Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T09:05:24.349Z Has data issue: false hasContentIssue false

4 - The Diversity and Distribution of Palaeogene Snakes

A Review with Comments on Vertebral Sufficiency

from Part I - The Squamate and Snake Fossil Record

Published online by Cambridge University Press:  30 July 2022

David J. Gower
Affiliation:
Natural History Museum, London
Hussam Zaher
Affiliation:
Universidade de São Paulo
Get access

Summary

We give a review of all published Palaeogene snake taxa from all localities worldwide. Several conceptual and material advances in the past two decades—a focus on apomo+P31rphies, greater attention to variation, quantification of morphology, and new fossil discoveries—have vivified the fossil record. Particularly noteworthy have been new fossils from Gondwanan continents and complete, articulated skeletons. Species known only from vertebrae are unlikely to be placed precisely phylogenetically, but a high number of vertebrae is a strong indication that cranial remains are present, which in turn allow more precise phylogenetic placement. Extrapolations of snake palaeodiversity are of the same order of magnitude as rough calculations of cumulative lineage diversity in the Palaeogene, raising the prospect that palaeontological morphospecies may more closely approximate biological species than is commonly conceived. As their interrelationships become better known, Palaeogene fossils will increasingly help elucidate the early evolution of snakes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rage, J.-C. and Wouters, G., Découverte du plus ancien Palaeopheidé (Reptilia, Serpentes) dans le Maestrichtien du Maroc. Geobios, 12 (1979), 293296.Google Scholar
Rage, J.-C. and Werner, C., Mid-Cretaceous (Cenomanian) snakes from Wadi abu Hashim, Sudan: The earliest snake assemblage. Palaeontologia Africana, 35 (1999), 85110.Google Scholar
Head, J. J., Mahlow, K., and Müller, J., Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontologia Electronica, 19.2.2FC (2016), 121.Google Scholar
Longrich, N. R., Bhullar, B. -A. S., and Gauthier, J. A., Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences, USA, 109 (2012), 2139621401.Google Scholar
Hsiang, A. Y., Field, D. J., Webster, T. H., et al., The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evolutionary Biology, 15 (2015), 87.Google Scholar
Harrington, S. M. and Reeder, T. W., Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biological Journal of the Linnean Society, 121 (2017), 379394.CrossRefGoogle Scholar
Zaher, H., Murphy, R. W., et al.Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes)PloS ONE, 14 (2019), e0216148.Google Scholar
Rage, J.-C., Serpentes (Handbuch der Paläoherpetologie, v. 11) (Stuttgart: Gustav Fischer Verlag, 1984).Google Scholar
Holman, J. A., Fossil Snakes of North America: Origin, Evolution, Distribution, Paleoecology (Bloomington, Indiana: Indiana University Press, 2000).Google Scholar
Cuvier, G., Recherches sur les Ossemens Fossiles, oú l’on Rétablit les Caractères de Plusierus Animaux dont les Révolutions du Globe Ont Détruit les Espèces. Vol. 4 (Paris: E. d’Ocagne: 1823).Google Scholar
McDowell, S. B., A catalogue of the snakes of New Guinea and the Solomons, with special reference to those in the Bernice P. Bishop Museum. Part III. Boinae and Acrochordoidea (Reptilia, Serpentes). Journal of Herpetology, 13 (1979), 192.Google Scholar
