Skip to main content Accessibility help
The Mathematical Language of Quantum Theory
  • Cited by 62
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

For almost every student of physics, the first course on quantum theory raises a lot of puzzling questions and creates a very uncertain picture of the quantum world. This book presents a clear and detailed exposition of the fundamental concepts of quantum theory: states, effects, observables, channels and instruments. It introduces several up-to-date topics, such as state discrimination, quantum tomography, measurement disturbance and entanglement distillation. A separate chapter is devoted to quantum entanglement. The theory is illustrated with numerous examples, reflecting recent developments in the field. The treatment emphasises quantum information, though its general approach makes it a useful resource for graduate students and researchers in all subfields of quantum theory. Focusing on mathematically precise formulations, the book summarises the relevant mathematics.


"The authors are renowned experts in the field, and I find their presentation masterful..the authors present a thorough and well-structured treatise on the mathematical language of quantum theory. I can recommend it to any graduate student with some experience in quantum computing who is interested in the foundations of the subject."
Thomas Peters in Contemporary Physics

"In summary, this is a fine book that will serve well theoretical quantum physicists wishing to acquire essential mathematical tools and deepen their insight into the mathematical foundations of quantum theory;"
Paul Busch, Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


[1] A., Acin. Statistical distinguishability between unitary operations. Phys. Rev. Lett., 87: 177 901, 2001.
[2] S.T., Ali, J.-P., Antoine and J.-P., Gazeau. Coherent states, Wavelets and Their Generalizations. Springer-Verlag, New York, 2000.
[3] S.T., Ali, C., Carmeli, T., Heinosaari and A., Toigo. Commutative povms and fuzzy observables. Found. Phys., 39: 593–612, 2009.
[4] S.T., Ali and G.G., Emch. Fuzzy observables in quantum mechanics. J. Math, Phys. 15: 176–182, 1974
[5] A., Ambainis, M., Mosca, A., Tapp and R., de Wolf. Private quantum channels. In FOCS, Proc. 41st Annual Symp. on Foundations of Computer Science, pp. 547–553. IEEE Computer Society, 2000.
[6] H., Araki and M.M., Yanase. Measurement of quantum mechanical operators. Phys. Rev. 2, 120: 622–626, 1960.
[7] A., Arias, A., Gheondea and S., Gudder. Fixed points of quantum operations. J. Math. Phys., 43: 5872–5881, 2002.
[8] K., Audenaert and S., Scheel. On random unitary channels. New J. Phys., 10: 023 011, 2008.
[9] A., Barenco, C.H., Bennett, R., Cleve et al. Elementary gates for quantum computation. Phys. Rev. A, 52: 3457–3467, 1995.
[10] V., Bargmann. Note on Wigner's theorem on symmetry operations. J. Math. Phys., 5: 862–868, 1964.
[11] J.S., Bell. On the Einstein Podolsky Rosen paradox. Physics, 1: 195–200, 1964.
[12] J.S., Bell. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys., 38: 447–452, 1966.
[13] E., Beltrametti, G., Cassinelli and P., Lahti. Unitary measurements of discrete quantities in quantum mechanics. J. Math. Phys., 31: 91–98, 1990.
[14] I., Bengtsson and K., Zyczkowski. Geometry of quantum states. Cambridge University Press, 2006.
[15] C.H., Bennett. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett., 68: 3121–3124, 1992.
[16] C.H., Bennett and G., Brassard. Quantum cryptography: public-key distribution and coin-tossing. In Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York, 1984.
[17] C.H., Bennett and S.J., Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett., 69: 2881–2884, 1992.
[18] C.H., Bennett, G., Brassard, C., Crepeau, R., Jozsa, A., Peres, and W.K., Wootters. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett., 70: 1895–1899, 1993.
[19] C.H., Bennett, D.P., DiVincenzo, C.A., Fuchs, et al. Quantum nonlocality without entanglement. Phys. Rev. A, 59: 1070–1091, 1999.
[20] C.H., Bennett, D.P., DiVincenzo, T., Mor, P.W., Shor, J.A., Smolin, and B.M., Terhal. Unextendible product bases and bound entanglement. Phys. Rev. Lett., 82: 5385, 1999.
[21] J.A., Bergou, U., Herzogand M., Hillery. Discrimination of quantum states. In Quantum State Estimation, Vol. 649 of Lecture Notes in Physics, pp. 417–465. Springer, Berlin, 2004.
[22] P., Busch. Unsharp reality and joint measurements for spin observables. Phys. Rev. D, 33: 2253–2261, 1986.
