Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-10-31T22:57:46.929Z Has data issue: false hasContentIssue false

9 - Gene Therapy and Imaging of Transgene Expression in Living Subjects

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

GENE THERAPY

Broadly defined, gene therapy is the process of delivering genetic materials into a patient or cells from the patient to modify the expression of one or more genes to achieve a therapeutic outcome for the patient. Hence, a transgene delivery procedure may be intended for the following reasons: (1) to initiate the expression of the transgene in specific tissues or the entire body of the patient, (2) to reduce the expression of specific endogenous genes at a target site or the entire body of the patient, and (3) to enhance the expression of specific endogenous genes in target tissues or the entire body of the patient. The success of a gene therapy procedure depends on several factors including (1) specific cell targeting when it is necessary to cause changes in gene expression only in specific cells of the patient's body and avoid modification of gene expression in all other cells. This may be necessary to avoid side effects and deliver sufficient gene expression modifying genetic material to the target cells; (2) efficiency of transgene delivery to achieve sufficient modification of gene expression in target cells; (3) modified gene expression for sufficient time duration; and (4) lack of immune reaction to the product of the therapeutic transgene, when immune reaction will reduce efficacy or potency of the therapeutic procedure. Investigators in the field of gene therapy are working hard to solve problems associated with all of these factors.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, X., Kim, K., Liu, D. (2007). Nonviral gene delivery: What we know and what is next. AAPS Journal 9(1): E92–E104.CrossRefGoogle ScholarPubMed
De, A., Gambhir, S. S. (2003). PET in imaging gene expression and therapy. In: Bailey, D. et al. (Eds.), Positron Emission Tomography: Basic Science and Clinical Practice, New York: Springer-Verlag: 845–868.Google Scholar
Min, J. J., Gambhir, S. S. (2004). Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Therapy 11: 115–125.CrossRefGoogle ScholarPubMed
Walls, Z., Gambhir, S. S. (2007). BRET-based method for detection of specific RNA species. Bioconjug Chem 19(1): 178–184.CrossRefGoogle ScholarPubMed
Walls, Z. et al. (2008). A generalizable strategy for imaging pre-mRNA levels in living subjects using spliceosome-mediated RNA trans-splicing. J Nucl Med 49(7): 1146–1154.CrossRefGoogle ScholarPubMed
Yaghoubi, S. S., Gambhir, S. S. (2008). Imaging and cancer. In: Mendelsohn, J. et al. (Eds.), The Molecular Basis of Cancer. Saunders Elsevier: Philadelphia: 309–323.CrossRefGoogle Scholar
Tarantal, A. F. et al. (2006). Fetal gene transfer using lentiviral vectors: In vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum Gene Ther 17: 1254–1261.CrossRefGoogle ScholarPubMed
Chaudhuri, T. R. et al. (2001). A noninvasive reporter system to image adenoviral-mediated gene transfer to ovarian cancer xenografts. Gynecol Oncol 83: 432–438.CrossRefGoogle ScholarPubMed
Xiong, Z. et al. (2006). Imaging chemically modified adenovirus for targeting tumors expressing integrin avb3 in living mice with mutant herpes simplex virus type 1 thymidine kinase PET reporter gene. J Nucl Med 47(1): 130–139.Google Scholar
Wu, J. C. et al. (2002). Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106: 180–183.CrossRefGoogle ScholarPubMed
Richard, J.-C. et al. (2003). Imaging the spatial distribution of transgene expression in the lungs with positron emission tomography. Gene Therapy 10: 2074–2080.CrossRefGoogle ScholarPubMed
Deroose, C. M. et al. (2006). Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescence imaging. Mol Ther 14(3): 423–431.CrossRefGoogle ScholarPubMed