Kluge, A. G., Calabaria and the phylogeny of erycine snakes. Zoological Journal of the Linnean Society, 107 (1993), 293351.CrossRefGoogle Scholar
Head, J. J., Phylogenetic significance of vertebral morphology in snakes: Implications for interpreting the fossil record. Journal of Vertebrate Paleontology, 22 (2002), 63A.Google Scholar
Bell, C. J., Head, J. J., and Mead, J. I., Synopsis of the herpetofauna from Porcupine Cave. In Barnosky, A. D., ed., Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado (Berkeley, California: University of California Press, 2004), pp. 117126.Google Scholar
Smith, K. T., New constraints on the evolution of the snake clades Ungaliophiinae, Loxocemidae and Colubridae (Serpentes), with comments on the fossil history of erycine boids in North America. Zoologischer Anzeiger, 252 (2013), 157182.Google Scholar
Rage, J. -C., Les serpents des phosphorites du Quercy. Palaeovertebrata, 6 (1974), 274303.Google Scholar
Szyndlar, Z., Fossil snakes from Poland. Acta Zoologica Cracoviensia, 28 (1984), 1156.Google Scholar
Rage, J.-C., Bajpai, S., Thewissen, J. G. M., and Tiwari, B. N., Early Eocene snakes from Kutch, western India, with a review of the Palaeophiidae. Geodiversitas, 25 (2003), 695716.Google Scholar
Scanlon, J. D., Australia’s oldest known snakes: Patagoniophis, Alamitophis, and cf. Madtsoia (Squamata: Madtsoiidae) from the Eocene of Queensland. Memoirs of the Queensland Museum, 51 (2005), 215235.Google Scholar
Hoffstetter, R. and Rage, J. -C., Les Erycinæ fossiles de France (Serpentes, Boidæ): compréhension et histoire de la sous-famille. Annales de Paléontologie (Vertébrés), 58 (1972), 82124.Google Scholar
Szyndlar, Z. and Böhme, W., Redescription of Tropidonotus atavus von Meyer, 1855 from the upper Oligocene of Rott (Germany) and its allocation to Rottophis gen. nov (Serpentes, Boidae). Palaeontographica A, 240 (1996), 145161.Google Scholar
Auffenberg, W., The fossil snakes of Florida. Tulane Studies in Zoology, 10 (1963), 127213.Google Scholar
Head, J. J., Bloch, J. I., Hastings, A. K., et al., Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature, 457 (2009), 715717.Google Scholar
Georgalis, G. L., Rabi, M., and Smith, K. T., Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss Journal of Palaeontology, 140 (2021), 18.CrossRefGoogle Scholar
Albino, A. M., Snakes from the Paleocene and Eocene of Patagonia (Argentina): paleoecology and coevolution with mammals. Historical Biology, 7 (1993), 5169.Google Scholar
Rage, J.-C., Folie, A., Rana, R. S., et al., A diverse snake fauna from the early Eocene of Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica, 53 (2008), 391403.Google Scholar
Rage, J.-C., Pickford, M., and Senut, B., Amphibians and squamates from the middle Eocene of Namibia, with comments on pre-Miocene anurans from Africa. Annales de Paléontologie, 99 (2013), 217242.CrossRefGoogle Scholar
Scanferla, A., Zaher, H., Novas, F. E., de Muizon, C., and Céspedes, R., A new snake skull from the Paleocene of Bolivia sheds light on the evolution of macrostomatans. PLoS ONE, 8 (2013), e57583.Google Scholar
McCartney, J. A., Stevens, N. J., and O’Connor, P. M., The earliest colubroid-dominated snake fauna from Africa: perspectives from the late Oligocene Nsungwe Formation of southwestern Tanzania. PLoS ONE, 9 (2014), e90415.Google Scholar
McCartney, J. A. and Seiffert, E. R., A late Eocene snake fauna from the Fayum Depression, Egypt. Journal of Vertebrate Paleontology, 36 (2016), e1029580.CrossRefGoogle Scholar