[23] P., Busch. Quantum states and generalized observables: a simple proof of Gleason"s theorem. Phys. Rev. Lett., 91: 120403/1–4, 2003.
[24] P., Busch. The role of entanglement in quantum measurement and information processing. Int. J. Theor. Phys., 42: 937–941, 2003.
[25] P., Busch. ‘No information without disturbance’: quantum limitations of measurement. In J. Christian and W. Myrvold, eds., Quantum reality, relativistic causality, and closing the epistemic circle. Springer-Verlag, Berlin, 2008.
[26] P., Busch and P., Lahti. The determination of the past and the future of a physical system in quantum mechanics. Found. Phys., 19: 633–678, 1989.
[27] P., Busch and P, Lahti. Some remarks on unsharp quantum measurements, quantum nondemolition, and all that. Ann. Physik 7, 47: 369–382, 1990.
[28] P., Busch and P., Lahti. The complementarity of quantum observables: Theory and experiments. Riv. Nuovo Cimento, 18: 1–27, 1995.
[29] P., Busch and H.-J., Schmidt. Coexistence of qubit effects. Quantum Inf. Process., 9: 143,–169, 2010.
[30] P., Busch and C., Shilladay. Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Phys. Rep., 435: 1–31, 2006.
[31] P., Busch and J., Singh. Lüders theorem for unsharp quantum measurements. Phys. Lett. A, 249: 10–12, 1998.
[32] P., Busch, G., Cassinelli and P., Lahti. Probability structures for quantum state spaces. Rev. Math. Phys., 7: 1105–1121, 1995.
[33] P., Busch, M., Grabowski and P., Lahti.Repeatable measurements in quantum theory:their role and feasibility. Found. Phys., 25: 1239–1266, 1995.
[34] P., Busch, M., Grabowski and P., Lahti. Operational Quantum Physics. Springer-Verlag, Berlin, 1997; second, corrected, printing.
[35] P., Busch, P., Lahti and P., Mittelstaedt. The Quantum Theory of Measurement. Springer-Verlag, Berlin, second edition, 1996.
[36] A., Aspuru-Guzik. C.A., Rodríguez Rosario and K., Modi. Linearassignment maps for correlated system–environment states. Phys. Rev. A, 81: 012 313, 2010.
[37] C., Carmeli, T., Heinonen and A., Toigo. Intrinsic unsharpness and approximate repeatability of quantum measurements. J. Phys. A, 40: 1303–1323, 2007.
[38] G., Cassinelli, E., De Vito, P., Lahti and A., Levrero. The Theory of Symmetry Actions in Quantum Mechanics. Springer, Berlin, 2004.
[39] G., Cassinelli, E., De Vito and A., Levrero. On the decompositions of a quantum state. J. Math. Anal. Appl., 210: 472–483, 1997.
[40] C.M., Caves, C. A., Fuchs and R., Schack. Unknown quantum states: the quantum de Finetti representation. J. Math. Phys., 43: 4537–4559, 2002.
[41] N.J., Cerf and J., Fiurášek. Optimal quantum cloning – a review. In Progress in Optics, Vol. 49. Elsevier, 2006.
[42] A., Chefles. Quantum state discrimination. Contemp. Physics, 41: 401–424, 2000.
[43] M., Choi. Completely positive linear maps on complex matrices. Linear Alg. Appl., 10: 285–290, 1975.
[44] J.F., Clauser, M.A., Horne, A., Shimony and R.A., Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23: 880–884, 1969.
[45] J.B., Conway. A Course in Functional Analysis, second edition. Springer, 1990.
[46] J.B., Conway. A Course in Operator Theory. American Mathematical Society, Providence, Rhode Island, 2000.
[47] R., Cooke, M., Keane and W., Moran. An elementary proof of Gleason"s theorem. Math. Proc. Cambridge Philos. Soc., 98: 117–128, 1985.
[48] J., Corbett. The Pauli problem, state reconstruction and quantum-real numbers. Rep. Math. Phys., 57: 53–68, 2006.
[49] J., Corbett and C., Hurst. Are wave functions uniquely determined by their position and momentum distributions?J. Austral. Math. Soc. Ser. B, 20: 182–201, 1978.
[50] G.M., D'Ariano, P., Lo Presti and P., Perinotti. Classical randomness in quantum measurements. J. Phys. A, 38: 5979–5991, 2005.
[51] E.B., Davies. Quantum Theory of Open Systems. Academic Press,, London, 1976.
