Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-11T05:16:46.380Z Has data issue: false hasContentIssue false

28 - Optogenetic Dissection of Sleep–Wake Control: Evidence for a Thalamic Control of Sleep Architecture

from Part VI - Optogenetics in Sleep, Prosthetics, and Epigenetics of Neurodegenerative Diseases

Published online by Cambridge University Press:  28 April 2017

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc., Massachusetts
Get access
Type
Chapter
Information
Optogenetics
From Neuronal Function to Mapping and Disease Biology
, pp. 407 - 420
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamantidis, A., Carter, M.C., De Lecea, L., 2009. Optogenetic deconstruction of sleep–wake circuitry in the brain. Front. Mol. Neurosci. 2, 31.Google Scholar
Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., de Lecea, L., 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420424.CrossRefGoogle ScholarPubMed
Alitto, H.J., Dan, Y., 2013. Cell-type-specific modulation of neocortical activity by basal forebrain input. Front. Syst. Neurosci. 6, 79.CrossRefGoogle ScholarPubMed
Alkire, M.T., Asher, C.D., Franciscus, A.M., Hahn, E.L., 2009. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology 110, 766773.CrossRefGoogle ScholarPubMed
Anaclet, C., Pedersen, N.P., Ferrari, L.L., Venner, A., Bass, C.E., Arrigoni, E., Fuller, P.M., 2015. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun. 6, 8744.CrossRefGoogle ScholarPubMed
Arrigoni, E., Saper, C.B., 2014. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake–sleep regulation. Curr. Opin. Neurobiol. 29, 165171.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Deisseroth, K., 2013. Recent advances in optogenetics and pharmacogenetics. Brain Res. 1511, 15.CrossRefGoogle ScholarPubMed
Astori, S., Wimmer, R.D., Lüthi, A., 2013. Manipulating sleep spindles – expanding views on sleep, memory, and disease. Trends Neurosci. 36, 738748.CrossRefGoogle ScholarPubMed
Babkoff, H., Sing, H.C., Thorne, D.R., Genser, S.G., Hegge, F.W., 1989. Perceptual distortions and hallucinations reported during the course of sleep deprivation. Percept. Mot. Skills 68, 787798.CrossRefGoogle ScholarPubMed
Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K.D., Acsády, L., 2014. Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 13671379.CrossRefGoogle ScholarPubMed
Blanco-Centurion, C., Xu, M., Murillo-Rodriguez, E., Gerashchenko, D., Shiromani, A.M., Salin-Pascual, R.J., Hof, P.R., Shiromani, P.J., 2006. Adenosine and sleep homeostasis in the basal forebrain. J. Neurosci. 26, 80928100.CrossRefGoogle ScholarPubMed
Blumenfeld, H., McCormick, D.A., 2000. Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. J. Neurosci. 20, 51535162.CrossRefGoogle ScholarPubMed
Bonnavion, P., de Lecea, L., 2010. Hypocretins in the control of sleep and wakefulness. Curr. Neurol. Neurosci. Rep. 10, 174179.CrossRefGoogle ScholarPubMed
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 12631268.CrossRefGoogle ScholarPubMed
Brancaccio, M., Enoki, R., Mazuski, C.N., Jones, J., Evans, J.A., Azzi, A., 2014. Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J. Neurosci. 34, 1519215199.CrossRefGoogle ScholarPubMed
Brancaccio, M., Maywood, E.S., Chesham, J.E., Loudon, A.S.I., Hastings, M.H., 2013. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78, 714728.CrossRefGoogle ScholarPubMed
