Skip to main content Accessibility help
×
Home
LDPC Code Designs, Constructions, and Unification
  • Cited by 14
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

Written by leading experts, this self-contained text provides systematic coverage of LDPC codes and their construction techniques, unifying both algebraic- and graph-based approaches into a single theoretical framework (the superposition construction). An algebraic method for constructing protograph LDPC codes is described, and entirely new codes and techniques are presented. These include a new class of LDPC codes with doubly quasi-cyclic structure, as well as algebraic methods for constructing spatially and globally coupled LDPC codes. Authoritative, yet written using accessible language, this text is essential reading for electrical engineers, computer scientists and mathematicians working in communications and information theory.

Reviews

'This book provides an in-depth survey of recently developed quasi-cyclic LDPC codes. It is a treasured reference on practical channel coding methods for both theorists and practitioners working in communications and information theory.'

Lara Dolecek - University of California, Los Angeles

'The importance of LDPC codes in numerous applications and their capacity-approaching performance has led to an explosion in research into their construction and analysis over the past decade. The numerous effective constructions of them can be broadly classified as algebraic and graphical, including the important superposition, protograph and spatial coupling techniques. This timely volume explains, unifies and greatly clarifies these diverse approaches and lays a solid foundation that will be invaluable to researchers, practitioners and students alike.'

Ian F. Blake - University of British Columbia, Vancouver

'A book from the leaders in the field of error-correcting codes. Superposition - a unified framework for low-density parity check code construction - makes a description of codes of various classes rather simple.'

