallasite parent body. Science, 338, 939–42.Google Scholar
Tarduno, J. A., Cottrell, R., Watkeys, M., et al. 2010. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago. Science, 327, 12381240.Google Scholar
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth and Planetary Science Letters, 306, 241252.Google Scholar
Wasilewski, P. 1988. Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Physics of Earth and Planetary Interiors, 52, 150158.Google Scholar
Wasson, J. T. and Choi, B.-G. 2003. Main-group pallasites: Chemical composition, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 67, 30793096.Google Scholar
Weiss, B. P., Berdahl, J. S., Elkins-Tanton, L., et al., 2008. Magnetism on the angrite parent body and the early differentiation of planetesimals. Science, 322, 713716.Google Scholar
Williams, Q. 2009. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters, 284, 564569.Google Scholar
Yang, C., Williams, D., and Goldstein, J. 1996. A revision of the Fe–Ni phase diagram at low temperatures (< 400 °C). Journal of Phase Equilibria, 17, 522531.Google Scholar
Yang, C.-W., Williams, D. B., and Goldstein, J. I. 1997a. Low-temperature phase decomposition in metal from iron, stony-iron, and stony meteorites. Geochimica et Cosmochimica Acta, 61, 29432956.Google Scholar
Yang, C., Williams, D. B., and Goldstein, J. I. 1997b. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteoritics & Planetary Science, 32, 423429.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. 2010. Main-group pallasites: Thermal history, relationship to IIIAB irons, and origin. Geochimica et Cosmochimica Acta, 74, 44714492.Google Scholar
Yang, J., Goldstein, J. I., and Scott, E. R. D. 2008. Metallographic cooling rates and origin of IVA iron meteorites. Geochimica et Cosmochimica Acta, 72, 30433061.Google Scholar
Zhang, J., Williams, D., and Goldstein, J. 1993. The microstructure and formation of duplex and black plessite in iron meteorites. Geochimica et Cosmochimica Acta, 57, 37253735.Google Scholar

References

Amelin, Y. 2008. U–Pb ages of angrites. Geochimica et Cosmochimica Acta, 72, 221232.Google Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. 2010. U–Pb chronology of the solar system’s oldest solids with variable 238U/235U. Earth and Planetary Science Letters, 300, 343350.Google Scholar
Baker, J. A., Schiller, M., and Bizzarro, M. 2012. 26Al–26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early solar system? Geochimica et Cosmochimica Acta, 77, 415431.Google Scholar
Bouvier, A., Spivak-Birndorf, L. J., Brennecka, G. A., and Wadhwa, M. 2011. New constraints on early solar system chronology from Al–Mg and U–Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochimica et Cosmochimica Acta, 75, 53105323.Google Scholar
Bouvier, A. and Wadhwa, M. 2010. The age of the solar system redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.Google Scholar
Brennecka, G. A. and Wadhwa, M. 2012. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 109, 92999303.Google Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M. et al. 2010. 238U/235U variations in meteorites: Extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.Google Scholar
Burkhardt, C., Kleine, T., Palme, H., et al. 2008. Hf–W mineral isochron for Ca, Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 61776197.Google Scholar
Campbell, A. J. and Humayun, M. 2005. Compositions of group IVB iron meteorites and their parent melt. Geochimica et Cosmochimica Acta, 69, 47334744.Google Scholar
Chabot, N. L. 2004. Sulfur contents of the parental metallic cores of magmatic iron meteorites. Geochimica et Cosmochimica Acta, 68, 36073618.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. 2012. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338 , 651655.Google Scholar
Day, J. M. D., Walker, R. J., Qin, L., and Rumble Iii, D. 2012. Late accretion as a natural consequence of planetary growth. Nature Geoscience, 5, 614617.Google Scholar
Glavin, D. P., Kubny, A., Jagoutz, E., and Lugmair, G. W. 2004. Mn–Cr isotope systematics of the D’Orbigny angrite. Meteoritics & Planetary Science, 39, 693700.Google Scholar
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., and Wadhwa, M. 2015. The uranium isotopic composition of the Earth and the solar system. Geochimica et Cosmochimica Acta, 148, 145158.Google Scholar
Gray, C. M., Papanastassiou, D. A., and Wasserburg, G. J. 1973. Identification of early condensates from solar nebula. Icarus, 20, 213239.Google Scholar
Grossman, L. 1980. Refractory inclusions in the Allende meteorite. Annual Review of Earth and Planetary Sciences, 8, 559608.Google Scholar