Hoffstetter, R., Squamates de type moderne. In Piveteau, J., ed., Traité de Paléontologie, Vol 5 (Paris: Masson, 1955), pp. 605662.Google Scholar
Vidal, N., Rage, J.-C., Couloux, A., and Hedges, S. B., Snakes (Serpentes). In Hedges, S. B. and Kumar, K., eds., The Timetree of Life (Oxford: Oxford University Press, 2009), pp. 390397.Google Scholar
Burbrink, F. T. and Crother, B. I., Evolution and taxonomy of snakes. In Aldridge, R. D. and Sever, D. M., eds., Reproductive Biology and Phylogeny of Snakes (Boca Raton, Florida: CRC Press, 2011), pp. 1953.Google Scholar
Burbrink, F. T., Grazziotin, F. G., Pyron, R. A., et al., Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships. Systematic Biology, 69 (2020), 502520.Google Scholar
Lee, M. S. Y. and Scanlon, J. D., Snake phylogeny based on osteology, soft anatomy and ecology. Biological Reviews, 77 (2002), 333401.Google Scholar
Scanlon, J. D., Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature, 439 (2006), 839842.Google Scholar
Conrad, J. L., Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bulletin of the American Museum of Natural History, 310 (2008), 1182.Google Scholar
Caldwell, M. W., Nydam, R. L., Palci, A., and Apesteguía, S., The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution. Nature Communications, 6 (2015), 5996.Google Scholar
Wilson, J. A., Mohabey, D. M., Peters, S. E., and Head, J. J., Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biology, 8 (2010), e100322.Google Scholar
Zaher, H. and Scanferla, C. A., The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zoological Journal of the Linnean Society, 164 (2012), 194238.Google Scholar
Scanferla, A. and Smith, K. T., Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of early boas. Diversity, 12 (2020), 100.Google Scholar
Georgalis, G. L., Del Favero, L., and Delfino, M., Italy’s largest snake - redescription of Palaeophis oweni from the Eocene of Monte Duello, near Verona. Acta Palaeontologica Polonica, 65 (2020), 523533.Google Scholar
Nessov, L. A., Paleogene sea snakes as indicators of water mass peculiarities on the east of Tethys Ocean [in Russian]. Vestnik St. Petersberg University, Series 7, 2 (1995), 39.Google Scholar
Zvonok, E. A. and Snetkov, P. B., New findings of snakes of the genus Palaeophis Owen, 1841 (Acrochordoidea: Palaeophiidae) from the middle Eocene of Crimea. Proceedings of the Zoological Institute of the Russian Academy of Sciences, 316 (2012), 392400.Google Scholar
Wallach, V., Williams, K. L., and Boundy, J., Snakes of the World: A Catalogue of Living and Extinct Species (Boca Raton, London and New York: CRC Press, 2014).Google Scholar
Nopcsa, F. B., Die Familien der Reptilien. Fortschritte der Geologie und Paläontologie, 2 (1923), 1210.Google Scholar
Tatarinov, L. P., The cranial structure of the lower Eocene sea snake ‘Archaeophis’ turkmenicus from Turkmenia. Paleontological Journal, 22 (1988), 7379.Google Scholar
LaDuke, T. C., Krause, D. W., Scanlon, J. D., and Kley, N. J., A Late Cretaceous (Maastrichtian) snake assemblage from the Maevarano Formation, Mahajanga basin, Madagascar. Journal of Vertebrate Paleontology, 30 (2010), 109138.Google Scholar
Rage, J.-C., L’origine des Colubroïdes et des Acrochordoïdes (Reptilia, Serpentes). Comptes Rendus de l’Académie des Sciences, D, 286 (1978), 595597.Google Scholar
Rage, J.-C., Fossil history. In Seigel, R. A., Collins, J. T., and Novak, S. S., eds., Snakes: Ecology and Evolutionary Biology (New York: Macmillan, 1987), pp. 5176.Google Scholar
