Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:26:45.170Z Has data issue: false hasContentIssue false

Chapter 9 - Movement disorders in childhood metabolic diseases

from Section II - Movement disorders in systemic disease

Published online by Cambridge University Press:  05 April 2014

Emilio Fernández-Álvarez
Affiliation:
Department of Neurology, Hospital San Juan de Dios, Barcelona, Spain
Agathe Roubertie
Affiliation:
Department of Neurology, Hôpital Gui de Chauliac, Montpellier, France
Werner Poewe
Affiliation:
Medical University Innsbruck
Joseph Jankovic
Affiliation:
Baylor College of Medicine, Texas
Get access

Summary

Definitions and classification

Inborn errors of metabolism (IEM) represent a vast, diverse, and heterogeneous collection of disorders in which there is a block at some point in the normal metabolic pathway caused by a genetic defect of a specific enzyme. Up to now, more than 500 IEM have been characterized: the great majority are autosomal recessive. Broadly, these IEM may be divided into three groups (Saudubray et al. 2006):

  • Group 1: Disorders that give rise to an acute or chronic intoxication. It encompasses aminoacidopathies, organic acidurias, urea cycle disorders, sugar intolerances, metal disorders, and porphyrias. This group also includes inborn errors of neurotransmitter synthesis and catabolism, especially monoamine metabolism defects. The disorders included in group 1 share common features: no interference with embryo-fetal development, presentation after a symptom-free interval with chronic or intermittent manifestations sometimes triggered by provoking factors (for example, stress fever, intercurrent illness). Most of these disorders are treatable and require an emergency removal of the toxin by special diets, extracorporeal procedures, cleansing drugs, or vitamins.

  • Group 2: Disorders involving energy metabolism. This group includes inborn errors of intermediary metabolism that affect mitochondrial energetic processes (respiratory chain disorders, Krebs cycle and pyruvate oxidation defects, fatty acid oxidation disorders) and the cytoplasmic defects of energy metabolism (glucose transport defect, glycolysis, glycogenosis, gluconeogenesis, hyperinsulinisms, and creatine and pentose phosphate pathways). Some of these disorders might interfere with the embryo-fetal development; they give rise to chronic manifestations, sometimes associated with paroxysmal symptoms. Some of these disorders are partly treatable.

