Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-25T22:30:27.097Z Has data issue: false hasContentIssue false

2 - Five Myths about Nanotechnology in the Current Public Policy Debate

A Science and Engineering Perspective

Published online by Cambridge University Press:  05 December 2011

David A. Dana
Affiliation:
Northwestern University, Illinois
Get access

Summary

Introduction

Global funding for nanotechnology was nearly $12 billion in 2006, and investments in the nanotechnology industry approximately quadrupled from 2004 to 2006. In recent years, overly optimistic forecasters predicted that nanotechnology investments would reach $2.6 trillion by 2014. With the nanotechnology hype cooling a bit, more sober estimates place the global market for nanotechnology at $27 billion by 2013, the result of a compound annual growth rate of 16.4%. These same, more realistic market assessments, however, project that over the next 5 years, electronic, biomedical, and consumer applications of nanotechnology will show very high growth rates between 30% and 60%. Currently with more than $50 billion in products ranging from pharmaceuticals and cosmetics to tools and electronics, we are seeing the transition of nanotechnology as it moves from the lab to the marketplace. According to a nanotechnology-based consumer product inventory conducted by the Project on Emerging Nanotechnologies, as of March 2011, there were 1,317 products produced by 1288 companies located in 30 counties. The lion's share of these products (approximately 60%) fell under the heading of health and fitness and into the subcategories of personal care, clothing, and cosmetics.

This revolution in atomic and molecular engineering promises many environmental and human health benefits, such as dramatic improvements in efficiency, reduced resource use, diminished waste production, and astounding improvements in medical diagnostics and therapeutics. Yet, the risks posed by nanotechnology to ecological and environmental health have not been rigorously assessed in any organism, at the individual, community or ecosystem scale. Without these data, a meaningful regulatory framework to both protect human and environmental health and safety from the unintended consequences of nanomaterial use and guide ongoing development of nanomaterials cannot be formulated.

Type
Chapter
Information
The Nanotechnology Challenge
Creating Legal Institutions for Uncertain Risks
, pp. 11 - 60
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lux Research 2007 http://www.luxresearchinc.com/
Mcwilliams, A 2008 http://www.bccresearch.com/report/NAN031C.html
Anonymous 2009 http://www.nanotechproject.org/inventories/consumer/
Borm, P. J. ARobbins, DHaubold, SKuhlbush, TAl, E 2006 The potential risks of nanomaterials: a review carried out for ECETOCParticle and Fibre Toxicology 3 35CrossRefGoogle ScholarPubMed
Borm, P. J. ABerube, D 2008 A tale of opportunities, uncertainties and risksNanotoday 3 58CrossRefGoogle Scholar
Chatterjee, R 2008 The challenge of regulating nanomaterialsEnvironmental Science & Technology 42 339CrossRefGoogle ScholarPubMed
Helland, AWick, PKoehler, ASchmid, KSom, C 2007 Reviewing the environmental and human health knowledge base of carbon nanotubesEnvironmental Health Perspectives 115 1125CrossRefGoogle ScholarPubMed
Lubick, N 2008 Risks of nanotechnology remain uncertainEnvironmental Science & Technology 42 821CrossRefGoogle ScholarPubMed
Nel, AXia, TMadler, LLi, N 2006 Toxic potential of materials at the nanolevelScience 311 622CrossRefGoogle ScholarPubMed
Wiesner, M. RBottero, J.-Y 2007 Environmental Nanotechnology: Applications and Impacts of NanomaterialsNew York, NYMcGraw-HillGoogle Scholar
Klaine, S. JAlvarez, P. J. JBatley, G. EFernandes, T. FHandy, R. DLyon, D. YMahendra, SMclaughlin, M. JLead, J. R 2008 Nanomaterials in the environment: Behavior, fate, bioavailability, and effectsEnvironmental Toxicology and Chemistry 27 1825CrossRefGoogle ScholarPubMed
Maynard, A. D 2006 Nanotechnology: assessing the risksNano Today 1 22CrossRefGoogle Scholar
Rickerby, D. GMorrison, M 2007 Nanotechnology and the environment: A European perspectiveScience and Technology of Advanced Materials 8 19CrossRefGoogle Scholar
Wiesner, M. RLowry, G. VAlvarez, PDionysiou, DBiswas, P 2006 Assessing the risks of manufactured nanomaterialsEnvironmental Science & Technology 40 4336CrossRefGoogle ScholarPubMed
Maynard, A. D 2007 Nanotechnology: The next big thing, or much ado about nothing?Annals of Occupational Hygiene 51 1Google ScholarPubMed
Nanowerk 2007 http://www.nanowerk.com/nanotech-nology/introduction/introduction_to_nanotechnology_1.php
American Society for Testing and Materials 2006
Altes, T. K 2008 http://www.enn.com/green_building/commentary/32429
Muller, H. DSteinbach, F 1970 Decomposition of isopropyl alcohol photosensitized by zinc oxideNature 225 728CrossRefGoogle ScholarPubMed
Duret, AGratzel, M 2005 Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysisJournal of Physical Chemistry B 109 17184CrossRefGoogle ScholarPubMed