[52] E.B., Davies and J.T., Lewis. An operational approach to quantum probability. Comm. Math. Phys., 17: 239–260, 1970.
[53] W.M., de Muynck. Foundations of Quantum Mechanics, An Empiricist Approach. Kluwer, Dordrecht, 2002.
[54] P.A.M., Dirac. The Principles of Quantum Mechanics. Oxford University Press, 1930.
[55] W., Dür, G., Vidal and J.I., Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 62: 062 314, 2000.
[56] T., Durt, B.-G., Englert, I., Bengtsson and K., Zyczkowski. On mutually unbiased bases. Int. J. Quant. Inf., 8: 535–640, 2010.
[57] A., Dvurečenskij. Gleason"s Theorem and Its Applications. Kluwer, Dordrecht, 1993.
[58] A., Einstein, B., Podolsky and N., Rosen. Can quantum-mechanical description of physical reality be considered complete?Phys. Rev., 47: 777–780, 1935.
[59] Y., Feng, R., Duan and M., Ying. Unambiguous discrimination between mixed quantum states. Phys. Rev. A, 70: 012 308, 2004.
[60] G.B., Folland. A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton, Florida, 1995.
[61] G.B., Folland. Real Analysis, second edition. John Wiley & Sons, New York, 1999.
[62] A., Friedman. Foundations of Modern Analysis. Dover, New York<, 1982. Reprint of the 1970 original.
[63] C., Friedman. Some remarks on Pauli data in quantum mechanics. J. Austral. Math. Soc. Ser. B, 30: 298–303, 1989.
[64] C., Gerry and P., Knight. Introductory Quantum Optics. Cambridge University Press, 2005.
[65] N., Gisin, G., Ribordy, W., Tittel and H., Zbinden. Quantum cryptography. Rev. Mod. Phys., 74: 145–195, 2002.
[66] A.M., Gleason. Measures on the closed subspaces of a Hilbert space. J. Math. Mech., 6: 885–893, 1957.
[67] D.M., Greenberger, M.A., Horne and A., Zeilinger. Going beyond Bell"s theorem. In M. Kafatos, ed., Bell"s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69–72. Kluwer Academic Publishers, Dordrecht, 1989.
[68] S., Gudder. Lattice properties of quantum effects. J. Math. Phys., 37: 2637, 1996.
[69] S., Gudder and R., Greechie. Effect algebra counterexamples. Math. Slovaca, 46: 317–325, 1996.
[70] R., Haag and D., Kastler. An algebraic approach to quantum field theory. J. Math. Phys., 5: 848–861, 1964.
[71] N., Hadjisavvas. Properties of mixtures on non-orthogonal states. Lett. Math. Phys., 5: 327–332, 1981.
[72] M., Hayashi. Quantum Information. Springer-Verlag, Berlin, 2006. Translated from the 2003 Japanese original.
[73] T., Heinonen. Optimal measurements in quantum mechanics. Phys. Lett. A, 346: 77–86, 2005.
[74] T., Heinosaari and M.M., Wolf. Nondisturbing quantum measurements. J. Math. Phys., 51: 092201, 2010.
[75] C.W., Helstrom. Quantum Detection and Estimation Theory. Academic Pressm New York, 1976.
[76] A.S., Holevo. Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam, 1982.
[77] M., Horodecki, P., Horodecki and R., Horodecki. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A, 223: 1–8, 1996.
[78] M., Horodecki, P.W., Shor and M.B., Ruskai. Entanglement breaking channels. Rev. Math. Phys., 15: 629–641, 2003.
[79] P., Horodecki. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A, 232, 1997.
[80] R., Horodecki, P., Horodecki, M., Horodecki and K., Horodecki. Quantum entanglement. Rev. Mod. Phys. 81: 865–942, 209.
[81] L.P., Hughston, R., Jozsa and W.K., Wootters. A complete classification of quantum ensembles having a given density matrix. Phys. Lett. A, 183: 14–18, 1993.
[82] I.D., Ivanović. Geometrical description of quantal state determination. J. Phys. A: Math. Gen., 14: 3241–3245, 1981.
[83] I.D., Ivanović. How to differentiate between nonorthogonal states. Phys. Lett. A, 123: 257–259, 1987.
[84] E.T., Jaynes. Information theory and statistical mechanics. II. Phys. Rev., 108: 171–190, 1957.
[85] A., Jenčová and S., Pulmannová. Characterizations of commutative POV measures. Found. Phys., 39: 613–624, 2009.
[86] D., Jonathan and M.B., Plenio. Entanglement-assisted local manipulation of pure quantum states. Phys. Rev. Lett., 83: 3566–3569, 1999.