Carter, M.E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., de Lecea, L., 2010. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 13, 15261533.CrossRefGoogle ScholarPubMed
Cheong, E., Lee, S., Choi, B.J., Sun, M., Lee, C.J., Shin, H.-S., 2008. Tuning thalamic firing modes via simultaneous modulation of T- and L-type Ca2+ channels controls pain sensory gating in the thalamus. J. Neurosci. 28, 1333113340.CrossRefGoogle ScholarPubMed
Cheong, E., Zheng, Y., Lee, K., Lee, J., Kim, S., Sanati, M., Lee, S., Kim, Y.-S., Shin, H.-S., 2009. Deletion of phospholipase C β4 in thalamocortical relay nucleus leads to absence seizures. Proc. Natl. Acad. Sci. 106, 2191221917.CrossRefGoogle ScholarPubMed
Contreras, D., Destexhe, A., Sejnowski, T.J., Steriade, M., 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771774.CrossRefGoogle ScholarPubMed
Crunelli, V., David, F., Lőrincz, M.L., Hughes, S.W., 2015. The thalamocortical network as a single slow wave-generating unit. Curr. Opin. Neurobiol. 31, 7280.CrossRefGoogle ScholarPubMed
Crunelli, V., Hughes, S.W., 2010. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat. Neurosci. 13, 917.CrossRefGoogle ScholarPubMed
Cueni, L., Canepari, M., Luján, R., Emmenegger, Y., Watanabe, M., Bond, C.T., Franken, P., Adelman, J.P., Lüthi, A., 2008. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 11, 683692.CrossRefGoogle ScholarPubMed
De Gennaro, L., Ferrara, M., 2003. Sleep spindles: an overview. Sleep Med. Rev. 7, 423440.CrossRefGoogle ScholarPubMed
Deisseroth, K., 2012. Optogenetics and psychiatry: applications, challenges, and opportunities. Biol. Psychiatry 71, 10301032.CrossRefGoogle ScholarPubMed
Deurveilher, S., Semba, K., 2005. Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130, 165183.CrossRefGoogle ScholarPubMed
Diekelmann, S., Born, J., 2010. The memory function of sleep. Nat. Rev. Neurosci. 11, 114126.CrossRefGoogle ScholarPubMed
Dong, S., Allen, J.A., Farrell, M., Roth, B.L., 2010. A chemical-genetic approach for precise spatio-temporal control of cellular signaling. Mol. Biosyst. 6, 13761380.CrossRefGoogle ScholarPubMed
Dort, C.J.V., Zachs, D.P., Kenny, J.D., Zheng, S., Goldblum, R.R., Gelwan, N.A., Ramos, D.M., Nolan, M.A., Wang, K., Weng, F.-J., Lin, Y., Wilson, M.A., Brown, E.N., 2015. Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc. Natl. Acad. Sci. 112, 584589.CrossRefGoogle ScholarPubMed
Eggermann, E., Serafin, M., Bayer, L., Machard, D., Saint-Mleux, B., Jones, B.E., Mühlethaler, M., 2001. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience 108, 177181.CrossRefGoogle ScholarPubMed
España, R.A., Reis, K.M., Valentino, R.J., Berridge, C.W., 2005. Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. J. Comp. Neurol. 481, 160178.CrossRefGoogle ScholarPubMed
Feinberg, I., 1974. Changes in sleep cycle patterns with age. J. Psychiatr. Res. 10, 283306.CrossRefGoogle ScholarPubMed
Fenno, L., Yizhar, O., Deisseroth, K., 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389412.CrossRefGoogle ScholarPubMed
Gummadavelli, A., Motelow, J.E., Smith, N., Zhan, Q., Schiff, N.D., Blumenfeld, H., 2015. Thalamic stimulation to improve level of consciousness after seizures: Evaluation of electrophysiology and behavior. Epilepsia 56, 114124.CrossRefGoogle ScholarPubMed
Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., Moore, C.I., 2011. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat. Neurosci. 14, 11181120.CrossRefGoogle ScholarPubMed