Fujishima, AZhang, X. T 2006 Titanium dioxide photocatalysis: present situation and future approachesComptes Rendus Chimie 9 750CrossRefGoogle Scholar
Chen, XMao, S. S 2007 Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applicationsChemical Reviews 107 2891CrossRefGoogle ScholarPubMed
Lu, FCai, W. PZhang, Y. G 2008 ZnO hierarchical micro/nanoarchitectures: Solvothermal synthesis and structurally enhanced photocatalytic performanceAdvanced Functional Materials 18 1047CrossRefGoogle Scholar
Hernandez-Alonso, M. DFresno, FSuarez, SCoronado, J. M 2009 Development of alternative photocatalysts to TiO2: Challenges and opportunitiesEnergy & Environmental Science 2 1231CrossRefGoogle Scholar
Mo, J. HZhang, Y. PXu, Q. JLamson, J. JZhao, R. Y 2009 Photocatalytic purification of volatile organic compounds in indoor air: A literature reviewAtmospheric Environment 43 2229CrossRefGoogle Scholar
Lai, M. HTubtimtae, ALee, M. WWang, G. J 2010 ZnO-nanorod dye-sensitized solar cells: new structure without a transparent conducting oxide layerInternational Journal of PhotoenergyCrossRefGoogle Scholar
Peng, L. LXie, T. FLu, Y. CFan, H. MWang, D. J 2010 Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalystsPhysical Chemistry Chemical Physics 12 8033CrossRefGoogle ScholarPubMed
Roy, S. CVarghese, O. KPaulose, MGrimes, C. A 2010 Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbonsACS Nano 4 1259CrossRefGoogle Scholar
Tian, YWu, DJia, X. AYu, B. BZhan, S. H 2011 Core-shell nanostructure of alpha-Fe2O3/Fe3O4: synthesis and photocatalysis for methyl orangeJournal of Nanomaterials 2011CrossRefGoogle Scholar
Roduner, E 2006 Size matters: why nanomaterials are differentChemical Society Reviews 35 583CrossRefGoogle ScholarPubMed
Lehigh University 2004 http://www.sciencedaily.com/releases/2004/04/040428062059.htm
Anonymous 2009 http://www.nanotechproject.org/inventories/consumer/analysis_draft/
Ashcroft, N. WMermin, N. D 1976 Solid State PhysicsNew York, NYHolt, Rinehart and WinstonGoogle Scholar
Hoffmann, R 1987 How chemistry and physics meet in the solid-stateAngewandte Chemie-International Edition in English 26 846CrossRefGoogle Scholar
Edwards, P. PJohnston, R. LRao, C. N. R 1999 On the size-induced metal-insulator transition in clusters and small particlesBraunstien, POro, L. ARaithby, P. RMetal Clusters in ChemistryChichester, NYWileyGoogle Scholar
Wang, Z. L 2004 Nanostructures of zinc oxideMaterials Today 7 26CrossRefGoogle Scholar
Wang, LNagesha, D. KSelvarasah, SDokmeci, M. RCarrier, R. L 2008 Toxicity of CdSe nanoparticles in Caco-2 cell culturesJournal of Nanobiotechnology11CrossRefGoogle ScholarPubMed
Jin, R. CCao, Y. WMirkin, C. AKelly, K. LSchatz, G. CZheng, J. G 2001 Photoinduced conversion of silver nanospheres to nanoprismsScience 294 1901CrossRefGoogle ScholarPubMed
Millstone, J. EPark, SShuford, K. LQin, L. DSchatz, G. CMirkin, C. A 2005 Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprismsJournal of the American Chemical Society 127 5312CrossRefGoogle ScholarPubMed
Dimitrijevic, N. MSaponjic, Z. VRabatic, B. MPoluektov, O. GRajh, T 2007 Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR studyJournal of Physical Chemistry C 111 14597CrossRefGoogle Scholar
Rosi, N. LGiljohann, D. AThaxton, C. SLytton-Jean, A. K. RHan, M. SMirkin, C. A 2006 Oligonucleotide-modified gold nanoparticles for intracellular gene regulationScience 312 1027CrossRefGoogle ScholarPubMed
Giljohann, D. ASeferos, D. SPatel, P. CMillstone, J. ERosi, N. LMirkin, C. A 2007 Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticlesNano Letters 7 3818CrossRefGoogle ScholarPubMed
Seferos, D. SGiljohann, D. ARosi, N. LMirkin, C. A 2007 Locked nucleic acid-nanoparticle conjugatesChembiochemistry 8 1230CrossRefGoogle ScholarPubMed
Partha, RConyers, J. L 2009 Biomedical applications of functionalized fullerene-based nanomaterialsInternational Journal of Nanomedicine 4 261Google ScholarPubMed
Lyklema, H 1991 Fundamentals of Interface and Colloid ScienceAmsterdam, the NetherlandsElsevierGoogle Scholar
Donaldson, KTran, LJimenez, L. ADuffin, RNewby, D. EMills, N, M. WStone, V 2005 Combustion-derived nanoparticles: A review of their toxicology following inhalation exposureParticle and Fibre Toxicology 2CrossRefGoogle ScholarPubMed
Oberdorster, GOberdorster, EOberdorster, J 2005 Nanotoxicology: An emerging discipline evolving from studies of ultrafine particlesEnvironmental Health Perspectives 113 823CrossRefGoogle ScholarPubMed
Techtarget 2011 http://whatis.techtarget.com/definition/0,sid9_gci213444,00.html
Buzea, CPacheco, IiRobbie, K 2007 Nanomaterials and nanoparticles: Sources and toxicityBiointerphases 2 MR17CrossRefGoogle ScholarPubMed
Buseck, P. RAdachi, K 2008 Nanoparticles in the atmosphereElements 4 389CrossRefGoogle Scholar
Feynman, R. P 1960 There's plenty of room at the bottom: An invitation to enter a new field of physicsCalTech's Engineering and Science 23 22http://www.zyvex.com/nanotech/feynman.htmlGoogle Scholar
Crommie, M. FLutz, C. PEigler, D. M 1993 Confinement of electrons to quantum corrals on a metal surfaceScience 262 218CrossRefGoogle ScholarPubMed