[87] Y., Kinoshita, R., Namiki, T., Yamamoto, M., Koashi and N., Imoto. Selective entanglement breaking. Phys. Rev. A, 75: 032 307, 2007.
[88] K., Kraus. General state changes in quantum theory. Ann. Physics, 64: 311–335, 1971.
[89] K., Kraus. States, Effects, and Operations. Springer-Verlag, Berlin, 1983.
[90] S., Kullback and R.A., Leibler. On information and sufficiency. Ann. Math. Statistics, 22: 79–86, 1951.
[91] P.J., Lahti and M., Maczynski. Partial order of quantum effects. J. Math. Phys., 36: 1673–1680, 1995.
[92] L.J., Landau and R.F., Streater. On Birkhoff"s theorem for doubly stochastic completely positive maps of matrix algebras. Linear Algebra Appl., 193: 107–127, 1993.
[93] G., Lindblad. Completely positive maps and entropy inequalities. Comm. Math. Phys., 40: 147–151, 1975.
[94] L., Loveridge and P., Busch. ‘Measurement of quantum mechanical operators’ revisited. Eur. Phys. J. D, 2011.
[95] G., Lüders. Über die Zustandsänderung durch den Messprozess. Ann. Physik, 6 8: 322–328, 1951.
[96] G., Ludwig. Foundations of Quantum Mechanics I. Springer-Verlag, New York, 1983.
[97] D., Mayers. Unconditional security in quantum cryptography. J. Assoc. Comp. Mach., 48: 351, 2001.
[98] C.B., Mendl and M.M., Wolf. Unital quantum channels – convex structure and revivals of Birkhoff"s theorem. Comm. Math. Phys., 289: 1057–1086, 2009.
[99] D.N., Mermin. Quantum Computer Science. Cambridge University Press, 2007.
[100] M., Mičuda, M., Ježek, M., Dušek and J., Fiurášek. Experimental realization of programmable quantum gate. Phys. Rev. A, 78: 062 311, 2008.
[101] L., Molnár. Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces, Vol. 1895 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2007.
[102] M.A., Nielsen. Conditions for a class of entanglement transformations. Phys. Rev. Lett., 83: 436–439, 1999.
[103] M.A., Nielsen and I.L., Chuang. Programmable quantum gate arrays. Phys. Rev. Lett., 79: 321–324, 1997.
[104] M.A., Nielsen and I.L., Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[105] M., Ohya and D., Petz. Quantum Entropy and Its Use. Springer-Verlag, Berlin. Second, corrected printing, 2004.
[106] M., Ozawa. Conditional expectation and repeated measurements of continuous quantum observables. In Probability Theory and Mathematical Statistics Tbilisi, 1982, Vol. 1021 of Lecture Notes in Mathematics, pp. 518–525. Springer, Berlin, 1983.
[107] M., Ozawa. Quantum measuring processes of continuous observables. J. Math. Phys., 25: 79–87, 1984.
[108] M., Ozawa. Conditional probability and a posteriori states in quantum mechanics. Publ. RIMS, Kyoto Univ., 21: 279–295, 1985.
[109] M., Ozawa. Operations, disturbance, and simultaneous measurability. Phys. Rev. A, 63: 032 109, 2001.
[110] M., Paris and J., Řeháček, eds. Quantum State Estimation, Vol. 649 of Lecture Notes in Physics. Springer-Verlag, Berlin, 2004.
[111] K.R., Parthasarathy. Extremal decision rules in quantum hypothesis testing. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 24: 557–568, 1999.
[112] V., Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge, 2003.
[113] G., Pedersen. Analysis Now. Springer-Verlag, New York, 1989.
[114] J.-P., Pellonpää. Complete characterization of extreme quantum observables in infinite dimensions. J. Phys. A: Math. Theor., 44: 085 304, 2011.
[115] A., Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77: 1413– 1415, 1996.
[116] D., Petz. Quantum Information Theory and Quantum Statistics. Springer, Berlin, 2008.
[117] D., Petz. Algebraic complementarity in quantum theory. J. Math. Phys., 51: 015 215, 2010.
[118] M.B., Plenio and S., Virmani. An introduction to entanglement measures. Quant. Inf. Comp., 7: 1, 2007.
[119] E., Prugovečki. Information-theoretical aspects of quantum measurements. Int. J. Theor. Phys., 16: 321–331, 1977.
[120] M., Raginsky. Strictly contractive quantum channels and physically realizable quantum computers. Phys. Rev. A, 65: 032 306, 2002.