  • Group 3: Disorders involving complex molecules. This group involves cellular organelles and cellular trafficking and processing of complex molecules; it includes lysosomal, peroxisomal, glycosylation, and cholesterol synthesis defects. Symptoms are permanent, progressive, and independent of intercurrent events. Enzyme replacement therapy or bone marrow transplantation are indicated in some lysosomal storage diseases.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrindell, E. L., Trobe, J. D., Sieving, P. A., and Barnett, J. L. (1991). “Pupillary and electroretinographic abnormalities in a family with neuronal intranuclear hyaline inclusions disease,” Arch. Ophtalmol. 109: 373–8.CrossRefGoogle Scholar
Barnerias, C., Saudubray, J. M., Touati, G., De Lonlay, P., Dulac, O., Ponsot, G., et al. (2010). “Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis,” Dev. Med. Child Neurol. 52(2):e1–9.CrossRefGoogle ScholarPubMed
Becher, M. W., Rubinstein, D. C., Leggo, J., Wagster, M. V., Stine, O. C., Ranen, N. G., et al. (1997). “Dentatorubral and pallidoluysian atrophy (DRPLA). Clinical and neuropathological findings in genetically confirmed North American and European pedigrees,” Mov. Disord. 12: 519–30.CrossRefGoogle ScholarPubMed
Berardelli, A., Thompson, P. D., Zaccagnini, M., Giardini, O., D’Eufemia, P., Massoud, R., et al. (1991). “Two sisters with generalized dystonia associated with homocystinuria,” Mov. Disord. 6: 163–5.CrossRefGoogle ScholarPubMed
Biery, B. J., Stein, D. E., Morton, D. H., and Goodman, S. I. (1996). “Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish,” Am. J. Hum. Genet. 59: 1006–11.Google Scholar
Brockmann, K. (2009). “The expanding phenotype of GLUT1-deficiency syndrome,” Brain Dev. 31(7): 545–52.CrossRefGoogle ScholarPubMed
Chikh, K., Vey, S., Simonot, C., Vanier, M. T., and Millat, G. (2004). “Niemann-Pick type C disease: importance of N-glycosylation sites for function and cellular location of the NPC2 protein,” Mol. Genet. Metab. 83: 220–30.CrossRefGoogle ScholarPubMed
Cif, L., Biolsi, B., Gavarini, S., Saux, A., Robles, S. G., Tancu, C., et al. (2007). “Antero-ventral internal pallidum improves behavioral disorders in Lesch-Nyhan disease,” Mov. Disord. 22: 2126–9.CrossRefGoogle ScholarPubMed
Dusek, P., Jankovic, J., and Le, W. (2012). “Iron dysregulation in movement disorders,” Neurobiol. Dis. 46: 1–18.CrossRefGoogle ScholarPubMed
Fernández-Álvarez, E. (1993). “Early infantile type Hallervorden-Spatz’s disease” in Fejerman, N. and Chamoles, N. A. (eds.), New Trends in Pediatric Neurology. Amsterdam: Elsevier Science Publishers, pp. 143–8.Google Scholar
Fernández-Álvarez, E., García-Cazorla, A., Sans, A., Boix, C., Vilaseca, M. A., Busquets, C., et al. (2003). “Hand tremor and orofacial dyskinesia: clinical manifestations of glutaric aciduria type 1 in a young girl,” Mov. Disord. 18: 1076–9.CrossRefGoogle Scholar
Fernández-Álvarez, E. (2005). “Prevalence of paediatric movement disorders” in Fernández-Álvarez, E., Arzimanoglou, A., and Tolosa, E. (eds.), Paediatric Movement Disorders. Progress in Understanding. Paris: John Libbey Eurotext, pp. 1–18.Google Scholar
Gencik, M., Hammans, C., Strehl, H., Wagner, N., and Epplen, J. T. (2002). “Chorea Huntington: a rare case with childhood onset,” Neuropediatrics 33: 90–2.CrossRefGoogle ScholarPubMed
Gouider-Khouja, N., Kraoua, I., Benrhouma, H., Fraj, N., and Rouissi, A. (2010). “Movement disorders in neuro-metabolic diseases,” Eur. J. Paediatr. Neurol. 14(4): 304–7.CrossRefGoogle ScholarPubMed
Goutières, F., Mikol, J., and Aicardi, J. (1990). “Neuronal intranuclear inclusion disease in a child: diagnosis by rectal biopsy,” Ann. Neurol. 27: 103–6.CrossRefGoogle Scholar
Gregory, A., Polster, B. J., and Hayflick, S. J. (2009). “Clinical and genetic delineation of neurodegeneration with brain iron accumulation,” J. Med. Genet. 46: 73–80.CrossRefGoogle ScholarPubMed
Hedera, P., Brewer, G. J., and Fink, J. K. (2002). “White matter changes in Wilson’s disease,” Arch. Neurol. 59: 866–7.CrossRefGoogle Scholar
Jankovic, J., Caskey, T. C., Stout, J. T., and Butler, I. (1988). “Lesch-Nyhan syndrome: A study of motor behavior and CSF monoamine turnover,” Ann. Neurol. 23: 466–9.CrossRefGoogle Scholar
Jankovic, J. and Clarence-Smith, K. (2011). “Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders,” Expert Review of Neurotherapeutics 11: 1509–23.CrossRefGoogle ScholarPubMed