Hans, U., Kleine, T., and Bourdon, B. 2013. Rb–Sr chronology of volatile depletion in differentiated pro-toplanets: BABI, ADOR and ALL revisited. Earth and Planetary Science Letters, 374, 204214.Google Scholar
Hevey, P. J. and Sanders, I. S. 2006. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95106.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013) 182Hf–182W dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early solar system. Proceedings of the National Academy of Sciences of the United States of America, 110, 88198823.Google Scholar
Hopkins, M., Mojzsis, S., Bottke, W., and Abramov, O. 2015. Micrometer-scale U–Pb age domains in eucrite zircons, impact re-setting, and the thermal history of the HED parent body. Icarus, 245, 367378.Google Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. 2008. 26Al–26Mg and 207Pb–206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.Google Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. 2005. Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In Chondrites and the Protoplanetary Disk, ed. Krot, A. N., Scott, E. R. D., and Reipurth, B.. San Francisco, CA: Astronomical Society of the Pacific, 558587.Google Scholar
Kleine, T., Münker, C., Mezger, K., and Palme, H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952955.Google Scholar
Kleine, T., Mezger, K., Münker, C., Palme, H., and Bischoff, A., 2004. 182Hf–182W isotope systematics of chondrites, eucrites, and Martian meteorites: Chronology of core formation and mantle differentiation in Vesta and Mars. Geochimica et Cosmochimica Acta, 68, 29352946.Google Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. 2005a. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf–182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.Google Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. 2005b. The W isotope composition of eucrites metal: Constraints on the timing and cause of the thermal metamorphism of basaltic eucrites. Earth and Planetary Science Letters, 231 , 4152.Google Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. 2009. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.Google Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. 2012. Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. 2009. Origin and chronology of chondritic components: A review. Geochimica et Cosmochimica Acta, 73, 49634997.Google Scholar
Kruijer, T. S., Fischer-Gödde, M., Kleine, T., et al. 2013. Neutron capture on Pt isotopes in iron meteorites and the Hf–W chronology of core formation in planetesimals. Earth and Planetary Science Letters, 361, 162172.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. 2014a. Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.Google Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. 2014b. Protracted core formation and rapid accretion of protoplanets. Science, 344 , 11501154.Google Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T., 2004. Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochimica et Cosmochimica Acta, 68, 29472957.Google Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. 2011. Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, L37.Google Scholar
Leya, I., Wieler, R., and Halliday, A. N. 2003. The influence of cosmic-ray production on extinct nuclide systems. Geochimica et Cosmochimica Acta, 67, 529541.Google Scholar
Lugmair, G. W. and Shukolyukov, A. 1998. Early solar system timescales according to 53Mn–53Cr systematics. Geochimica et Cosmochimica Acta, 62, 28632886.Google Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S. and Davis, A. M., 2012. Well-resolved variations in the formation ages for Ca‚ Al-rich inclusions in the early solar system. Earth and Planetary Science Letters, 331332, 4354.Google Scholar
Mandler, B. E. and Elkins-Tanton, L. T. 2013. The origin of eucrites, diogenites, and olivine diogenites: Magma ocean crystallization and shallow magma chamber processes on Vesta. Meteoritics & Planetary Science, 48, 23332349.Google Scholar
Markowski, A., Quitté, G., Halliday, A. N., and Kleine, T. 2006. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects. Earth and Planetary Science Letters, 242, 115.Google Scholar
McCoy, T. J., Mittlefehldt, D. W. and Wilson, L. 2006. Asteroid differentiation. In Meteorites and the Early Solar System II, ed. Lauretta, D. S. and McSween, H. Y. Jr. Tucson, AZ: University of Arizona Press, 733745.Google Scholar
Misawa, K., Yamaguchi, A., and Kaiden, H., 2005. U–Pb and Pb-207–Pb-206 ages of zircons from basaltic eucrites: Implications for early basaltic volcanism on the eucrite parent body. Geochimica et Cosmochimica Acta, 69, 58475861.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch. 4.Google Scholar