Haus, E.L., Smolensky, M.H., 2013. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med. Rev. 17, 273284.CrossRefGoogle ScholarPubMed
Hayashi, Y., Kashiwagi, M., Yasuda, K., Ando, R., Kanuka, M., Sakai, K., Itohara, S., 2015. Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350, 957961.CrossRefGoogle ScholarPubMed
Hobson, J.A., Pace-Schott, E.F., 2002. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3, 679693.CrossRefGoogle ScholarPubMed
Houser, C.R., Vaughn, J.E., Barber, R.P., Roberts, E., 1980. GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 200, 341354.CrossRefGoogle ScholarPubMed
Irmak, S.O., de Lecea, L., 2013. Basal forebrain cholinergic modulation of sleep transitions. Sleep 37, 19411951.CrossRefGoogle Scholar
Ito, H., Yanase, M., Yamashita, A., Kitabatake, C., Hamada, A., Suhara, Y., Narita, M., Ikegami, D., Sakai, H., Yamazaki, M., Narita, M., 2013. Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol. Brain 6, 59.CrossRefGoogle ScholarPubMed
Jego, S., Glasgow, S.D., Herrera, C.G., Ekstrand, M., Reed, S.J., Boyce, R., Friedman, J., Burdakov, D., Adamantidis, A.R., 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16, 16371643.CrossRefGoogle ScholarPubMed
Kim, A., Latchoumane, C., Lee, S., Kim, G.B., Cheong, E., Augustine, G.J., Shin, H.-S., 2012. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proc. Natl. Acad. Sci. 109, 2067320678.CrossRefGoogle ScholarPubMed
Lee, S.E., Lee, J., Latchoumane, C., Lee, B., Oh, S.-J., Saud, Z.A., Park, C., Sun, N., Cheong, E., Chen, C.-C. et al., 2014. Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc. Natl. Acad. Sci. 111, 1182811833.CrossRefGoogle Scholar
Leeman-Markowski, B.A., Smart, O.L., Faught, R.E., Gross, R.E., Meador, K.J., 2015. Cessation of gamma activity in the dorsomedial nucleus associated with loss of consciousness during focal seizures. Epilepsy Behav. 51, 215220.CrossRefGoogle ScholarPubMed
Lewis, L.D., Voigts, J., Flores, F.J., Schmitt, L.I., Wilson, M.A., Halassa, M.M., Brown, E.N., 2015. Thalamic reticular nucleus induces fast and local modulation of arousal state. Elife 4, e08760.CrossRefGoogle ScholarPubMed
Lima, S.Q., Miesenböck, G., 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141152.CrossRefGoogle ScholarPubMed
Linden, M.L., Heynen, A.J., Haslinger, R.H., Bear, M.F., 2009. Thalamic activity that drives visual cortical plasticity. Nat. Neurosci. 12, 390392.CrossRefGoogle ScholarPubMed
Lindsley, D.B., 1960. Attention, consciousness, sleep, and wakefulness, in: Magoun, H.W., Hall, V. (Eds.), Handbook of Physiology. American Physiological Society.Google Scholar
Llinás, R., Ribary, U., Contreras, D., Pedroarena, C., 1998. The neuronal basis for consciousness. Philos. Trans. R. Soc. B Biol. Sci. 353, 18411849.Google ScholarPubMed
Lu, J., Sherman, D., Devor, M., Saper, C.B., 2006. A putative flip–flop switch for control of REM sleep. Nature 441, 589594.CrossRefGoogle ScholarPubMed
Luppi, P.H., Peyron, C., Fort, P., 2013. Role of MCH neurons in paradoxical (REM) sleep control. Sleep 36, 17751776.CrossRefGoogle ScholarPubMed
Mathur, B.N., 2014. The claustrum in review. Front. Syst. Neurosci. 8, 48.CrossRefGoogle ScholarPubMed
McCarley, R.W., Massaquoi, S.G., 1992. Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J. Sleep Res. 1, 132137.CrossRefGoogle ScholarPubMed
McCormick, D.A., Bal, T., 1994. Sensory gating mechanisms of the thalamus. Curr. Opin. Neurobiol. 4, 550556.CrossRefGoogle ScholarPubMed