Jinnah, H. A., De Gregorio, L., Harris, J. C., Nyhan, W. L., and O’Neill, J. P. (2000). “The spectrum of inherited mutations causing HPRT deficiency: 75 new cases and a review of 196 previously reported cases,” Mutat. Res. 463: 309–26.CrossRefGoogle Scholar
Jinnah, H. A., Ceballos-Picot, I., Torres, R. J., Visser, J. E., Schretlen, D. J., Verdu, A., et al. (2010). “Attenuated variants of Lesch–Nyhan disease,” Brain 133: 671–89.CrossRefGoogle ScholarPubMed
Kambouris, M., Bohlega, S., Al-Thalan, A., and Meyer, B. F. (2000). “Localisation of the gene for a novel autosomal recessive neurodegenerative Huntington-like disorder to 4p15.3,” Am. J. Hum. Genet. 66: 445–52.CrossRefGoogle Scholar
Kempster, P. A. K., Brenton, D. P., Gale, A. N. M., and Stern, G. M. (1988). “Dystonia in homocystinuria,” J. Neurol. Neurosurg. Psychiat. 51: 859–62.CrossRefGoogle ScholarPubMed
Kolker, S., Koeller, D. M., Okun, J. G., and Hoffmann, G. F. (2004). “Pathomechanisms of neurodegeneration in glutaryl-CoA dehydrogenase deficiency,” Ann. Neurol. 55: 7–12.CrossRefGoogle ScholarPubMed
Kolker, S., Christensen, E., Leonard, J. V., Greenberg, C. R., Boneh, A., Burlina, A. B., et al. (2011). “Diagnosis and management of glutaric aciduria type 1 – revised recommendations,” J. Inherit. Metab. Dis. 34: 677–94.CrossRefGoogle Scholar
Koutsis, G., Karadima, G., Kladi, A., and Panas, M. (2013). “The challenge of juvenile Huntington disease: to test or not to test,” Neurology 80(11): 990–6.CrossRefGoogle ScholarPubMed
Krause, M., Fogel, W., Tronnier, V., Pohle, S., Hörtnagel, K., Thyen, U., et al. (2006). “Long-term benefit to pallidal deep brain stimulation in a case of dystonia secondary to pantothenate kinase-associated neurodegeneration,” Mov. Disord. 21: 2255–7.CrossRefGoogle Scholar
Külkens, S., Harting, I., Sauer, S., Zschocke, J., Hoffmann, G. F., Gruber, S., et al. (2005). “Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency,” Neurology 64: 2142–4.CrossRefGoogle ScholarPubMed
Macaya, A., Munell, F., Burke, R. E., and De Vivo, D. C. (1993). “Disorders of movement in Leigh syndrome,” Neuropediatrics 24: 60–7.CrossRefGoogle ScholarPubMed
Machado, A., Chien, H. F., and Deguti, M. M. (2006). “Neurological manifestations in Wilson’s disease: Report of 119 cases,” Mov. Disord. 21: 2192–6.CrossRefGoogle ScholarPubMed
MacMillan, J. C., Morrison, P. J., Nevin, N. C., Shaw, D. J., Harper, P. S., Quarrell, O. W., et al. (1993). “Identification of an expanded CAG repeat in the Huntington’s disease gene (IT15) in a family reported to have benign hereditary chorea,” J. Med. Genet. 30: 1012–13.CrossRefGoogle Scholar
Mak, C. M., Lam, C. W., and Tam, S. (2008). “Diagnostic accuracy of serum ceruloplasmin in Wilson disease: determination of sensitivity and specificity by ROC curve analysis among ATP7B-genotyped subjects,” Clinical Chemistry 54: 1356–62.CrossRefGoogle ScholarPubMed
Merle, U., Schaefer, M., and Ferenci, P., (2007). “Stremmel W clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study,” Gut 56: 115–20.CrossRefGoogle ScholarPubMed
Morgan, N. V., Westaway, S. K., Morton, J. E., Gregory, A., Gissen, P., Sonek, S., et al. (2006). “PLA2G6, encoding a phospholipase A 2, is mutated in neurodegenerative disorders with high brain iron,” Nat. Genet. 38: 752–4.CrossRefGoogle ScholarPubMed
Mubaidin, A., Roberts, E., Hampshire, D., Dehyyat, M., Shurbaji, A., Dehyyat, M., et al. (2003). “Karak syndrome: novel degenerative disorder of the basal ganglia and cerebellum,” J. Med. Genet. 40: 543–6.CrossRefGoogle ScholarPubMed
Mueller, A., Reuner, U., Landis, B., Kitzler, H., Reichmann, H., and Hummel, T. (2006). “Extrapyramidal symptoms in Wilson’s disease are associated with olfactory dysfunction,” Mov. Disord. 21: 1311–16.CrossRefGoogle ScholarPubMed
Ondo, W. G., Adam, O. R., Jankovic, J., and Chinnery, P. F. (2010). “Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States,” Mov. Disord. 25: 2470–2.CrossRefGoogle ScholarPubMed
O’Sullivan, J. D., Hanagasi, H. A., Daniel, S. E., Tidswell, P., Davies, S. W., and Lees, A. J. (2000). “Neuronal intranuclear inclusion disease and juvenile parkinsonism,” Mov. Disord. 15: 990–5.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Pampols, T. (2010). “Inherited metabolic rare diseases,” Adv. Exp. Med. Biol. 686: 397–431.CrossRefGoogle Scholar
Pascual, J. M., Van Heertum, R. L., Wang, D., Engelstad, K., and De Vivo, D. C. (2002). “Imaging the metabolic footprint of GLUT1 deficiency on the brain,” Ann. Neurol. 52: 458e64.CrossRefGoogle Scholar