[121] M., Reed and B., Simon. Methods of Modern Mathematical Physics, Vol. I: Functional Analysis, revised and enlarged ed. Academic Press, London, 1980.
[122] W., Rudin. Real and Complex Analysis, third ed. McGraw-Hill, New York, 1987.
[123] W., Rudin. Functional Analysis, second ed., McGraw-Hill, New York, 1991.
[124] M.B., Ruskai, S., Szarek and E., Werner. An analysis of completely positive racepreserving maps on M2. Linear Algebra Appl., 347: 1593–187, 2002.
[125] B., Russo and H.A., Dye. A note on unitary operators in C?-algebras. Duke Math. J., 33: 413–416, 1966.
[126] V., Scarani, S., Iblisdir, N., Gisin and A., Acin. Quantum cloning. Rev. Mod. Phys., 77: 1225–1256, 2005.
[127] E., Schrödinger. Discussion of probability relations between separated systems. Math. Proc. Camb. Phil. Soc., 31: 555–563, 1935.
[128] A.J., Scott and M., Grassl. Symmetric informationally complete positive-operatorvalued measures: a new computer study. J. Math. Phys., 51: 042 203, 2010.
[129] P., Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 26: 1484–1509, 1997.
[130] P.W., Shor and J., Preskill. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 85: 441–444, 2000.
[131] M., Singer and W., Stulpe. Phase-space representations of general statistical physical theories. J. Math. Phys., 33: 131–142, 1992.
[132] P., Stano, D., Reitzner and T., Heinosaari. Coexistence of qubit effects. Phys. Rev. A, 78: 012 315, 2008.
[133] W.F., Stinespring. Positive functions on C?-algebras. Proc. Amer. Math. Soc., 6: 211–216, 1955.
[134] E., Størmer. Positive linear maps of operator algebras. Acta Math., 110: 233–278, 1963.
[135] W., Thirring. Atoms, molecules and large systems, in Quantum Mathematical Physics, second ed. Springer-Verlag, Berlin, 2002. Translated from the 1979 and 1980 German originals by Evans M. Harrell II.
[136] L., Vaidman, Y., Aharonov and D., Albert. How to ascertain the values of σx, σy, and σz of a spin-1/2 particle. Phys. Rev. Lett., 58: 1385–1387, 1987.
[137] G., Vernam. Cipher printing telegraph system for secret wire and radio telegraphic communications. J. Am. Inst. Electr. Eng., 45: 109–115, 1926.
[138] J., von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955. Translated by R.T. Beyer from Mathematische Grundlagen der Quantenmechanik, Springer, Berlin, 1932.
[139] D.F., Walls and G.J., Milburn. Quantum Optics, second ed. Springer-Verlag, 2008.
[140] T.-C., Wei, K., Nemoto, P.M., Goldbart, P.G., Kwiat, W.J., Munro and F., Verstraete. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A, 67:022 110, 2003.
[141] R.F., Werner. Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40: 4277–4281, 1989.
[142] R.F., Werner. All teleportation and dense coding schemes. J. Phys. A, 34: 7081, 2001.
[143] E.P., Wigner. Die Messung quantenmechanischer Operatoren. Z. Physik, 133: 101–108, 1952.
[144] E.P., Wigner. Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Expanded and improved edition, translated from the German by J. J. Griffin. Academic Press, New York, 1959.
[145] M.M., Wolf and J.I., Cirac. Dividing quantum channels. Commun. Math. Phys., 279: 147–168, 2008.
[146] M.M., Wolf, D., Perez-Garcia and C., Fernandez. Measurements incompatible in quantum theory cannot be measured jointly in any other no-signaling theory. Phys. Rev. Lett., 103: 230 402, 2009.
[147] W.K., Wootters and B.D., Fields. Optimal state-determination by mutually unbiased measurements. Ann. Physic, 191: 363–381, 1989.
[148] S. L., Woronowicz. Positive maps of low dimensional matrix algebras. Rep. Math. Phys, 10: 165–183, 1976.
[149] S., Yu, N., Liu, L., Li and C.H., Oh. Joint measurement of two unsharp observables of a qubit. Phys. Rev. A 81: 062 116, 2010.
[150] M., Ziman and V., Bužek. Entanglement-induced state ordering under local operations. Phys. Rev. A, 73: 012 312, 2006.
[151] M., Ziman and V., Bužek. Entanglement measures: state ordering vs. local operations. In M. Zukowski, ed., Quantum Communication and Security, pp. 196–204. IOS Press, 2007.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.