Holman, J. A. and Case, G. R., A puzzling new snake (Reptilia: Serpentes) from the late Paleocene of Mississippi. Annals of the Carnegie Museum, 61 (1992), 197205.Google Scholar
Rage, J.-C., Un caenophidien primitif (Reptilia, Serpentes) dans l’Éocène inferieur. Comptes Rendu Sommaire des Séances de la Société Géologique de France, 2 (1975), 4647.Google Scholar
Cantino, P. D. and de Queiroz, K., International Code of Phylogenetic Nomenclature, v. 4c (2010). Downloaded from: https://www.ohio.edu/phylocode/PhyloCode4c.pdf.Google Scholar
Apesteguía, S. and Zaher, H., A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature, 440 (2006), 10371040.Google Scholar
Head, J. J., Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontologia Electronica, 18.1.6FC (2015), 117.Google Scholar
O’Leary, M. A., Bouaré, M. L., Claeson, K. M., et al., Stratigraphy and paleobiology of the Upper Cretaceous–lower Paleogene sediments from the Trans-Saharan Seaway in Mali. Bulletin of the American Museum of Natural History, 436 (2019), 1177.Google Scholar
Wang, Y. Q., Meng, J., Beard, C. K., et al., Early Paleogene stratigraphic sequences, mammalian evolution and its response to environmental changes in Erlian Basin, Inner Mongolia, China. Science China Earth Sciences, 53 (2010), 19181926.CrossRefGoogle Scholar
Dong, L.-P., Evans, S. E., and Wang, Y., Taxonomic revision of lizards from the Paleocene deposits of the Qianshan Basin, Anhui, China. Vertebrata PalAsiatica, 54 (2016), 243268.Google Scholar
Estes, R., Sauria Terrestria, Amphisbaenia (Handbuch der Paläoherpetologie, v. 10A) (Stuttgart: Gustav Fischer Verlag, 1983).Google Scholar
Georgalis, G. L., Necrosaurus or Palaeovaranus? Appropriate nomenclature and taxonomic content of an enigmatic fossil lizard clade (Squamata). Annales de Paléontologie, 103 (2017), 293303.Google Scholar
Georgalis, G. L. and Scheyer, T. M., A new species of Palaeopython (Serpentes) and other extinct squamates from the Eocene of Dielsdorf (Zurich, Switzerland). Swiss Journal of Geosciences, 112 (2019), 383417.Google Scholar
Archer, M., Godthelp, H., Hand, S., and Megirian, D., Fossil mammals of Riversleigh, northwestern Queensland: preliminary overview of biostratigraphy, correlation and environmental change. Australian Zoologist, 25 (1989), 2965.Google Scholar
Scanlon, J. D., Lee, M. S. Y., and Archer, M., Mid-Tertiary elapid snakes (Squamata, Colubroidea) from Riversleigh, northern Australia: early steps in a continent-wide adaptive radiation. Geobios, 36 (2003), 573601.Google Scholar
Scanlon, J. D. and Lee, M. S. Y., The Pleistocene serpent Wonambi and the early evolution of snakes. Nature, 403 (2000), 416420.Google Scholar
Woodhead, J., Hand, S. J., Archer, M., et al., Developing a radiometrically-dated chronologic sequence for Neogene biotic change in Australia, from the Riversleigh World Heritage Area of Queensland. Gondwana Research, 29 (2016), 153167.Google Scholar
Megirian, D., Murray, P., Schwartz, L., and von der Borch, C., Late Oligocene Kangaroo Well Local Fauna from the Ulta Limestone (new name), and climate of the Miocene oscillation across central Australia. Australian Journal of Earth Sciences, 51 (2004), 701741.Google Scholar
Archer, M., Arena, D. A., Bassarova, M., et al., Current status of species-level representation in faunas from selected fossil localities in the Riversleigh World Heritage Area, northwestern Queensland. Alcheringa Supplement, 1 (2006), 117.Google Scholar