Moskovitz, N. and Gaidos, E. 2011. Differentiation of planetesimals and the thermal consequences of melt migration. Meteoritics & Planetary Science, 46, 903918.Google Scholar
Neumann, W., Breuer, D., and Spohn, T. 2014. Differentiation of Vesta: Implications for a shallow magma ocean. Earth and Planetary Science Letters, 395, 267280.Google Scholar
Nyquist, L. E., Kleine, T., Shih, C. Y., and Reese, Y. 2009. The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary alteration. Geochimica et Cosmochimica Acta, 73, 51155136.Google Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J., and Janney, P. E. 2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94-104.Google Scholar
Righter, K. and Shearer, C. K. 2003. Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars. Geochimica et Cosmochimica Acta, 67, 24972507.Google Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. S., and Masarik, J. 2006. Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.Google Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. 2010. 26Al–26Mg dating of asteroidal magmatism in the young solar system. Geochimica et Cosmochimica Acta, 74, 48444864.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. 2011. Rapid timescales for magma ocean crystallization on the howardite–eucrite–diogenite parent body. The Astrophysical Journal Letters, 740, L22.Google Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., and Bizzarro, M. 2015. Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth and Planetary Science Letters, 420, 4554.Google Scholar
Schoenberg, R., Kamber, B. S., Collerson, K. D., and Eugster, O. 2002. New W-isotope evidence for rapid terrestrial accretion and very early core formation. Geochimica et Cosmochimica Acta, 66, 31513160.Google Scholar
Scott, E. R. D. 1972. Chemical fractionation in iron meteorites and its interpretation. Geochimica et Cosmochimica Acta, 36, 12051236.Google Scholar
Scott, E. R. D. and Wasson, J. T. 1975. Classification and properties of iron meteorites. Reviews of Geophysics, 13, 527546.Google Scholar
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. E. 2009. 26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 52025211.Google Scholar
Taylor, G. J. 1992. Core formation in asteroids. Journal of Geophysical Research – Planets, 97, 1471714726.Google Scholar
Touboul, M., Sprung, P., Aciego, S. M., Bourdon, B., and Kleine, T. 2015. Hf–W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trinquier, A., Birck, J. L., Allègre, C. J., Göpel, C., and Ulfbeck, D. 2008. 53Mn–53Cr systematics of the early solar system revisited. Geochimica et Cosmochimica Acta, 72, 51465163.Google Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. 2009. Homogeneous distribution of Al-26 in the solar system from the Mg isotopic composition of chondrules. Science, 325, 985988.Google Scholar
Wasserburg, G. J., Wimpenny, J., and Yin, Q. Z. 2012. Mg isotope heterogeneity, Al–Mg isochrons, and canonical 26Al/27Al in the early solar system Meteoritics & Planetary Science, 47, 19801997.Google Scholar
Wasson, J. T. and Huber, H. 2006. Compositional trends among IID irons; their possible formation from the P-rich lower magma in a two-layer core. Geochimica et Cosmochimica Acta, 70, 61536167.Google Scholar
Wilson, L. and Keil, K. 2012. Volcanic activity on differentiated asteroids: A review and analysis. Chemie der Erde, 72, 289321.Google Scholar
Wittig, N., Humayun, M., Brandon, A. D., Huang, S., and Leya, I. 2013. Coupled W–Os–Pt isotope systematics in IVB iron meteorites: In situ neutron dosimetry for W isotope chronology. Earth and Planetary Science Letters, 361, 152161.Google Scholar
Yamaguchi, A., Taylor, G. J., and Keil, K. 1996. Global crustal metamorphism of the eucrite parent body. Icarus, 124, 97112.Google Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K., et al. 2002. A short timescale for terrestrial planet formation from Hf–W chronometry of meteorites. Nature, 418, 949952.Google Scholar
Zhou, Q., Yin, Q. Z., Young, E. D., et al. 2013. SIMS Pb–Pb and U–Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar

References

Albarede, F. 2009. Volatile accretion history of the terrestrial planets and dynamic implications. Nature, 461, 12271233.Google Scholar
Armytage, R. M. G., Georg, R. B., Savage, P. S., et al. 2011. Silicon isotopes in meteorites and planetary core formation. Geochimica et Cosmochimica Acta, 75, 36623676.Google Scholar
Barrat, J.A., Zanda, B., Moynier, F., et al. 2012. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochimica et Cosmochimica Acta, 83, 7992.Google Scholar