McCormick, D.A., Bal, T., 1997. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185215.CrossRefGoogle ScholarPubMed
McCormick, D.A., von Krosigk, M., 1992. Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc. Natl. Acad. Sci. 89, 27742778.CrossRefGoogle ScholarPubMed
Mease, R.A., Krieger, P., Groh, A., 2014. Cortical control of adaptation and sensory relay mode in the thalamus. Proc. Natl. Acad. Sci. 111, 67986803.CrossRefGoogle ScholarPubMed
Mesbah-Oskui, L., Orser, B.A., Horner, R.L., 2014. Thalamic δ-subunit containing GABAA receptors promote electrocortical signatures of deep non-REM sleep but do not mediate the effects of etomidate at the thalamus in vivo. J. Neurosci. 34, 1225312266.CrossRefGoogle Scholar
Montemurro, M.A., Panzeri, S., Maravall, M., Alenda, A., Bale, M.R., Brambilla, M., Petersen, R.S., 2007. Role of precise spike timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J. Neurophysiol. 98, 18711882.CrossRefGoogle ScholarPubMed
Nishino, S., Fujiki, N., Ripley, B., Sakurai, E., Kato, M., Watanabe, T., Mignot, E., Yanai, K., 2001. Decreased brain histamine content in hypocretin/orexin receptor-2 mutated narcoleptic dogs. Neurosci. Lett. 313, 125128.CrossRefGoogle ScholarPubMed
Pace-Schott, E.F., Hobson, J.A., 2002. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 3, 591605.CrossRefGoogle ScholarPubMed
Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R., 2013. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 6470.CrossRefGoogle ScholarPubMed
Peyron, C., Tighe, D.K., van den Pol, A.N., Lecea, L., Heller, H.C., Sutcliffe, J.G., Kilduff, T.S., 1998. Neurons containing hypocretin (Orexin) project to multiple neuronal systems. J. Neurosci. 18, 999610015.CrossRefGoogle ScholarPubMed
Pinault, D., 2004. The thalamic reticular nucleus: structure, function and concept. Brain Res. Rev. 46, 131.CrossRefGoogle ScholarPubMed
Poulet, J.F., Fernandez, L.M., Crochet, S., Petersen, C.C., 2012. Thalamic control of cortical states. Nat. Neurosci. 15, 370372.CrossRefGoogle ScholarPubMed
Rechtschaffen, A., Gilliland, M.A., Bergmann, B.M., Winter, J.B., 1983. Physiological correlates of prolonged sleep deprivation in rats. Science 221, 182184.CrossRefGoogle ScholarPubMed
Roux, L., Stark, E., Sjulson, L., Buzsáki, G., 2014. In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Curr. Opin. Neurobiol. 26, 8895.CrossRefGoogle ScholarPubMed
Saito, Y.C., Tsujino, N., Hasegawa, E., Akashi, K., Abe, M., Mieda, M., Sakimura, K., Sakurai, T., 2013. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front. Neural Circuits 7, 192.CrossRefGoogle ScholarPubMed
Sarter, M., Bruno, J.P., 1999. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95, 933952.CrossRefGoogle Scholar
Schiff, N.D., 2008. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann. N. Y. Acad. Sci. 1129, 105118.CrossRefGoogle ScholarPubMed
Sherin, J.E., Shiromani, P.J., McCarley, R.W., Saper, C.B., 1996. Activation of ventrolateral preoptic neurons during sleep. Science 271, 216219.CrossRefGoogle ScholarPubMed
Steriade, M., 2001. The GABAergic reticular nucleus: a preferential target of corticothalamic projections. Proc. Natl. Acad. Sci. 98, 36253627.CrossRefGoogle ScholarPubMed
Steriade, M., Contreras, D., Dossi, R.C., Nunez, A., 1993a. The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J. Neurosci. 13, 32843299.CrossRefGoogle ScholarPubMed
Steriade, M., Llinás, R.R., 1988. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68, 649742.CrossRefGoogle ScholarPubMed