Paek, S. MJung, HLee, Y. JPark, N. GHwang, S. JChoy, J. H 2006 Nanostructured TiO2 films for dye-sensitized solar cellsJournal of Physics and Chemistry of Solids 67 1308CrossRefGoogle Scholar
Chen, LGraham, M. ELi, G. HGray, K. A 2006 Fabricating highly active mixed phase TiO2 photocatalysts by reactive DC magnetron sputter depositionThin Solid Films 515 1176CrossRefGoogle Scholar
Chen, LGraham, M. ELi, G. HGentner, D. RDimitrijevic, N. MGray, K. A 2009 Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter depositionThin Solid Films 517 5641CrossRefGoogle Scholar
Ignatiev, AChen, XWu, N. JLu, Z. GSmith, L 2008 Nanostructured thin solid oxide fuel cells with high power densityDalton Transactions5501CrossRefGoogle ScholarPubMed
Yu, K. HChen, J. H 2009 Enhancing solar cell efficiencies through 1-D nanostructuresNanoscale Research Letters 4 1CrossRefGoogle Scholar
Lee, JMahendra, SAlvarez, P. J. J 2010 Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerationsACS Nano 4 3580CrossRefGoogle ScholarPubMed
Ou, H. HLo, S. L 2007 Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and applicationSeparation and Purification Technology 58 179CrossRefGoogle Scholar
Rani, SRoy, S. CPaulose, MVarghese, O. KMor, G. KKim, SYoriya, SLatempa, T. JGrimes, C. A 2010 Synthesis and applications of electrochemically self-assembled titania nanotube arraysPhysical Chemistry Chemical Physics 12 2780CrossRefGoogle ScholarPubMed
Schulte, K. LDesario, P. AGray, K. A 2010 Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible lightApplied Catalysis B-Environmental 97 354CrossRefGoogle Scholar
Vijayan, BDimitrijevic, N. MRajh, TGray, K 2010 Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubesJournal of Physical Chemistry C 114 12994CrossRefGoogle Scholar
Vijayan, B. KDimitrijevic, N. MWu, J. SGray, K. A 2010 The Effects of Pt doping on the structure and visible light photoactivity of titania nanotubesJournal of Physical Chemistry C 114 21262CrossRefGoogle Scholar
Li, G. HGray, K. A 2007 The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materialsChemical Physics 339 173CrossRefGoogle Scholar
Li, G. HChen, LGraham, M. EGray, K. A 2007 A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interfaceJournal of Molecular Catalysis A-Chemical 275 30CrossRefGoogle Scholar
Murr, L. EBang, J. JEsquivel, E. VGuerrero, P. ALopez, A 2004 Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and the ambient airJournal of Nanoparticle Research 6 241CrossRefGoogle Scholar
Nowack, BBucheli, T. D 2007 Occurrence, behavior and effects of nanoparticles in the environmentEnvironmental Pollution 150 5CrossRefGoogle ScholarPubMed
Friedrichs, SSchulte, J 2007 Environmental, health and safety aspects of nanotechnology – implications for the R&D in (small) companiesScience and Technology of Advanced Materials 8 12CrossRefGoogle Scholar
Stumm, W 1987 Aquatic Surface Chemistry: Chemical Processes at the Particle-Water InterfaceNew York, NYJohn Wiley & SonsGoogle Scholar
Stumm, WMorgan, J. J 1996 Aquatic Chemistry: Chemical Equilibria and Rates in Natural WatersNew York, NYJohn Wiley & SonsGoogle Scholar
Donaldson, KStone, V 2003 Current hypotheses on the mechanisms of toxicity of ultrafine particlesAnnali dell’Istituto Superiore di Sanita 39 405Google ScholarPubMed
Lecoanet, H. FBottero, J. YWiesner, M. R 2004 Laboratory assessment of the mobility of nanomaterials in porous mediaEnvironmental Science & Technology 38 5164CrossRefGoogle ScholarPubMed
Ostrowski, A. DMartin, TConti, JHurt, IHarthorn, B. H 2009 Nanotoxicology: characterizing the scientific literature, 2000–2007Journal of Nanoparticle Research 11 251CrossRefGoogle ScholarPubMed
Colvin, V. L 2003 The potential environmental impact of engineered nanomaterialsNature Biotechnology 21 1166CrossRefGoogle ScholarPubMed
Balbus, J. MMaynard, A. DColvin, V. LCastranova, VDaston, G. PDenison, R. ADreher, K. LGoering, P. LGoldberg, A. MKulinowski, K. MMonteiro-Riviere, N. AOberdorster, GOmenn, G. SPinkerton, K. ERamos, K. SRest, K. MSass, J. BSilbergeld, E. KWong, B. A 2007 Meeting report: Hazard assessment for nanoparticles – Report from an interdisciplinary workshopEnvironmental Health Perspectives 115 1654CrossRefGoogle ScholarPubMed
Auffan, MRose, JBottero, J. YLowry, G. VJolivet, J. PWiesner, M. R 2009 Towards a definition of inorganic nanoparticles from an environmental, health and safety perspectiveNature Nanotechnology 4 634CrossRefGoogle ScholarPubMed
Warheit, D. B 2008 How meaningful are the results of nanotoxicity studies in the absence of adequate material characterizationToxicological Sciences 101 183CrossRefGoogle ScholarPubMed
Xia, TKovochich, MBrant, JHotze, MSempf, JOberley, TSioutas, CYeh, J. IWiesner, M. RNel, A. E 2006 Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigmNano Letters 6 1794CrossRefGoogle Scholar
Kovochich, MXia, TXu, JYeh, J. INel, A. E 2007 Principles and procedures to assess nanomaterial toxicityWiesner, M. RBottero, J.-YEnvironmental Nanotechnology: Applications and Impacts of NanomaterialsNew York, NYMcGraw-Hill205Google Scholar