Lim, S. J. et al. (2007). Enhanced expression of adenovirus-mediated sodium iodide symporter gene in MCF-7 breast cancer cells with retinoic acid treatment. J Nucl Med 48(3): 398–404.Google ScholarPubMed
Kuruppu, D. et al. (2007). Positron emission tomography of herpes simplex virus 1 oncolysis. Cancer Research 67(7): 3295–3300.CrossRefGoogle ScholarPubMed
Sen, L. et al. (2005). Noninvasive imaging of ex vivo intracoronarily delivered nonviral therapeutic transgene expression in heart. Mol Ther 12(1): 49–57.CrossRefGoogle ScholarPubMed
Hildebrandt, I. J. et al. (2003). Optical imaging of transferrin targeted PEI/DNA complex in living subjects. Gene Therapy 10: 758–764.CrossRefGoogle ScholarPubMed
De, A., Lewis, X. Z., Gambhir, S. S. (2003). Noninvasive imaging of lentiviral-mediated reporter gene expression in living mice. Mol Ther 7(5): 681–691.CrossRefGoogle ScholarPubMed
Jacobs, A. et al. (2001). Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Research 61: 2983–2995.Google ScholarPubMed
Bennett, J. J. et al. (2001). Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Nat Med 7(7): 859–863.CrossRefGoogle Scholar
Yaghoubi, S. S. et al. (2005). Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Therapy 12: 329–339.CrossRefGoogle ScholarPubMed
Pantuck, A. J. et al. (2002). CL1-SR39: A noninvasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J Urol 168: 1193–1198.CrossRefGoogle ScholarPubMed
Pantuck, A. J. et al. (2002). Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants. Hum Gene Ther 13: 777–789.CrossRefGoogle ScholarPubMed
Burton, J. B. et al. (2008). Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat Med 14(8): 882–888.CrossRefGoogle ScholarPubMed
Deng, W. et al. (2004). Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir. Eur J Nucl Med Mol Imaging 31(1): 99–109.CrossRefGoogle ScholarPubMed
Wang, H. et al. (2006). Molecular imaging with 123I-FIAU, 18F-FUdR, 18F-FET, and 18F-FDG for monitoring herpes simplex virus type 1 thymidine kinase and Ganciclovir prodrug activation gene therapy of cancer. J Nucl Med 47: 1161–1171.Google Scholar
Deng, W. et al. (2006). Serial in vivo imaging of lung metastases model and gene therapy using HSV1-tk and Ganciclovir. J Nucl Med 47: 877–884.Google ScholarPubMed
Penuelas, I. et al. (2005). Gene therapy imaging in patients for oncological applications. Eur J Nucl Med Mol Imaging 32(14): S384–S403.CrossRefGoogle ScholarPubMed
Yaghoubi, S. S. et al. (2001). Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med 42: 1225–1234.Google ScholarPubMed
Yaghoubi, S. S. et al. (2006). Preclinical safety evaluation of 18F-FHBG: A PET reporter probe for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) or mutant HSV1-sr39tk's expression. J Nucl Med 47(4): 706–715.Google ScholarPubMed
Penuelas, I. et al. (2005). Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128(7): 1787–1795.CrossRefGoogle ScholarPubMed
Jacobs, A. et al. (2001). Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 358: 727–729.CrossRefGoogle ScholarPubMed
Dempsey, M. F. et al. (2006). Assessment of 123I-FIAU imaging of herpes simplex viral gene expression in the treatment of glioma. Nucl Med Commun 27: 611–617.CrossRefGoogle ScholarPubMed
Yaghoubi, S. S. et al. Noninvasive detection of therapeutic cytolytic T cells with 18F-FHBG in a patient with glioma. Nat Clin Pract Oncol 6: 53–58.CrossRef
Chin, F. T. et al. (2008). Semiautomated radiosynthesis and biological evaluation of [18F]FEAU: a novel PET imaging agent for HSV1-tk/sr39tk reporter gene expression. Mol Imaging Biol 10(2): 82–91.CrossRefGoogle Scholar
Alauddin, M. M., Conti, P. S. (1998). Synthesis and preliminary evaluation of 9-(4-[18F]-Fluoro-3-Hydroxymethylbutyl)Guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25: 175–180.CrossRefGoogle ScholarPubMed
Alauddin, M. A. et al. (2001). Preclinical evaluation of the penciclovir analog 9-(4-[18F]fluoro-3-hydroxy-methylbutyl)guanine for in vivo measurement of suicide gene expression with PET. J Nucl Med 42(11): 1682–1690.Google Scholar
Ray, P. et al. (2001). Monitoring gene therapy with reporter gene imaging. Semin Nucl Med 31(4): 312–320.CrossRefGoogle ScholarPubMed