Bertka, C. M. and Fei, Y. 1997. Mineralogy of the Martian interior up to core–mantle boundary pressures. Journal of Geophysical Research, 102, 52515264.Google Scholar
Birch, F. 1964. Density and composition of mantle and core. Journal of Geophysical Research, 69, 43774388.Google Scholar
Casanova, I., Keil, K., and Newsom, H. E. 1993. Composition of metal in aubrites: constraints on core formation. Geochimica et Cosmochimica Acta, 57, 675682.Google Scholar
Chakrabarti, R. and Jacobsen, S. B. 2010. Silicon isotopes in the inner solar system: Implications for core formation, solar nebular processes and partial melting. Geochimica et Cosmochimica Acta, 74, 69216933.Google Scholar
Chen, H., Savage, P. S., Teng, F-.Z., Helz, R. T., and Moynier, F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 407, 96108.Google Scholar
Craddock, P. R. and Dauphas, N. 2010. Iron isotopic compositions of geological reference materials and chondrites. Geostandards and Geoanalytical Research, 35, 101123.Google Scholar
Craddock, P. R., Warren, J. M., and Dauphas, N. 2013. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth and Planetary Science Letters, 365, 6376.Google Scholar
Dauphas, N., Craddock, P. R., Asimow, P. D., et al. 2009. Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present. Earth and Planetary Science Letters, 288, 255267.Google Scholar
Dauphas, N., Poitrasson, F., Burkhardt, C., Kobayashi, H., and Kurosawa, K. 2015. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry. Earth and Planetary Science Letters, 427, 236248.Google Scholar
Davis, A., Hashimoto, A., and Clayton, R. 1990. Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655658.Google Scholar
Day, J. M. and Moynier, F. 2014. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Philosophical Transactions of the Royal Society of London A, 372, #20130259.Google Scholar
Fei, Y. and Bertka, C. 2005. The interior of Mars. Science, 308, 11201121.Google Scholar
Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., and Reynolds, B. C. 2009. Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth and Planetary Science Letters, 287, 7785.Google Scholar
Fitoussi, C. and Bourdon, B. 2012. Silicon isotope evidence against an enstatite chondrite earth. Science, 335, 14771480.Google Scholar
Gaetani, G. A. and Grove, T. L. 1997. Partitioning of moderately siderophile elements among olivine, silicate melt, and sulfide melt: Constraints on core formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61, 18291846.Google Scholar
Georg, R. B., Halliday, A. N., Schauble, E. A., and Reynolds, B. C. 2007. Silicon in the Earth’s core. Science, 447, 11021006.Google Scholar
Gessmann, C. K., Wood, B. J., Rubie, D. C., and Kilburn, M. R. 2001. Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth’s core. Earth and Planetary Science Letters, 184, 367376.Google Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. 2010. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 296, 423433.Google Scholar
Herzog, G. F., Moynier, F., Albarede, F., and Berezhnoy, A. A. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele’s hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73, 58845904.Google Scholar
Hin, R. C., Schmidt, M. W., and Bourdon, B. 2012. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochimica et Cosmochimica Acta, 93, 164181.Google Scholar
Hin, R. C., Fitoussi, C., Schmidt, M. W., and Bourdon, B. 2014. Experimental determination of the Si isotope fractionation factor between liquid metal and liquid silicate. Earth and Planetary Science Letters, 387, 5566.Google Scholar
Kato, C, Moynier, F., Valdes, M., Dhaliwal, J., and Day, J. 2015. Extensive volatile loss during the formation and differentiation of the Moon. Nature Communications, 6, article no. 7617.Google Scholar
Keil, K. 2010. Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chemie der Erde, 70, 295317.Google Scholar
Keil, L. 2012. Angrites, a small but diverse suite of ancient, silica-undersaturated volcanic-plutonic mafic meteorites, and the history of their parent asteroid. Chemie der Erde, 72, 191218.Google Scholar
Kong, P., Ebihara, M., and Palme, H. 1999. Siderophile elements in Martian meteorites and implications for core formation in Mars. Geochimica et Cosmochimica Acta, 63, 18651875.Google Scholar
Larimer, J. W. 1979. The condensation and fractionation of refractory lithophile elements. Icarus, 40, 446454.Google Scholar
Larimer, J. W. and Anders, E. 1970. Chemical fractionations in meteorites – III. Major element fractionations in chondrites. Geochimica et Cosmochimica Acta, 34, 367387.Google Scholar