Steriade, M., McCormick, D.A., Sejnowski, T.J., 1993b. Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679685.CrossRefGoogle ScholarPubMed
Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A., Deisseroth, K., Konnerth, A., 2013. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 11361150.CrossRefGoogle ScholarPubMed
Stujenske, J.M., Spellman, T., Gordon, J.A., 2015. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525534.CrossRefGoogle ScholarPubMed
Talley, E.M., Cribbs, L.L., Lee, J.-H., Daud, A., Perez-Reyes, E., Bayliss, D.A., 1999. Differential distribution of three members of a gene family encoding low voltage-activated (t-type) calcium channels. J. Neurosci. 19, 18951911.CrossRefGoogle ScholarPubMed
Taylor, H.L., Crunelli, V., 2015. Optogenetic drive of thalamocortical neurons can block and induce experimental absence seizures in freely moving animals. Proc. Physiol. Soc. 34.Google Scholar
Tsunematsu, T., Tabuchi, S., Tanaka, K.F., Boyden, E.S., Tominaga, M., Yamanaka, A., 2013. Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav. Brain Res. 255, 6474.CrossRefGoogle ScholarPubMed
Tye, K.M., Deisseroth, K., 2012. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251266.CrossRefGoogle ScholarPubMed
Van der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 39, 107140.CrossRefGoogle ScholarPubMed
Venkatraman, V., Huettel, S.A., Chuah, L.Y.M., Payne, J.W., Chee, M.W.L., 2011. Sleep deprivation biases the neural mechanisms underlying economic preferences. J. Neurosci. 31, 37123718.CrossRefGoogle ScholarPubMed
Villablanca, J., Salinas-Zeballos, M.E., 1972. Sleep–wakefulness, EEG and behavioral studies of chronic cats without the thalamus: the “athalamic” cat. Arch. Ital. Biol. 110, 383411.Google ScholarPubMed
Welsh, D.K., Richardson, G.S., Dement, W.C., 1986. Effect of age on the circadian pattern of sleep and wakefulness in the mouse. J. Gerontol. 41, 579586.CrossRefGoogle ScholarPubMed
Whalley, K., 2015. Sleep: dissecting sleep circuits. Nat. Rev. Neurosci. 16, 704.Google Scholar
Williamson, A., Feyer, A., 2000a. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup. Environ. Med. 57, 649655.CrossRefGoogle ScholarPubMed
Williamson, A.M., Feyer, A.-M., 2000b. Moderate sleep deprivation produces impairments in cognitive and motor performance equivalent to legally prescribed levels of alcohol intoxication. Occup. Environ. Med. 57, 649655.CrossRefGoogle ScholarPubMed
Wimmer, R.D., Astori, S., Bond, C.T., Rovó, Z., Chatton, J.-Y., Adelman, J.P., Franken, P., Lüthi, A., 2012. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J. Neurosci. 32, 1391713928.CrossRefGoogle ScholarPubMed
Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W.-C., Weissbourd, B., Sakai, N., Luo, L., Nishino, S., Dan, Y., 2015. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 18, 16411647.CrossRefGoogle ScholarPubMed
Yang, C., Franciosi, S., Brown, R.E., 2013. Adenosine inhibits the excitatory synaptic inputs to basal forebrain cholinergic, GABAergic, and parvalbumin neurons in mice. Front. Neurol. 4, 77.CrossRefGoogle ScholarPubMed
Yang, C., McKenna, J.T., Zant, J.C., Winston, S., Basheer, R., Brown, R.E., 2014. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. J. Neurosci. 34, 28322844.CrossRefGoogle ScholarPubMed
Zemelman, B.V., Lee, G.A., Ng, M., Miesenböck, G., 2002. Selective photostimulation of genetically ChARGed neurons. Neuron 33, 1522.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×