Reguero, M., Goin, F., Acosta Hospitaleche, C., Dutra, T., and Marenssi, S., Late Cretaceous/Paleogene West Antarctica Terrestrial Biota and Its Intercontinental Affinities (Dordrecht: Springer, 2013).Google Scholar
Legendre, S., Sigé, B., Astruc, G., et al., Les phosphorites du Quercy: 30 ans de recherche. Bilan et perspectives. Geobios, 30, supplement 1(1997), 331345.Google Scholar
Smith, K. T., Schaal, S. F. K., and Habersetzer, J., eds., Messel: An Ancient Greenhouse Ecosystem (Stuttgart: Schweizerbart, 2018).Google Scholar
Krumbiegel, G., Haubold, H., and Rüffle, L., Das eozäne Geiseltal : ein mitteleuropäisches Braunkohlenvorkommen und seine Pflanzen- und Tierwelt (Wittenberg: Ziemsen, 1983).Google Scholar
Friedman, M. and Carnevale, G., The Bolca Lagerstätten: shallow marine life in the Eocene. Journal of the Geological Society, London, 175 (2018), 569579.Google Scholar
Szyndlar, Z. and Rage, J.-C., Non-erycine Booidea from the Oligocene and Miocene of Europe (Krakow: Polish Academy of Sciences, 2003).Google Scholar
Woodburne, M. O., Goin, F. J., Bond, M., et al., Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. Journal of Mammalian Evolution, 21 (2014), 173.Google Scholar
Woodburne, M. O., Goin, F. J., Raigemborn, M. S., et al., Revised timing of the South American early Paleogene land mammal ages. Journal of South American Earth Sciences, 54 (2014), 109119.CrossRefGoogle Scholar
Estes, R. and Báez, A., Herpetofaunas of North and South America during the Late Cretaceous and Cenozoic: Evidence for interchange? In Stehli, F. G. and Webb, S. D., eds., The Great American Interchange. Topics in Geobiology, Vol. 4 (New York: Plenum Press, 1985), pp. 139197.Google Scholar
Simpson, G. G., Splendid Isolation: The Curious History of South American Mammals (New Haven, Conn.: Yale University Press, 1980).Google Scholar
Smith, K. T., A new lizard assemblage from the earliest Eocene (zone Wa0) of the Bighorn Basin, Wyoming, USA: Biogeography during the warmest interval of the Cenozoic. Journal of Systematic Palaeontology, 7 (2009), 299358.Google Scholar
Georgalis, G. L. and Smith, K. T., Constrictores Oppel, 1811 - the available name for the taxonomic group uniting boas and pythons. Vertebrate Zoology, 70 (2020), 291304.Google Scholar
Noonan, B. P. and Chippindale, P. T., Dispersal and vicariance: The complex evolutionary history of boid snakes. Molecular Phylogenetics and Evolution, 40 (2006), 347358.Google Scholar
Smith, K. T. and Scanferla, A., A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas, 43 (2021), 124.Google Scholar
Wilcox, T. P., Zwickl, D. J., Heath, T. A., and Hillis, D. M., Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25 (2002), 361371.Google Scholar
Scanlon, J. D., Montypythonoides: the Miocene snake Morelia riversleighensis (Smith and Plane, 1985) and the geographical origin of pythons. Memoirs of the Association of Australasian Palaeontologists, 25 (2001), 135.Google Scholar
Szyndlar, Z. and Böhme, W., Die fossilen Schlangen Deutschlands: Geschichte der Faunen und ihrer Erforschung. Mertensiella, 3 (1993), 381431.Google Scholar
Zaher, H. and Smith, K. T., Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biology Letters, 16 (2020), 20200735.Google Scholar
McCartney, J. A., Bouchard, S. N., Reinhardt, J. A., et al., The oldest lamprophiid (Serpentes, Caenophidia) fossil from the late Oligocene Rukwa Rift Basin, Tanzania and the origins of African snake diversity. Geobios, 6667 (2021), 6775.Google Scholar