Xia, TKovochich, MLiong, MMadler, LGilbert, BShi, H. BYeh, J. IZink, J. INel, A. E 2008 Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress propertiesACS Nano 2 2121CrossRefGoogle ScholarPubMed
Rogers, E. JHsieh, S. FOrganti, NSchmidt, DBello, D 2008 A high throughput in vitro analytical approach to screen for oxidative stress potential exerted by nanomaterials using a biologically relevant matrix: Human blood serumToxicology in Vitro 22 1639CrossRefGoogle ScholarPubMed
Spohn, PHirsch, CHasler, FBruinink, AKrug, H. FWick, P 2009 C-60 fullerene: A powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assaysEnvironmental Pollution 157 1134CrossRefGoogle ScholarPubMed
Berhanu, DDybowska, AMisra, S. KStanley, C. JRuenraroengsak, PBoccaccini, A. RTetley, T. DLuoma, S. NPlant, J. AValsami-Jones, E 2009 Characterisation of carbon nanotubes in the context of toxicity studiesEnvironmental Health 8CrossRefGoogle ScholarPubMed
Lucarelli, MGatti, A. MSavarino, GQuattroni, PMartinelli, LMonari, EBoraschi, D 2004 Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particlesEuropean Cytokine Network 15 339Google ScholarPubMed
Wick, PMalek, AManser, PMeili, DMaeder-Althaus, XDiener, LDiener, P. AZisch, AKrug, H. FVon Mandach, U 2010 Barrier capacity of human placenta for nanosized materialsEnvironmental Health Perspectives 118 432CrossRefGoogle ScholarPubMed
Limbach, L. KWick, PManser, PGrass, R. NBruinink, AStark, W. J 2007 Exposure of engineered nanoparticles to human lung epithelial cells: Influence of chemical composition and catalytic activity on oxidative stressEnvironmental Science & Technology 41 4158CrossRefGoogle ScholarPubMed
Derfus, A. MChan, W. C. WBhatia, S. N 2004 Probing the cytotoxicity of semiconductor quantum dotsNano Letters 4 11CrossRefGoogle ScholarPubMed
Lam, C. WJames, J. TMccluskey, RArepalli, SHunter, R. L 2006 A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risksCrit Rev Toxicol 36 189CrossRefGoogle ScholarPubMed
Soto, K. FCarrasco, APowell, T. GGarza, K. MMurr, L. E 2005 Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopyJournal of Nanoparticle Research 7 145CrossRefGoogle Scholar
Magrez, AHorvath, LSmajda, RSalicio, VPasquier, NForro, LSchwaller, B 2009 Cellular toxicity of TiO2-based nanofilamentsACS Nano 3 2274CrossRefGoogle ScholarPubMed
Gil, P. ROberdorster, GElder, APuntes, VWolfgang, J. P 2010 Correlating physico-chemical with toxicological properties of nanoparticles: the present and the futureACS Nano 4 5527Google Scholar
Farre, MGajda-Schrantz, KKantiani, LBarcelo, D 2009 Ecotoxicity and analysis of nanomaterials in the aquatic environmentAnalytical and Bioanalytical Chemistry 393 81CrossRefGoogle ScholarPubMed
Lyon, D. YThill, ARose, JAlvarez, P. J. J 2007 Ecotoxicological impacts of nanomaterialsWiesner, M. RBottero, J.-YEnvironmental Nanotechnology: Applications and Impacts of NanomaterialsNew York, NYMcGraw-Hill445Google Scholar
Tiller, C. LOmelia, C. R 1993 Natural organic-matter and colloidal stability – models and measurementsColloids and Surfaces A-Physicochemical and Engineering Aspects 73 89Google Scholar
Christian, PVon Der Kammer, FBaalousha, MHofmann, T 2008 Nanoparticles: structure, properties, preparation and behaviour in environmental mediaEcotoxicology 17 326CrossRefGoogle ScholarPubMed
Hyung, HFortner, J. DHughes, J. BKim, J. H 2007 Natural organic matter stabilizes carbon nanotubes in the aqueous phaseEnvironmental Science & Technology 41 179CrossRefGoogle ScholarPubMed
Domingos, R. FTufenkji, NWilkinson, K. J 2009 Aggregation of titanium dioxide nanoparticles: role of a fulvic acidEnvironmental Science & Technology 43 1282CrossRefGoogle ScholarPubMed
Li, Q. LXie, BHwang, Y. SXu, Y. J 2009 Kinetics of C-60 fullerene dispersion in water enhanced by natural organic matter and sunlightEnvironmental Science & Technology 43 3574CrossRefGoogle Scholar
Hwang, Y. SLi, Q. L 2010 Characterizing photochemical transformation of aqueous nC(60) under environmentally relevant conditionsEnvironmental Science & Technology 44 3008CrossRefGoogle Scholar
Chen, C. YJafvert, C. T 2010 Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: reactive oxygen species production in waterEnvironmental Science & Technology 44 6674CrossRefGoogle ScholarPubMed
Simonet, B. MValcarcel, M 2009 Monitoring nanoparticles in the environmentAnalytical and Bioanalytical Chemistry 393 17CrossRefGoogle ScholarPubMed
Kiser, M. AWesterhoff, PBenn, TWang, YPerez-Rivera, JHristovski, K 2009 Titanium nanomaterial removal and release from wastewater treatment plantsEnvironmental Science & Technology 43 6757CrossRefGoogle ScholarPubMed
Cherchi, CGu, A. Z 2010 Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilisEnvironmental Science & Technology 44 8302CrossRefGoogle ScholarPubMed
Unrine, J. MHunyadi, S. ETsyusko, O. VRao, WShoults-Wilson, W. ABertsch, P. M 2010 Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida)Environmental Science & Technology 44 8308CrossRefGoogle Scholar
Judy, J. DUnrine, J. MBertsch, P. M 2011 Evidence for biomagnification of gold nanoparticles within a terrestrial food chainEnvironmental Science & Technology 45 776CrossRefGoogle ScholarPubMed