Lodders, K. 2003. Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.Google Scholar
Lodders, K., Palme, H., and Wlotzka, F. 1993. Trace elements in mineral separates of the Pena Blanca Spring aubrite: implications for the evolution of the aubrite parent body. Meteoritics 28, 538551.Google Scholar
Luck, J. M., Othman, D. B., and Albarede, F. 2005. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69, 53515363.Google Scholar
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A., and Kracher, A. 1998. Non-chondritic meteorites from asteroidal bodies. In Planetary Materials (Reviews in Mineralogy, Volume 36), ed. Papike, J. J.. Washington, DC: Mineralogical Society of America, ch.4.Google Scholar
Moynier, F., Albarede, F., and Herzog, G. 2006. Isotopic composition of zinc, copper, and iron in lunar samples. Geochimica et Cosmochimica Acta, 70, 61036117Google Scholar
Moynier, F., Beck, P., Jourdan, F., et al. 2009. Isotopic fractionation of zinc in tektites. Earth and Planetary Science Letters, 277, 482489.Google Scholar
Moynier, F., Beck, P., Yin, Q., et al. 2010. Volatilization induced by impacts recorded in Zn isotope composition of ureilites. Chemical Geology, 276, 374379.Google Scholar
Moynier, F., Paniello, R.C., Gounelle, M., et al. 2011. Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes. Geochimica et Cosmochimica Acta, 75, 297307.Google Scholar
O’Neill, H. S. C. and Palme, H. 2008. Collisional erosion and the non-chondritic composition of the terrestrial planets. Philisophical Transactions of the Royal Society A, 366, 42054238.Google Scholar
Pahlevan, K. and Stevenson, D. J. 2007. Equilibration in the aftermath of the lunar-forming giant impact. Earth and Planetary Science Letters, 262, 438449.Google Scholar
Paniello, R. C., Day, J. M., and Moynier, F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature, 490, 376379.Google Scholar
Poirier, J. 1994. Light elements in the Earth’s outer core: A critical review. Physics of the Earth and Planetary Interiors, 85, 319337.Google Scholar
Poitrasson, F., Halliday, A.N., Lee, D.C., Levasseur, S., and Teutsch, N. 2004. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth and Planetary Science Letters, 223, 253266.Google Scholar
Poitrasson, F., Levasseur, S., and Teutsch, N. 2005. Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core–mantle differentiation of terrestrial planets. Earth and Planetary Science Letters, 234, 151164.Google Scholar
Poitrasson, F., Roskosz, M., and Corgne, A. 2009. No iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion. Earth and Planetary Science Letters, 278, 376385.Google Scholar
Pringle, E. A., Moynier, F., Savage, P. S., Badro, J., and Barrat, J.-A. 2014. Silicon isotopes in angrites and volatile loss in planetesimals. Proceedings of the National Academy of Science of the United States of America, 111, 1702917032.Google Scholar
Pringle, E. A., Savage, P. S., Badro, J., Barrat, J.-A., and Moynier, F. 2013. Redox state during core formation on asteroid 4-Vesta. Earth and Planetary Science Letters, 373, 7582.Google Scholar
Righter, K. 2008. Siderophile element depletion in the angrite parent body (APB) mantle: due to core formation? Lunar and Planetary Science Conference, 39, 1391.Google Scholar
Righter, K. and Drake, M. J. 1997. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteoritics & Planetary Science, 32, 929944.Google Scholar
Rushmer, T., Petford, N., Humayun, M., and Campbell, A. 2005. Fe–liquid segregation in deforming planetesimals: Coupling core-forming compositions with transport phenomena. Earth and Planetary Science Letters, 239, 185202.Google Scholar
Savage, P. S., Georg, R. B., Armytage, R. M. G., Williams, H. M., and Halliday, A. N. 2010. Silicon isotope homogeneity in the mantle. Earth and Planetary Science Letters, 295, 139146.Google Scholar
Savage, P. S., Armytage, R. M. G., Georg, R. B., and Halliday, A. N. 2014. High temperature silicon isotope geochemistry. Lithos, 190–191, 500519.Google Scholar
Savage, P. S. and Moynier, F. 2013. Si isotopic variations in enstatite meteorites: Clues to their origin. Earth and Planetary Science Letters, 361, 487496.Google Scholar
Schoenberg, R. and von Blanckenburg, F. 2006. Modes of planetary-scale Fe isotope fractionation. Earth and Planetary Science Letters, 252, 342359.Google Scholar
Schuessler, J., Schoenberg, R., Behrens, H., and Blanckenburg, F. 2007. The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt. Geochimica et Cosmochimica Acta, 71, 417433.Google Scholar
