Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: January 2013

14 - Nuclear Magnetic Resonance–Based Saliva Metabolomics

from Section 3 - Metabolomics of Biofluids: Nuclear Magnetic Resonance Spectroscopy and Chemometrics

Related content

Powered by UNSILO


Amerongen, A. V., and Veerman, E. C. I. (2002). Saliva – the defender of the oral cavity. Oral Dis., 8, 12–22.
Bertram, H. C., Eggers, N., and Eller, N. (2009). Potential of human saliva for nuclear magnetic resonance-based metabolomics and for health-related biomarker identification. Anal. Chem., 81, 9188–9193.
Caddy, B. (1984). Saliva as a specimen for drug analysis. In: R. C. Baselt (Ed.), Advances in analytical toxicology (Vol. 1, pp. 198–254). Foster City: Biomedical Publications.
Cooper, T. B., Bark, N., and Simpson, G. M. (1981). Prediction of steady state plasma and saliva levels of desmethylimipramine using a single dose, single time point procedure. Psychopharmacology, 74, 115–121.
Dinnella, C., Recchia, A., Fia, G., Bertuccioli, M., and Monteleone, E. (2009). Saliva characteristics and individual sensitivity to phenolic astringent stimuli. Chem. Senses, 34, 295–304.
Eriksen, S., and Kulkarni, A. (1963). Methanol in normal human breath. Science, 141, 639–640.
Friel, E. N., and Taylor, A. J. (2001). Effect of salivary components on volatile partitioning from solutions. J. Agric. Food Chem., 49, 3898–3905.
Humphrey, S. P., and Williamson, R. T. A. (2001). Review of saliva: normal composition, flow, and function. J. Prosthet. Dent., 85, 162–169.
Höld, K. M., Douwe de Boer, B. S., Zuidema, J., and Maes, R. A. A. (1996). Saliva as an analytical tool in toxicology. Int. J. Drug Testing, 1, 1.
Lindinger, C., Labbe, D., Pollien, P., Rytz, A., Juillerat, M. A., Yeretzian, C., and Blank, I. (2008). When machine tastes coffee: instrumental approach to predict the sensory profile of espresso coffee. Anal. Chem., 80, 1574–1581.
Malone, M. E., Appelqvist, I. A. M., and Norton, I. T. (2003). Oral behaviour of food hydrocolloids and emulsions. Part 2. Taste and aroma release. Food Hydrocolloids, 17, 775–784.
Mandel, I. D. (1990). The diagnostic uses of saliva. J. Oral Pathol. Med., 19, 119–125.
May, P. R. A., Van Putten, T., Jenden, D. J., and Cho, A. K. (1978). Test dose response in schizophrenia: chlorpromazine blood and saliva levels. Arch. Gen. Psychiatry, 35, 1091–1097.
NeyraudE., Tremblay-FrancoM., GregoireS., BerdeauxO., CanletC. (2012). Relationships between the metabolome and the fatty acid composition of human saliva; effects of stimulation. Metabolomics, accepted, DOI 10.1007/s11306-012-0440-6.
Paxton, J. W. (1979). Measurement of drugs in saliva: a review. Methods Find. Exp. Clin. Pharmacol., 1, 11–21.
Ramadan, Z., Zhang, P., Jacobs, D. M., Tavazzi, I., and Kochhar, S. (2007). An NMR- and MS-based metabonomic investigation of saliva metabolic changes in feline odontoclastic resorptive lesions (FORL)-diseased cats. Metabolomics, 3, 113–119.
Rochfort, S., Ezernieks, V., Bastian, S. E. P., and Downey, M. O. (2010). Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chem., 121, 1296–1304.
Schipper, R. G., Siletti, E., and Vingerhoeds, M. H. (2007). Saliva as a research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol. 52, 1114–1135.
Silletti, E., Vingerhoeds, M. H., Norde, W., and van Aken, G. A. (2007). The role of electrostatics in saliva-induced emulsion flocculation. Food Hydrocolloids, 21, 596–606.
Silwood, C. J. L., Lynch, E., Claxson, A. W. D., and Grootveld, M. C. (2002). 1H and 13C NMR spectroscopic analysis of human saliva. J. Dent. Res., 81, 422–427.
Silwood, C. J. L., Lynch, E., Seddon, S., Sheerin, A., Claxson, A. W. D., and Grootveld, M. C. (1999). 1H-NMR analysis of microbial-derived organic acids in primary root carious lesions and saliva. NMR Biomed., 12, 345–356.
Sklenar, V., Piotto, M., Leppik, R., and Saudek, V. J. (1993). Gradient-tailored water suppression for H-1-N15 HSQC experiments optimized to retail full sensitivity. Magn. Reson. Series A., 102, 241–245.
Skogerson, K., Runnebaum, R., Wohlgemuth, G., de Ropp, J., Heymann, H., and Fiehn, O. (2009). Comparison of gas chromatography-coupled time-of-flight mass spectrometry and H-1 nuclear magnetic resonance spectroscopy metabolite identification in white wines from a sensory study investigating wine body. J. Agric. Food Chem., 57, 6899–6907.
Smallcombe, S. H., Patt, S. L., and Keifer, P. A. (1995). WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. Magn Reson. Series A., 117, 295–303.
Sreebny, L. M. (2000). Saliva in health and disease: an appraisal and update. Int. Dent. J., 50, 140–161.
Takeda, I., Stretch, C., Barnaby, P., Bhatnagerm, K., Rankin, K., Fu, H., Weljie, A., Jha, N., and Slupsky, C. (2009). Understanding the human salivary metabolome. NMR Biomed., 22, 577–584.
Taylor, A. J. (1996). Volatile flavor release from foods during eating. CRC Crit. Rev. Food Sci., 36, 765–784.
Taylor, A. J., and Linforth, R. S. T. (1996). Flavour release in the mouth. Trends Food Sci. Tech., 7, 444–448.
Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., and Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am. J. Clin. Nutr., 84, 531–539.
Wongravee, K., Lloyd, G. R., Silwood, C. J., Grootveld, M., and Brereton, R. G. (2010). Supervised self organizing maps for classification and determination of potentially discriminatory variables: illustrated by application to nuclear magnetic resonance metabolomic profiling. Anal. Chem., 82, 628–638.