Patterson, M. C., Vecchio, D., Prady, H., Abel, L., and Wraith, J. E. (2007). “Miglustat for treatment of Niemann-Pick C disease: a randomised control study,” Lancet Neurol. 6: 765–72.CrossRefGoogle Scholar
Pineda, M., Ribes, A., Busquets, C., Vilaseca, M. A., Aracil, A., and Christensen, E. (1998). “Glutaric aciduria type 1 with high residual glutaryl-CoA dehydrogenase activity,” Dev. Med. Child Neurol. 40: 840–2.CrossRefGoogle ScholarPubMed
Pons, R., Collins, A., Rotstein, M., Engelstad, K., and De Vivo, D. C. (2010). “The spectrum of movement disorders in GLUT-1 deficiency,” Mov. Disord. 25(3): 275–81.CrossRefGoogle ScholarPubMed
Rasmussen, A., Macias, R., Yescas, P., Ochoa, A., Davila, G., and Alonso, E. (2000). “Huntington disease in children: genotype-phenotype correlation,” Neuropediatrics 31: 190–4.CrossRefGoogle ScholarPubMed
Robinson, B. H., MacMillan, H., Petrova-Benedict, R., and Sherwood, W. G. (1987). “Variable clinical presentation in patients with defective E1 component of pyruvate dehydrogenase complex,” J. Pediat. 111: 525–33.CrossRefGoogle ScholarPubMed
Rosenberg, R. N., Nyhan, W. L., Coutinho, P., and Bay, C. (1978). “Joseph’s disease: an autosomal dominant neurological disease in the Portuguese of United States and the Azores Islands,” Adv. Neurol. 21: 33–57.Google ScholarPubMed
Saito, Y. and Takashima, S. (2000). “Neurotransmitter changes in the pathophysiology of Lesch-Nyhan syndrome,” Brain Dev. 22: S122–31.CrossRefGoogle ScholarPubMed
Saudubray, J. M., Sedel, F., and Walter, J. H. (2006). “Clinical approach to treatable inborn metabolic diseases: an introduction,” J. Inherit. Metab. Dis. 29: 261–74.CrossRefGoogle Scholar
Scarano, V., Pellecchia, M. T., Filla, A., and Barone, P. (2002). “Hallervorden-Spatz syndrome resembling a typical Tourette syndrome,” Mov. Disord. 17: 618–20.CrossRefGoogle ScholarPubMed
Schneider, S. A., Dusek, P., Hardy, J., Westenberger, A., Jankovic, J., and Bhatia, K. P. (2013). “Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA),” Current Neuropharmacol. 11: 59–79.Google Scholar
Sethi, K. D., Adams, R. J., Loring, D. W., and El Gammal, T. (1988). “Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations,” Ann. Neurol. 24: 692–4.CrossRefGoogle ScholarPubMed
Squitieri, F. and Jankovic, J. (2012). “Huntington’s disease: how intermediate are intermediate repeat lengths?Mov. Disord. 27(14): 1714–17.CrossRefGoogle ScholarPubMed
Srinivas, K., Sinha, S., Taly, A. B., Prashanth, L. K., Arunodaya, G. R., Janardhana Reddy, Y. C., et al. (2008). “Dominant psychiatric manifestations in Wilson’s disease: a diagnostic and therapeutic challenge,” J. Neurol. Sci. 266: 104–8.CrossRefGoogle ScholarPubMed
Stöckler, S., Isbrandt, D., Hanefeld, F., Schmidt, B., and von Figura, K. (1996). “Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism,” Am. J. Hum. Genet. 58: 914–22.Google ScholarPubMed
Strong, T. V., Tagle, D. A., Valdes, J. M., Elmer, L. W., Boehm, K., Swaroop, M., et al. (1993). “Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues,” Nat. Genet. 5: 259–65.CrossRefGoogle ScholarPubMed
Suls, A., Dedeken, P., Goffin, K., Van Esch, H., Dupont, P., Cassiman, D., et al. (2008). “Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1,” Brain 131: 1831–44.CrossRefGoogle ScholarPubMed
Thompson, P. D., Bathia, K. P., Brown, P., Davis, M. B., Pires, M., Quinn, N. P., et al. (1994). “Cortical myoclonus in Huntington’s disease,” Mov. Disord. 9: 633–41.CrossRefGoogle ScholarPubMed
Toufexis, M. and Gieron-Korthals, M. (2010). “Early testing for Huntington disease in children: pros and cons,” J. Child Neurol. 25: 482–4.CrossRefGoogle ScholarPubMed
Twomey, E. L., Naughten, E. R., Donogue, V. B., and Ryan, S. (2003). “Neuroimaging findings in glutaric aciduria type 1,” Pediatr. Radiol. 33: 823–30.CrossRefGoogle ScholarPubMed
Uc, E. Y., Wenger, D. A., and Jankovic, J. (2000). “Niemann-Pick disease type C: two cases and an update,” Mov. Disord. 15: 1199–203.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Vanier, M. T. and Millat, G. (2003). “Niemann-Pick disease type C,” Clin. Genet. 64: 269–81.CrossRefGoogle ScholarPubMed
Verrotti, A., D’Egidio, C., Agostinelli, S., and Gobbi, G. (2012). “Glut1 deficiency: when to suspect and how to diagnose?Eur. J. Paediatr. Neurol. 16: 3–9.CrossRefGoogle Scholar
Went, L. N., Vegter-Van der Vlis, M., and Bruyn, G. W. (1984). “Parenteral transmission in Huntington’s disease,” Lancet Neurol. 1: 1100–2.CrossRefGoogle Scholar
Zagami, A. S. and Boers, P. M. (2001). “Disappearing ‘face of the giant panda,’Neurology 56: 665.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×