Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: August 2011

Chapter 5 - Basic mechanisms of functional recovery

from Section 1 - Basic mechanisms

Related content

Powered by UNSILO


1. DuttaR, TrappB D.Pathogenesis of axonal and neuronal damage in multiple sclerosis. Neurology 2007;68(22 Suppl 3):S22–31; discussion S43–54
2. Dhib-JalbutS.Pathogenesis of myelin/oligodendrocyte damage in multiple sclerosis. Neurology 2007;68(22 Suppl 3):S13–21; discussion S43–54
3. MoreauT, ColesA, WingM, et al. Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis. Brain 1996;119(1):225–37
4. KapoorR, DaviesM, SmithK J.Temporary axonal conduction block and axonal loss in inflammatory neurological disease: a potential role for nitric oxide? Ann NY Acad Sci 1999;893:304–8
5. RadtkeC, SpiesM, SasakiM, VogtP M, KocsisJ D.Demyelinating diseases and potential repair strategies. Int J Dev Neurosci 2007;25(3):149–53
6. BruckW, KuhlmannT, StadelmannC.Remyelination in multiple sclerosis. J Neurol Sci 2003;206(2):181–5
7. WaxmanS G.Demyelinating diseases: new pathological insights, new therapeutic targets. N Engl J Med 1998;338(5):323–5
8. GensertJ M, GoldmanJ E.Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 1997;19(1):197–203
9. Alvarez-BuyllaA, TempleS.Stem cells in the developing and adult nervous system. J Neurobiol 1998;36(2):105–10
10. GageF H.Mammalian neural stem cells. Science 2000;287(5457):1433–8
11. ShihabuddinL S, RayJ, GageF H.FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp Neurol 1997;148(2):577–86
12. MartinoG, PluchinoS.The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006;7(5):395–406
13. MillerR H.The promise of stem cells for neural repair. Brain Res 2006;1091(1):258–64
14. GouldE, TanapatP.Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat. Neuroscience 1997;80(2):427–36
15. Picard-RieraN, DeckerL, DelarasseC, et al. Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA 2002;99(20):13 211–16
16. LassmannH.Stem cell and progenitor cell transplantation in multiple sclerosis: the discrepancy between neurobiological attraction and clinical feasibility. J Neurol Sci 2005;233(1–2):83–6
17. MagnusT, RaoM S.Neural stem cells in inflammatory CNS diseases: mechanisms and therapy. J Cell Mol Med 2005;9(2):303–19
18. PluchinoS, FurlanR, MartinoG.Cell-based remyelinating therapies in multiple sclerosis: evidence from experimental studies. Curr Opin Neurol 2004;17(3):247–55
19. McDonaldJ W, LiuX Z, QuY, et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999;5(12):1410–12
20. CummingsB J, UchidaN, TamakiS J, et al. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA 2005;102(39):14 069–74
21. KutzelniggA, LucchinettiC F, StadelmannC, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005;128(11):2705–12
22. KerschensteinerM, SchwabM E, LichtmanJ W, MisgeldT.In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat Med 2005;11(5):572–7
23. PlunetW, KwonB K, TetzlaffW.Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Res 2002;68(1):1–6
24. Ramón y CajalS.Degeneration and Regeneration of the Nervous System. New York: Hafner, 1928
25. DavidS, AguayoA J.Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 1981;214(4523):931–3
26. SchwabM E, ThoenenH.Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors. J Neurosci 1985;5(9):2415–23
27. CaroniP, SchwabM E.Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Biol 1988;106(4):1281–8
28. CaroniP, SchwabM E.Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1988;1(1):85–96
29. SchnellL, SchwabM E.Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990;343(6255):269–72
30. SchwabM E.Nogo and axon regeneration. Curr Opin Neurobiol 2004;14(1):118–24
31. MukhopadhyayG, DohertyP, WalshF S, CrockerP R, FilbinM T.A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 1994;13(3):757–67
32. NiederostB P, ZimmermannD R, SchwabM E, BandtlowC E.Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci 1999;19(20):8979–89
33. WangK C, KoprivicaV, KimJ A, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 2002;417(6892):941–4
34. BensonM D, RomeroM I, LushM E, et al. Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc Natl Acad Sci USA 2005;102(30):10 694–9
35. BartschU, BandtlowC E, SchnellL, et al. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron 1995;15(6):1375–81
36. ChenM S, HuberA B, van der HaarM E, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000;403(6768):434–9
37. GrandPreT, NakamuraF, VartanianT, StrittmatterS M.Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 2000;403(6768):439–44
38. PrinjhaR, MooreS E, VinsonM, et al. Inhibitor of neurite outgrowth in humans. Nature 2000;403(6768):383–4
39. WangX, ChunS J, TreloarH, et al. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J Neurosci 2002;22(13):5505–15