Horst, A. MNeal, A. CMielke, R. ESislian, P. RSuh, W. HMadler, LStucky, G. DHolden, P. A 2010 Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosaApplied and Environmental Microbiology 76 7292CrossRefGoogle Scholar
Gurr, J. RWang, A. S. SChen, C. HJan, K. Y 2005 Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cellsToxicology 213 66CrossRefGoogle ScholarPubMed
Adams, L. KLyon, D. YAlvarez, P. J. J 2006 Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensionsWater Research 40 3527CrossRefGoogle ScholarPubMed
Franklin, N. MRogers, N. JApte, S. CBatley, G. EGadd, G. ECasey, P. S 2007 Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (): the importance of particle solubilityEnvironmental Science & Technology 41 8484CrossRefGoogle ScholarPubMed
Lovern, S. BStrickler, J. RKlaper, R 2007 Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C-60, and C(60)HxC(70)Hx)Environmental Science & Technology 41 4465CrossRefGoogle Scholar
Handy, R. DHenry, T. BScown, T. MJohnston, B. DTyler, C. R 2008 Manufactured nanoparticles: their uptake and effects on fish – a mechanistic analysisEcotoxicology 17 396CrossRefGoogle Scholar
Federici, GShaw, B. JHandy, R. D 2007 Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effectsAquatic Toxicology 84 415CrossRefGoogle ScholarPubMed
Scown, T. MVan Aerle, RJohnston, B. DCumberland, SLead, J. ROwen, RTyler, C. R 2009 High doses of intravenously administered titanium dioxide nanoparticles accumulate in the kidneys of rainbow trout but with no observable impairment of renal functionToxicological Sciences 109 372CrossRefGoogle ScholarPubMed
Warheit, D. BWebb, T. RReed, K. LFrerichs, SSayes, C. M 2007 Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: Differential responses related to surface propertiesToxicology 230 90CrossRefGoogle ScholarPubMed
Takeda, KSuzuki, K. IIshihara, AKubo-Irie, MFujimoto, RTabata, MOshio, SNihei, YIhara, TSugamata, M 2009 Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systemsJournal of Health Science 55 95CrossRefGoogle Scholar
Wolfrum, E. JHuang, JBlake, D. MManess, P. CHuang, ZFiest, JJacoby, W. A 2002 Photocatalytic oxidation of bacteria, bacterial and fungal spores, and model biofilm components to carbon dioxide on titanium dioxide-coated surfacesEnvironmental Science & Technology 36 3412CrossRefGoogle ScholarPubMed
Ciston, SLueptow, R. MGray, K. A 2008 Bacterial attachment on reactive ceramic ultrafiltration membranesJournal of Membrane Science 320 101CrossRefGoogle Scholar
Hund-Rinke, KSimon, M 2006 Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnidsEnvironmental Science and Pollution Research 13 225CrossRefGoogle ScholarPubMed
Wakefield, GGreen, MLipscomb, SFlutter, B 2004 Modified titania nanomaterials for sunscreen applications – reducing free radical generation and DNA damageMaterials Science and Technology 20 985CrossRefGoogle Scholar
Maynard, A. DAitken, R. JButz, TColvin, VDonaldson, KOberdorster, GPhilbert, M. ARyan, JSeaton, AStone, VTinkle, S. STran, LWalker, N. JWarheit, D. B 2006 Safe handling of nanotechnologyNature 444 267CrossRefGoogle ScholarPubMed
Robichaud, C. OTanzil, DWiesner, M. R 2007 Assessing life-cycle risks of nanomaterialsWiesner, M. RBottero, J.-YEnvironmental Nanotechnology: Applications and Impacts of NanomaterialsNew York, NYMcGraw-Hill481Google Scholar
Service, R. F 2008 Nanotechnology – Can high-speed tests sort out which nanomaterials are safe?Science 321 1036CrossRefGoogle ScholarPubMed
Service, R. F 2008 Science Policy report faults US strategy for nanotoxicology researchScience 322 1779CrossRefGoogle Scholar
Lux Research 2007 http://www.luxresearchinc.com/tnr.php
McWilliams, A. 2008 http://www.bccresearch.com/report/NAN031C.html
Anonymous 2009 http://www.nanotechproject.org/inventories/consumer/
Borm, P. J. A. 2006
Borm, P.J.A.Berube, D.A Tale of Opportunities, Uncertainties and Risks 3 Nanotoday 2008CrossRefGoogle Scholar
Chatterjee, R.The Challenge of Regulating Nanomaterials 42 Environmental Science & Technology 2008CrossRefGoogle ScholarPubMed
Helland, A.Reviewing the Environmental and Human Health Knowledge Base of Carbon Nanotubes 115 Environmental Health Perspectives 2007CrossRefGoogle ScholarPubMed
Lubick, N.Risks of Nanotechnology Remain Uncertain 42 Environmental Science & Technology 2008CrossRefGoogle ScholarPubMed
Nel, AndreToxic Potential of Materials at the Nanolevel 311 Science 2006CrossRefGoogle ScholarPubMed
Wiesner, M. R.Bottero, J. Y.Environmental Nanotechnology: Applications and Impacts of NanomaterialsMcGraw-Hill 2007Google Scholar
Klaine, S. J.Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects 27 Environmental Toxicology and Chemistry 2008CrossRefGoogle ScholarPubMed
Maynard, A. D.Nanotechnology: Assessing the Risks 1 Nano Today 2006CrossRefGoogle Scholar
Rickerby, D.G.Morrison, M.Nanotechnology and the Environment: A European Perspective 8 Science and Technology of Advanced Materials 2007CrossRefGoogle Scholar
Wiesner, M. R.Assessing the Risks of Manufactured Nanomaterials 40 ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006CrossRefGoogle ScholarPubMed