Iyer, M. et al. (2005). Applications of molecular imaging in cancer gene therapy. Curr Gene Ther 5: 607–618.CrossRefGoogle ScholarPubMed
Gambhir, S. S. et al. (2000). Imaging transgene expression with radionuclide imaging technologies. Neoplasia 2(1–2): 118–138.CrossRefGoogle ScholarPubMed
Herschman, H. R. et al. (2002). Monitoring gene therapy by positron emission tomography. In: Curiel, D. T., and Douglas, J. T. (Eds.), Vector Targeting for Therapeutic Gene Delivery661–685. Wiley-Liss: New York.Google Scholar
Yaghoubi, S. S. et al. (2001). Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Therapy 8: 1072–1080.CrossRefGoogle ScholarPubMed
Yu, Y. et al. (2000). Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 6(8): 933–937.Google ScholarPubMed
Liang, Q. et al. (2002). Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther 6(1): 73–82.CrossRefGoogle ScholarPubMed
Wang, Y. et al. (2005). Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 46: 667–674.Google ScholarPubMed
Chen, I. Y. et al. (2004). Micro–positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109: 1415–1420.CrossRefGoogle ScholarPubMed
Tjuvajev, J. G. et al. (1999). A general approach to the non-invasive imaging of transgenes using cis-linked herpes simplex virus thymidine kinase. Neoplasia 1: 315–320.CrossRefGoogle ScholarPubMed
Chappell, S. A., Edelman, G. M., Mauro, V. P. (2000). A 9-nt segment of a cellular mRNA can function as an Internal Ribosome Entry Site (IRES) and when present in linked multiple copies greatly enhances IRES activity. PNAS 97(4): 1536–1541.CrossRefGoogle ScholarPubMed
Anton, M. et al. (2004). Coexpression of herpesviral thymidine kinase reporter gene and VEGF gene for noninvasive monitoring of therapeutic gene transfer: an in vitro evaluation. J Nucl Med 45(10): 1743–1746.Google Scholar
Yaghoubi, S. S., Gambhir, S. S. (2003). Monitoring p53 therapeutic transgene expression in mice by imaging the expression of a linked HSV1-sr39tk PET reporter transgene. J Nucl Med 44(5): 30P [Abstract#95].Google Scholar
Sun, X. et al. (2001). Quantitative imaging of gene induction in living animals. Gene Therapy 8: 1572–1579.CrossRefGoogle ScholarPubMed
Ray, S. et al. (2004). Novel bidirectional vector strategy for amplification of therapeutic and reporter gene expression. Hum Gene Ther 15: 681–690.CrossRefGoogle ScholarPubMed
Ray, P. et al. (2004). Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Research 64: 1323–1330.CrossRefGoogle ScholarPubMed
Ray, P., Tsien, R., Gambhir, S. S. (2007). Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Research 67(7): 3085–3093.CrossRefGoogle ScholarPubMed
Ray, P., Wu, A. M., Gambhir, S. S. (2003). Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Research 63: 1160–1165.Google ScholarPubMed
Doubrovin, M. et al., Development of a new reporter gene system-dsRed/Xanthine Phosphoribosyltransferase-Xanthine for molecular imaging of processes behind the intact blood–brain barrier. Mol Imaging 2(2): 93–112.CrossRef
Ponomarev, V. et al. (2004). A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31: 740–751.CrossRefGoogle ScholarPubMed
Jacobs, A. et al. (1999). Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1(2): 154–161.CrossRefGoogle ScholarPubMed
Hwang, D. W. et al., Development of a dual membrane protein reporter system using sodium iodide symporter and mutant dopamine D2 receptor transgenes. J Nucl Med 48(4): 588–595.CrossRef
Doubrovin, M. et al. (2001). Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. PNAS 98(16): 9300–9305.CrossRefGoogle ScholarPubMed
Green, L. A. et al. (2002). Indirect monitoring of endogenous gene expression by positron emission tomography (PET) imaging of reporter gene expression in transgenic mice. Mol Imaging Biol 4(1): 71–81.CrossRefGoogle ScholarPubMed
Green, L. A. et al. (2004). A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 45(9): 1560–1570.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×