Shahar, A. and Young, E. D. 2007. Astrophysics of CAI formation as revealed by silicon isotope LA-MC-ICPMS of an igneous CAI. Earth and Planetary Science Letters, 257, 497510.Google Scholar
Shahar, A., Ziegler, K., Young, E. D., et al. 2009. Experimentally determined Si isotope fractionation between silicate and metal and implications for Earth’s core formation. Earth and Planetary Science Letters, 288, 228234.Google Scholar
Shahar, A., Hillgren, V. J., Young, E. D., et al. 2011. High-temperature Si isotope fractionation between iron metal and silicate. Geochimica et Cosmochimica Acta, 75, 76887697.Google Scholar
Shahar, A., Hillgren, V. J., Horan, M. F., et al. 2015. Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochimica et Cosmochimica Acta, 150, 253264.Google Scholar
Stolper, E. 1977. Experimental petrology of eucritic meteorites. Geochimica et Cosmochimica Acta, 41, 587611.Google Scholar
Taylor, S. (1975). Lunar Sciences: a post Apollo View. Cambridge: Cambridge Press.Google Scholar
Teng, F. Z., Dauphas, N., and Helz, R. T. 2008. Iron isotope fractionation during magmatic differentiation in Kilauea Iki lava lake. Science, 320, 16201622.Google Scholar
Tuff, J., Wood, B. J., and Wade, J. 2011. The effect of Si on metal–silicate partitioning of siderophile elements and implications for the conditions of core formation. Geochimica et Cosmochimica Acta, 75, 673690.Google Scholar
van Acken, D., Brandon, A. D., and Lapen, T. J. 2012. Highly siderophile element and osmium isotope evidence for post-core formation magmatic and impact processes on the aubrite parent body. Meteoritics & Planetary Science, 47, 16061623.Google Scholar
Wade, J. and Wood, B. J. 2005. Core formation and the oxidation state of the Earth. Earth and Planetary Science Letters, 236, 7895.Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. 2011. A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.Google Scholar
Wang, K., Moynier, F., Dauphas, N., et al. 2012. Iron isotope fractionation in planetary crusts. Geochimica et Cosmochimica Acta, 89, 3145.Google Scholar
Wang, K., Moynier, F., Barrat, J.-A., et al. 2013. Homogeneous distribution of Fe isotopes in the early solar nebula. Meteoritics & Planetary Science, 48, 354364.Google Scholar
Wang, K., Savage, P. S., and Moynier, F. 2014. The iron isotope composition of enstatite meteorites: Implications for their origin and the metal/sulfide Fe isotopic fractionation factor. Geochimica Et Cosmochimica Acta, 142, 149165.Google Scholar
Wänke, H. and Dreibus, G. 1994. Chemistry and accretion history of Mars. Philosophical Transactions of the Royal Society of London A, 349, 285293.Google Scholar
Wasson, J. T. and Chou, C.-L. 1974. Fractionation of moderately volatile elements in ordinary chondrites. Meteoritics, 9, 6984.Google Scholar
Weyer, S., Anbar, A. D., Brey, G. P., et al. 2005. Iron isotope fractionation during planetary differentiation. Earth and Planetary Science Letters, 240, 251264.Google Scholar
Wiechert, U. and Halliday, A. N. 2007. Non-chondritic magnesium and the origins of the inner terrestrial planets. Earth and Planetary Science Letters, 256, 360371.Google Scholar
Williams, H. M., Wood, B. J., Wade, J., Frost, D. J., and Tuff, J. 2012. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth and Planetary Science Letters, 321–322, 5463.Google Scholar
Williams, H. M., Markowski, A., Quitte, G., et al. 2006. Fe isotope fractionation in iron meteorites: New insights into metal–sulphide segregation and planetary accretion. Earth and Planetary Science Letters, 250, 486500.Google Scholar
Young, E. D., Manning, C. E., Schauble, E. A., et al. 2015. High-temperature equilibrium isotope fractionation of non-traditional stable isotopes: Experiments, theory, and applications. Chemical Geology, 395, 176195.Google Scholar
Zambardi, T., Poitrasson, F., Corgne, A., et al. 2013. Silicon isotope variations in the inner solar system: Implications for planetary formation, differentiation and composition. Geochimica et Cosmochimica Acta, 121, 6783.Google Scholar
Zhu, X. K., Guo, Y., O’Nions, R. K., Young, E. D., and Ash, R. D. 2001. Isotopic homogeneity of iron in the early solar nebula. Nature, 412, 311313.Google Scholar
Zhu, X., Guo, Y., Williams, R., and O’Nions, R. 2002. Mass fractionation processes of transition metal isotopes. Earth and Planetary Science Letters, 200, 4762.Google Scholar
Ziegler, K., Young, E. D., Schauble, E. A., and Wasson, J. T. 2010. Metal–silicate silicon isotope fractionation in enstatite meteorites and constraints on Earth’s core formation. Earth and Planetary Science Letters, 295, 487496.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×