Maynard, A. D.Nanotechnology: The Next Big Thing, or Much Ado About Nothing? 51 Annals of Occupational Hygiene 2007Google ScholarPubMed
Nanowerk 2007 http://www.nanowerk.com/nanotechnology/introduction/introduction_to_nanotechnology_1.php.;http://www.nano.gov/html/facts/home_facts.html
Altes, T.K. 2008 http://www.enn.com/green_building/commentary/32429
Muller, H. D.Steinbach, F.Decomposition of Isopropyl Alcohol Photosensitized by Zinc Oxide 225 Nature 1970CrossRefGoogle ScholarPubMed
Duret, A.Gratzel, M.Visible Light-Induced Water Oxidation on Mesoscopic Alpha-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis 109 Journal of Physical Chemistry B 2005CrossRefGoogle ScholarPubMed
Fujishima, A.Zhang, X. T.Titanium Dioxide Photocatalysis: Present Situation and Future Approaches 9 Comptes Rendus Chimie 2006CrossRefGoogle Scholar
Chen, X.Mao, S. S.Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications 107 Chemical Reviews 2007CrossRefGoogle ScholarPubMed
Lu, F.ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance 18 Advanced Functional Materials 2008CrossRefGoogle Scholar
Hernandez-Alonso, M. D.Development of Alternative Photocatalysts to TiO2: Challenges and Opportunities 2 Energy & Environmental Science 2009CrossRefGoogle Scholar
Mo, J. H.Photocatalytic Purification of Volatile Organic Compounds in Indoor Air: A literature Review 43 Atmospheric Environment 2009CrossRefGoogle Scholar
Lai, M. H.ZnO-Nanorod Dye-Sensitized Solar Cells: New Structure Without a Transparent Conducting Oxide LayerInternational Journal of Photoenergy 2010CrossRefGoogle Scholar
Peng, L. L.Synthesis, Photoelectric Properties and Photocatalytic Activity of the Fe2O3/TiO2 Heterogeneous Photocatalysts 12 Physical Chemistry Chemical Physics 2010CrossRefGoogle ScholarPubMed
Roy, S. C.Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons 4 ACS Nano 2010CrossRefGoogle Scholar
Tian, Y.Core-Shell Nanostructure of Alpha-Fe2O3/Fe3O4: Synthesis and Photocatalysis for Methyl OrangeJournal of Nanomaterials 2011CrossRefGoogle Scholar
Roduner, E.Size Matters: Why Nanomaterials Are Different 35 Chemical Society Reviews 2006CrossRefGoogle ScholarPubMed
Lehigh University 2004 http://www.sciencedaily.com/releases/2004/04/040428062059.htm
Anonymous 2009 http://www.nanotechproject.org/inventories/consumer/analysis_draft/
Ashcroft, N.W.Mermin, N.D.Solid State PhysicsNew YorkHolt, Rinehart and Winston 1976Google Scholar
Hoffmann, R.How Chemistry and Physics Meet in the Solid-State 26 Angewandte Chemie-International Edition in English 1987CrossRefGoogle Scholar
Edwards, P.P.Metal Clusters in ChemistryBraunstien, P.Chichester, NYWiley-VCH 1999Google Scholar
Wang, Z. L.Nanostructures of Zinc Oxide 7 Materials Today 2004CrossRefGoogle Scholar
Jin, R. C.Photoinduced Conversion of Silver Nanospheres to Nanoprisms 294 Science 2001CrossRefGoogle ScholarPubMed
Millstone, J. E.Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms 127 Journal of the American Chemical Society 2005CrossRefGoogle ScholarPubMed
Dimitrijevic, N. M.Effect of Size and Shape of Nanocrystalline TiO2 on Photogenerated Charges. An EPR Study 111 Journal of Physical Chemistry C 2007CrossRefGoogle Scholar
Rosi, N. L.Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation 312 Science 2006CrossRefGoogle ScholarPubMed
Giljohann, D. A.Oligonucleotide Loading Determines Cellular Uptake of DNA-Modified Gold Nanoparticles 7 Nano Letters 2007CrossRefGoogle ScholarPubMed
Seferos, D. S.Locked Nucleic Acid-Nanoparticle Conjugates 8 Chembiochem 2007CrossRefGoogle ScholarPubMed
Partha, R.Conyers, J. L.Biomedical Applications of Functionalized Fullerene-Based Nanomaterials 4 International Journal of Nanomedicine 2009Google ScholarPubMed
Lyklema, H.Fundamentals of Interface and Colloid SciencePhiladelphiaElsevier 1991Google Scholar
Donaldson, K.Combustion-Derived Nanoparticles: A Review of Their Toxicology Following Inhalation Exposure 2 Particle and Fibre Toxicology10 2005CrossRefGoogle ScholarPubMed
Oberdorster, G. 2005
TechTarget 2011 http://whatis.techtarget.com/definition/0,sid9_gci213444,00.html
Buzea, C.Nanomaterials and nanoparticles: Sources and Toxicity 2 Biointerphases 2007CrossRefGoogle ScholarPubMed
Buseck, P. R.Adachi, K.Nanoparticles in the Atmosphere 4 Elements 2008CrossRefGoogle Scholar
Feynman, R. P.There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of PhysicsCalTech's Engineeering and Science 1960Google Scholar
Crommie, M.F.Confinement of Electrons to Quantum Corrals on a Metal Surface 262 Science 1993CrossRefGoogle ScholarPubMed
Paek, S. M.Nanostructured TiO2 Films for Dye-Sensitized Solar Cells 67 Journal of Physics and Chemistry of Solids 2006CrossRefGoogle Scholar
Chen, L.Fabricating Highly Active Mixed Phase TiO2 Photocatalysts by Reactive DC Magnetron Sputter Deposition 515 Thin Solid Films 2006CrossRefGoogle Scholar
Chen, L.Photoreduction of CO2 by TiO2 Nanocomposites Synthesized Through Reactive Direct Current Magnetron Sputter Deposition 517 Thin Solid Films 2009CrossRefGoogle Scholar
Ignatiev, A.Nanostructured Thin Solid Oxide Fuel Cells With High Power DensityDalton Transactions 2008CrossRefGoogle ScholarPubMed