Gasc, J.-P., Snake vertebrae – a mechanism or merely a taxonomist’s toy? In Bellairs, A. d. A. and Cox, C. B., eds., Morphology and Biology of Reptiles. Linnean Society Symposium Series Number 3 (London: Academic Press, 1976), pp. 177190.Google Scholar
Owen, R., Monograph on the Fossil Reptilia of the London Clay. Part II. Crocodilia, Ophidia (London: The Palaeontographical Society, 1850).Google Scholar
Mosauer, W., The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny. Publications of the University of California at Los Angeles in Biological Sciences, 1 (1935), 81120.Google Scholar
Johnson, R. G., The adaptive and phylogenetic significance of vertebral form in snakes. Evolution, 9 (1955), 367388.Google Scholar
Schaal, S., Baszio, S., and Habersetzer, J., Differenzierung von Schlangenarten anhand qualitativer und quantitativer Merkmale sowie konventioneller Streckenmaße und Indizes. Courier Forschungsinstitut Senckenberg, 255 (2005), 133169.Google Scholar
Yi, H. and Norell, M. A., The burrowing origin of modern snakes. Science Advances, 1 (2015), e1500743.Google Scholar
Palci, A., Hutchinson, M. N., Caldwell, M. W., and Lee, M. S. Y., The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. Royal Society Open Science, 4 (2017), 170685.Google Scholar
Janensch, W., Über Archaeophis proavus Mass., eine Schlange aus dem Eocän des Monte Bolca. Beiträge zur Paläontologie und Geologie Östereich-Ungarns und des Orients, 19 (1906), 133.Google Scholar
Marsh, O. C., Introduction and Succession of Vertebrate Life in America (New Haven, Connecticut: Unknown, 1877).Google Scholar
Houssaye, A., Rage, J.-C., Bardet, N., et al., New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology, 56 (2013), 647–61.Google Scholar
Houssaye, A., Herrel, A., Boistel, R., and Rage, J.-C., Adaptation of the vertebral inner structure to an aquatic life in snakes: Pachyophiid peculiarities in comparison to extant and extinct forms. Comptes Rendus Palevol, 18 (2019), 783799.CrossRefGoogle Scholar
Westgate, J. W., Paleoecology and biostratigraphy of marginal marine Gulf Coast Eocene Vertebrate localities. In Gunnell, G. F., ed., Eocene Biodiversity: Unusual Occurrences and Rarely Sampled Habitats (New York: Kluwer Academic, 2001), pp. 263297.Google Scholar
Hutchison, J. H., Pterosphenus cf. P. schucherti Lucas (Squamata, Palaeophidae) from the late Eocene of peninsular Florida. Journal of Vertebrate Paleontology, 5 (1985), 2023.Google Scholar
Averianov, A. O., Paleogene sea snakes from the eastern part of Tethys. Russian Journal of Herpetology, 4 (1997), 128142.Google Scholar
Duffaud, S. and Rage, J.-C., Les remplissages karstiques polyphasés (Éocène, Oligocène, Pliocène) de Saint-Maximin (Phosphorites du Gard) et leur apport à la connaissance des faunes européennes, notamment pour l’Éocène moyen (MP 13). 2.– Systématique: amphibiens et reptiles. In Aguilar, J. -P., Legendre, S., and Michaux, J., eds., Actes du Congrès BiochroM’97 (Mémoire Travaux EPHE 21) (Montpellier: Institut Montpellier, 1997), pp. 729–35.Google Scholar
Parmley, D. and DeVore, M., Palaeopheid snakes from the late Eocene Hardie Mine local fauna of central Georgia. Southeastern Naturalist, 4 (2005), 703722.Google Scholar
Holman, J. A., Dockery, D. T., III, and Case, G. R., Paleogene snakes of Mississippi. Mississippi Geology, 11 (1990 [1991]), 112.Google Scholar
Janensch, W., Pterosphenus Schweinfurthi Andrews und die Entwicklung der Palaeophiden. Archiv für Biontologie, 1 (1906), 311350.Google Scholar