40. OertleT, van der HaarM E, BandtlowC E, et al. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci 2003;23(13):5393–406
41. FournierA E, GrandPreT, StrittmatterS M.Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 2001;409(6818):341–6
42. FournierA E, GrandPreT, GouldG, WangX, StrittmatterS M.Nogo and the Nogo-66 receptor. Prog Brain Res 2002;137:361–9
43. LiuB P, FournierA, GrandPreT, StrittmatterS M.Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 2002;297(5584):1190–3
44. BuchliA D, SchwabM E.Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med 2005;37(8):556–67
45. YiuG, HeZ.Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7(8):617–27
46. AlabedY Z, Grados-MunroE, FerraroG B, HsiehS H, FournierA E.Neuronal responses to myelin are mediated by rho kinase. J Neurochem 2006;96(6):1616–25
47. HsiehS H, FerraroG B, FournierA E.Myelin-associated inhibitors regulate cofilin phosphorylation and neuronal inhibition through LIM kinase and Slingshot phosphatase. J Neurosci 2006;26(3):1006–15
48. DimouL, SchnellL, MontaniL, et al. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci 2006;26(21):5591–603
49. GrandPreT, LiS, StrittmatterS M.Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 2002;417(6888):547–51
50. JiB, LiM, WuW T, et al. LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury. Mol Cell Neurosci 2006;33(3):311–20
51. McKerracherL, HiguchiH.Targeting Rho to stimulate repair after spinal cord injury. J Neurotrauma 2006;23(3–4):309–17
52. WeinmannO, SchnellL, GhoshA, et al. Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Mol Cell Neurosci 2006;32(1–2):161–73
53. LiebscherT, SchnellL, SchnellD, et al. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 2005;58(5):706–19
54. FreundP, SchmidlinE, WannierT, et al. Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 2006;12(7):790–2
55. NudoR J, MillikenG W, JenkinsW M, MerzenichM M.Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 1996;16(2):785–807
56. JohanssonB B.Brain plasticity and stroke rehabilitation. The Willis Lecture. Stroke 2000;31(1):223–30
57. PayneB R, LomberS G.Reconstructing functional systems after lesions of cerebral cortex. Nat Rev Neurosci 2001;2(12):911–19
58. WardN S, CohenL G.Mechanisms underlying recovery of motor function after stroke. Arch Neurol 2004;61(12):1844–8
59. BradburyE J, McMahonS B.Spinal cord repair strategies: why do they work?Nat Rev Neurosci 2006;7(8):644–53
60. RaineteauO, SchwabM E.Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001;2(4):263–73
61. HoltmaatA J, TrachtenbergJ T, WilbrechtL, et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 2005;45(2):279–91
62. ThallmairM, MetzG A, Z'GraggenW J, et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nat Neurosci 1998;1(2):124–31
63. EmerickA J, NeafseyE J, SchwabM E, KartjeG L.Functional reorganization of the motor cortex in adult rats after cortical lesion and treatment with monoclonal antibody IN-1. J Neurosci 2003;23(12):4826–30
64. FouadK, PedersenV, SchwabM E, BrosamleC.Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol 2001;11(22):1766–70
65. BareyreF M, KerschensteinerM, RaineteauO, et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004;7(3):269–77
66. KerschensteinerM, BareyreF M, BuddebergB S, et al. Remodeling of axonal connections contributes to recovery in an animal model of multiple sclerosis. J Exp Med 2004;200(8):1027–38
67. BlochlingerS, WeinmannO, SchwabM E, ThallmairM.Neuronal plasticity and formation of new synaptic contacts follow pyramidal lesions and neutralization of Nogo-A: a light and electron microscopic study in the pontine nuclei of adult rats. J Comp Neurol 2001;433(3):426–36
68. WenkC A, ThallmairM, KartjeG L, SchwabM E.Increased corticofugal plasticity after unilateral cortical lesions combined with neutralization of the IN-1 antigen in adult rats. J Comp Neurol 1999;410(1):143–57
69. LeeJ K, KimJ E, SivulaM, StrittmatterS M.Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci 2004;24(27):6209–17
70. SeymourA B, AndrewsE M, TsaiS Y, et al. Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab 2005;25(10):1366–75
71. CaffertyW B, StrittmatterS M.The Nogo–Nogo receptor pathway limits a spectrum of adult CNS axonal growth. J Neurosci 2006;26(47):12 242–50
72. RaineteauO, FouadK, NothP, ThallmairM, SchwabM E.Functional switch between motor tracts in the presence of the mAb IN-1 in the adult rat. Proc Natl Acad Sci USA 2001;98(12):6929–34
73. CifelliA, MatthewsP M.Cerebral plasticity in multiple sclerosis: insights from fMRI. Mult Scler 2002;8(3):193–9
74. WardN S.Functional reorganization of the cerebral motor system after stroke. Curr Opin Neurol 2004;17(6):725–30