Yu, K. H.Chen, J. H.Enhancing Solar Cell Efficiencies Through 1-D Nanostructures 4 Nanoscale Research Letters 2009CrossRefGoogle Scholar
Lee, J.Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations 4 ACS Nano 2010CrossRefGoogle ScholarPubMed
Ou, H. H.Lo, S. L.Review of Titania Nanotubes Synthesized Via the Hydrothermal Treatment: Fabrication, Modification, and Application 58 Separation and Purification Technology 2007CrossRefGoogle Scholar
Rani, S.Synthesis and Applications of Electrochemically Self-Assembled Titania Nanotube Arrays 12 Physical Chemistry Chemical Physics 2010CrossRefGoogle ScholarPubMed
Schulte, K. L.Effect of Crystal Phase Composition on the Reductive and Oxidative Abilities of TiO2 Nanotubes Under UV and Visible Light 97 Applied Catalysis B-Environmental 2010CrossRefGoogle Scholar
Vijayan, B.Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes 114 Journal of Physical Chemistry C 2010CrossRefGoogle Scholar
Vijayan, B. K.The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes 114 Journal of Physical Chemistry C 2010CrossRefGoogle Scholar
Li, G. H.Gray, K. A.The Solid-Solid Interface: Explaining the High and Unique Photocatalytic Reactivity of TiO2-Based Nanocomposite Materials 339 Chemical Physics 2007CrossRefGoogle Scholar
Li, G. H.A Comparison of Mixed Phase Titania Photocatalysts Prepared by Physical and Chemical Methods: The Importance of the Solid-Solid Interface 275 Journal of Molecular Catalysis A-Chemical 2007CrossRefGoogle Scholar
Murr, L. E.Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in Common Fuel-Gas Combustion Sources and the Ambient Air 6 Journal of Nanoparticle Research 2004CrossRefGoogle Scholar
Nowack, B.Bucheli, T.D.Occurrence, Behavior and Effects of Nanoparticles in the Environment 150 Environmental Pollution 2007CrossRefGoogle ScholarPubMed
Friedrichs, S.Schulte, J.Environmental, Health and Safety Aspects of Nanotechnology – Implications for the R&D in (Small) Companies 8 Science and Technology of Advanced Materials 2007Google Scholar
Stumm, W.Aquatic Surface Chemistry: Chemical Processes at the Particle-Water InterfaceNew YorkJohn Wiley & Sons 1987Google Scholar
Stumm, W.Morgan, J.J.Aquatic Chemistry: Chemical Equilibria and Rates in Natural WatersNew YorkJohn Wiley & Sons 1996Google Scholar
Donaldson, K.Stone, V.Current Hypotheses on the Mechanisms of Toxicity of Ultrafine Particles 39 Annali dell’Istituto Superiore di Sanita 2003Google ScholarPubMed
Lecoanet, H. F.Laboratory Assessment of the Mobility of Nanomaterials in Porous Media 38 Environmental Science & Technology 2004CrossRefGoogle ScholarPubMed
Ostrowski, A. D.Nanotoxicology: Characterizing the Scientific Literature, 2000–2007 11 Journal of Nanoparticle Research 2009CrossRefGoogle ScholarPubMed
Colvin, V. L.The Potential Environmental Impact of Engineered Nanomaterials 21 Nature Biotechnology 2003CrossRefGoogle ScholarPubMed
Balbus, J. M.Meeting Report: Hazard Assessment for Nanoparticles – Report From an Interdisciplinary Workshop 115 Environmental Health Perspectives 2007CrossRefGoogle ScholarPubMed
Auffan, M.Towards a Definition of Inorganic Nanoparticles From an Environmental, Health and Safety Perspective 4 Nature Nanotechnology 2009CrossRefGoogle ScholarPubMed
Warheit, D. B.How Meaningful Are the Results of Nanotoxicity Studies in the Absence of Adequate Material Characterization? 101 Toxicological Sciences 2008CrossRefGoogle ScholarPubMed
Xia, T.Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity According to an Oxidative Stress Paradigm 6 Nano Letters 2006CrossRefGoogle Scholar
Kovochich, M.Environmental Nanotechnology: Applications and Impacts of NanomaterialsWiesner, M.R.Bottero, J-Y.New YorkMcGraw-Hill 2007Google Scholar
Xia, T.Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties 2 ACS Nano 2008CrossRefGoogle ScholarPubMed
Rogers, E. J.A High Throughput In Vitro Analytical Approach to Screen for Oxidative Stress Potential Exerted by Nanomaterials Using a Biologically Relevant Matrix: Human Blood Serum 22 Toxicology in Vitro 2008CrossRefGoogle ScholarPubMed
Spohn, P.C-60 Fullerene: A Powerful Antioxidant or a Damaging Agent? The Importance of an In-Depth Material Characterization Prior to Toxicity Assays 157 Environmental Pollution 2009CrossRefGoogle ScholarPubMed
Berhanu, D.Characterisation of carbon nanotubes in the context of toxicity studies 8 Environmental Health 2009CrossRefGoogle ScholarPubMed
Lucarelli, M.Innate Defence Functions of Macrophages Can Be Biased by Nano-Sized Ceramic and Metallic Particles 15 European Cytokine Network 2004Google ScholarPubMed
Wick, P.Barrier Capacity of Human Placenta for Nanosized Materials 118 Environmental Health Perspectives 2010Google ScholarPubMed
Balbus, J. M. 2007
Limbach, L. K.Exposure of Engineered Nanoparticles to Human Lung Epithelial Cells: Influence of Chemical Composition and Catalytic Activity on Oxidative Stress 41 Environmental Science & Technology 2007CrossRefGoogle ScholarPubMed
Derfus, A. M.Probing the Cytotoxicity of Semiconductor Quantum Dots 4 Nano Letters 2004CrossRefGoogle ScholarPubMed
Lam, C. W.A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks 36 Crit Rev Toxicol 2006CrossRefGoogle ScholarPubMed