Greene, H. W., Dietary correlates of the origin and radiation of snakes. American Zoologist, 23 (1983), 431441.Google Scholar
Smith, K. T. and Scanferla, A., Fossil snake preserving three trophic levels and evidence for an ontogenetic dietary shift. Palaeobiodiversity and Palaeoenvironments, 96 (2016), 589599.Google Scholar
Marsh, O. C., Description of a new and gigantic fossil Serpent (Dinophis grandis) from the Tertiary of New Jersey. American Journal of Science, Series 2, 48 (1869), 397400.Google Scholar
Andrews, C. W., A Descriptive Catalogue of the Tertiary Vertebrata of the Fayûm, Egypt (London: Longmans, 1906).Google Scholar
Rage, J.-C., Palaeophis colossaeus nov. sp. (le plus grand Serpent connu?) de l’Eocene du Mali et le probleme du genre chez les Palaeopheinae. Comptes Rendus de l’Académie des Sciences (Série II), 296 (1983), 17411744.Google Scholar
Rio, J. P. and Mannion, P. D., The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. Journal of Vertebrate Paleontology, 37 (2017), e1347179.Google Scholar
McCartney, J. A., Roberts, E. M., Tapanila, L., and O’Leary, M. A., Large palaeophiid and nigerophiid snakes from Paleogene Trans-Saharan Seaway deposits of Mali. Acta Palaeontologica Polonica, 63 (2018), 207220.Google Scholar
Rage, J.-C., Fossil snakes from the Palaeocene of São José de Itaboraí, Brazil. Part III. Ungaliophiinae, booids incertae sedis, and Caenophidia. Summary, update, and discussion of the snake fauna from the locality. Palaeovertebrata, 36 (2008), 3773.CrossRefGoogle Scholar
Schaal, S. and Baszio, S., Messelophis ermannorum n. sp., eine neue Zwergboa (Serpentes: Boidae: Tropidopheinae) aus dem Mittel-Eozän von Messel. Courier Forschungsinstitut Senckenberg, 252 (2004), 6777.Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing, 2016).Google Scholar
Raup, D. M., Taxonomic diversity during the Phanerozoic. Science, 177 (1972), 10651071.Google Scholar
Benson, R. B. J., Butler, R. J., Lindgren, J., and Smith, A. S., Mesozoic marine tetrapod diversity: mass extinctions and temporal heterogeneity in geological megabiases affecting vertebrates. Proceedings of the Royal Society of London B, 277 (2009), 829834.Google Scholar
Kowalewski, M. and Flessa, K. W., Improving with age: The fossil record of lingulide brachiopods and the nature of taphonomic megabiases. Geology, 24 (1996), 977980.Google Scholar
Rosenzweig, M. L., Species Diversity in Space and Time (Cambridge, UK: Cambridge University Press, 1995).Google Scholar
Gotelli, N. J. and Chao, A., Measuring and estimating species richness, species diversity, and biotic similarity from sampling data. In Levin, S. A., ed., Encyclopedia of Biodiversity (2nd ed), Vol 5 (Waltham, Mass.: Academic Press, 2013), pp. 195211.Google Scholar
Colwell, R. K.. Estimate S v9.0 (PC). 9.0 ed. (Storrs, Connecticut: University of Connecticut; 2013).Google Scholar
Uetz, P., Freed, P., and Hosek, J., The Reptile Database, www.reptile-database.org. (2021).Google Scholar
Xing, Y. W., Onstein, R. E., Carter, R. J., Stadler, T., and Linder, H. P., Fossils and a large molecular phylogeny show that the evolution of species richness, generic diversity, and turnover rates are disconnected. Evolution, 68 (2014), 28212832.Google Scholar
Pokrant, F., Kindler, C., Ivanov, M., et al. Integrative taxonomy provides evidence for the species status of the Ibero-Maghrebian grass snake Natrix astreptophora . Biological Journal of the Linnean Society, 118 (2016), 873888.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×