Soto, K. F.Comparative in Vitro Cytotoxicity Assessment of Some Manufactured Nanoparticulate Materials Characterized by Transmission Electron Microscopy 7 Journal of Nanoparticle Research 2005CrossRefGoogle Scholar
Magrez, A.Cellular Toxicity of TiO2-Based Nanofilaments 3 ACS Nano 2009CrossRefGoogle ScholarPubMed
Gil, P.R.Oberdorster, G.Elder, A.Puntes, V.Wolfgang, J.P.Correlating Physico-Chemical With Toxicological Properties of Nanoparticles: The Present and the Future 4 ACS Nano 2010Google Scholar
Farre, M.Ecotoxicity and Analysis of Nanomaterials in the Aquatic Environment 393 Analytical and Bioanalytical Chemistry 2009CrossRefGoogle ScholarPubMed
Lyon, D.Y.Environmental Nanotechnology: Applications and Impacts of NanomaterialsWiesner, M.R.Bottero, J-Y.New YorkMcGraw-Hill 2007Google Scholar
Tiller, C. L.Omelia, C. R.Natural Organic-Matter and Colloidal Stability – Models and Measurements 73 Colloids and Surfaces A-Physicochemical and Engineering Aspects 1993Google Scholar
Christian, P.Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media 17 Ecotoxicology 2008CrossRefGoogle ScholarPubMed
Hyung, H.Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase 41 Environmental Science & Technology 2007CrossRefGoogle ScholarPubMed
Domingos, R. F.Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid 43 Environmental Science & Technology 2009CrossRefGoogle ScholarPubMed
Hyung, H. 2007
Li, Q. L. 2009
Hwang, Y. S.Li, Q. L. 2010
Chen, C. Y.Jafvert, C. T. 2010
Simonet, B. M.Valcarcel, M.Monitoring Nanoparticles in the Environment 393 Analytical and Bioanalytical Chemistry 2009CrossRefGoogle ScholarPubMed
Kiser, M. A.Titanium Nanomaterial Removal and Release From Wastewater Treatment PlantsEnvironmental Science & Technology 2009CrossRefGoogle ScholarPubMed
Cherchi, C.Gu, A. Z.Impact of Titanium Dioxide Nanomaterials on Nitrogen Fixation Rate and Intracellular Nitrogen Storage in Anabaena variabilis 44 Environmental Science & Technology 2010CrossRefGoogle ScholarPubMed
Unrine, J. M. 2010
Judy, J. D. 2011
Horst, A. M.Dispersion of TiO2 Nanoparticle Agglomerates by Pseudomonas aeruginosa 76 Applied and Environmental Microbiology 2010CrossRefGoogle Scholar
Gurr, J. R.Ultrafine Titanium Dioxide Particles in the Absence of Photoactivation Can Induce Oxidative Damage to Human Bronchial Epithelial Cells 213 Toxicology 2005CrossRefGoogle ScholarPubMed
Adams, L. K.Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions 40 Water Research 2006CrossRefGoogle ScholarPubMed
Franklin, N.M.Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudokirchneriella subcapitata): The Importance of Particle Solubility 41 Environmental Science & Technology 2007CrossRefGoogle ScholarPubMed
Lovern, S. B.Behavioral and Physiological Changes in Daphnia Magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano-C-60, and C(60)HxC(70)Hx) 41 Environmental Science & Technology 2007CrossRefGoogle Scholar
Handy, R. D.Manufactured Nanoparticles: Their Uptake and Effects on Fish-A Mechanistic Analysis 17 Ecotoxicology 2008CrossRefGoogle ScholarPubMed
Federici, G.Toxicity of Titanium Dioxide Nanoparticles to Rainbow Trout (Oncorhynchus mykiss): Gill Injury, Oxidative Stress, and Other Physiological Effects 84 Aquatic Toxicology 2007CrossRefGoogle ScholarPubMed
Scown, T. M.High Doses of Intravenously Administered Titanium Dioxide Nanoparticles Accumulate in the Kidneys of Rainbow Trout But With No Observable Impairment of Renal Function 109 Toxicological Sciences 2009CrossRefGoogle ScholarPubMed
Warheit, D. B.Pulmonary Toxicity Study in Rats With Three Forms of Ultrafine-TiO2 particles: Differential Responses Related to Surface Properties 230 Toxicology 2007CrossRefGoogle ScholarPubMed
Takeda, K.Nanoparticles Transferred From Pregnant Mice to Their Offspring Can Damage the Genital and Cranial Nerve Systems 55 Journal of Health Science 2009CrossRefGoogle Scholar
Wolfrum, E. J.Photocatalytic Oxidation of Bacteria, Bacterial and Fungal Spores, and Model Biofilm Components to Carbon Dioxide on Titanium Dioxide-Coated Surfaces 36 Environmental Science & Technology 2002CrossRefGoogle ScholarPubMed
Ciston, S.Bacterial Attachment on Reactive Ceramic Ultrafiltration Membranes 320 Journal of Membrane Science 2008CrossRefGoogle Scholar
Hund-Rinke, K.Simon, M.Ecotoxic Effect of Photocatalytic Active Nanoparticles TiO2 on Algae And Daphnids 13 Environmental Science and Pollution Research 2006CrossRefGoogle ScholarPubMed
Wakefield, G.Modified Titania Nanomaterials for Sunscreen Applications – Reducing Free Radical Generation and DNA Damage 20 Materials Science and Technology 2004CrossRefGoogle Scholar
Robichaud, C.O.Environmental Nanotechnology: Applications and Impacts of NanomaterialsWiesner, M.R.Bottero, J-Y.New YorkMcGraw-Hill 2007Google Scholar
Service, R. F.Nanotechnology – Can High-Speed Tests Sort Out Which Nanomaterials Are Safe? 321 Science 2008CrossRefGoogle ScholarPubMed
Service, R. F.Science Policy Report Faults US Strategy for Nanotoxicology Research 322 Science 2008CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×