Bane Vasic - University of Arizona, Tucson

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] Abu-Surra, S., Divsalar, D., and Ryan, W.E. 2010 (Jan.). On the existence of typical minimum distance for protograph-based LDPC codes. Pages 1–7 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, January 31–February 5 2010.
[2] Abu-Surra, S., Divsalar, D., and Ryan, W.E. 2011. Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory, 57(2), 858–886.
[3] Ammar, B., Honary, B., Kou, Y., Xu, J., and Lin, S. 2004. Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Trans. Inf. Theory, 50(6), 1257–1269.
[4] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. 1974. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory, 20(2), 284–287.
[5] Barnault, L., and Declercq, D. 2003 (Mar.). Fast decoding algorithm for LDPC over GF(2q). Pages 70–73 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[6] Batten, L.M. 1997. Combinatorics of Finite Geometries, 2nd ed. Cambridge, UK: Cambridge University Press.
[7] Bellorado, J., and Kavcic, A. 2010. Low-complexity soft-decoding algorithms for Reed–Solomon codes part I: An algebraic soft-in hard-out Chase decoder. IEEE Trans. Inf. Theory, 56(3), 945–959.
[8] Berlekamp, E.R. 1984. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press.
[9] Bose, R.C. 1939. On the construction of balanced incomplete block designs. Ann. Eugenics, 9(4), 353–399.
[10] Bose, R.C. 1963. Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13(2), 389–419.
[11] Butler, B.K., and Siegel, P.H. 2010 (Jun.). On distance properties of quasi-cyclic protograph-based LDPC codes. Pages 809–813 of: Proc. IEEE Int. Symp. Inf. Theory. Austin, TX, USA, June 13–18, 2010.
[12] Cameron, P.J., and Van Lint, J.H. 1991. Designs, Graphs, Codes, and Their Links. Cambridge, UK: Cambridge University Press.
[13] Carmichael, R.D. 1956. Introduction to the Theory of Groups of Finite Orders. New York, NY: Dover.
[14] Chandrasetty, V.A., Johnson, S.J., and Lechner, G. 2013. Memory efficient decoders using spatially coupled quasi-cyclic LDPC codes. CoRR, arXiv:abs/1305.5625.
[15] Chang, B.Y., Dolecek, L., and Divsalar, D. 2011 (Nov.). EXIT chart analysis and design of non-binary protograph-based LDPC codes. Pages 566–571 of: IEEE Military Commun. Conf. (Milcom). Baltimore, MD, USA, November 7–10, 2011.
[16] Chang, B.Y., Divsalar, D., and Dolecek, L. 2012 (September 3–7). Non-binary protograph-based LDPC codes for short block-lengths. Pages 282–286 of: Proc. IEEE Inf. Theory Workshop. Lausanne, Switzerland, September 3–7, 2012.
[17] Chen, C.L., Peterson, W.W., and Weldon, E.J., Jr. 1969. Some results on quasi-cyclic codes. Inf. Control, 15(5), 407–423.
[18] Chen, J., and Fossorier, M. P. C. 2002. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans. Commun., 50(3), 406–414.
[19] Chen, L., Xu, J., Djurdjevic, I., and Lin, S. 2004. Near Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 52(7), 1038–1042.
[20] Chen, Y., and Parhi, K.K. 2004. Overlapped message passing for quasi-cyclic low-density parity check codes. IEEE Trans. Circuits Syst. I, 51(6), 1106–1113.
[21] Colbourn, C.J., and Dintz, J.H. 1996. The Handbook of Combinatorial Design. Boca Raton, FL: CRC Press.
[22] Costello, D.J., Jr., Dolecek, L., Fuja, T., Kliewer, J., Mitchell, D.G.M., and Smarandache, R. 2014. Spatially coupled sparse codes on graphs: Theory and practice. IEEE Commun. Mag., 52(7), 168–176.
[23] Davey, M.C., and MacKay, D.J.C. 1998. Low-density parity check codes over GF(q). IEEE Commun. Lett., 2(6), 165–167.
[24] Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., and Urbanke, R.L. 2002. Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inf. Theory, 48(6), 1570–1579.
[25] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2011 (Feb.). A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes. Pages 1–8 of: Proc. IEEE Inf. Theory Applic. Workshop. La Jolla, CA, USA, February 6–11, 2011.
[26] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2012a. A matrix-theoretic approach for analyzing quasi-cyclic low-density parity-check codes. IEEE Trans. Inf. Theory, 58(6), 4030–4048.
[27] Diao, Q., Zhou, W., Lin, S., and Abdel-Ghaffar, K. 2012b (Feb.). A transform approach for constructing quasi-cyclic Euclidean geometry LDPC codes. Pages 204–211 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 5–10, 2012.
[28] Diao, Q., Tai, Y.Y., Lin, S., and Abdel-Ghaffar, K. 2013. LDPC codes on partial geometries: Construction, trapping set structure, and puncturing. IEEE Trans. Inf. Theory, 59(12), 7898–7914.
[29] Diao, Q., Li, J., Lin, S., and Blake, I.F. 2016. New classes of paritial geometries and their associated LDPC codes. IEEE Trans. Inf. Theory, 62(6) 2947–2965.
[30] Divsalar, D., Dolinar, S., and Jones, C. 2005a (Sep.). Low-rate LDPC codes with simple protograph structure. Pages 1622–1626 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[31] Divsalar, D., Jones, C., Dolinar, S., and Thorpe, J. 2005b (Nov.). Protograph based LDPC codes with minimum distance linearly growing with block size. Page 5 of: Proc. IEEE Glob. Commun. Conf., vol. 3. St. Louis, MO, USA, November 28–December 2, 2005.
[32] Divsalar, D., Dolinar, S., and Jones, C. 2006 (Jul.). Construction of protograph LDPC codes with linear minimum distance. Pages 664–668 of: Proc. IEEE Int. Symp. Inf. Theory. Seattle, WA, USA, July 9–14, 2006.
[33] Divsalar, D., Dolinar, S., and Jones, C. 2007 (Oct.). Short protograph-based LDPC codes. Pages 1–6 of: IEEE Military Commun. Conf. (Milcom). Orlando, FL, USA, October 29–31, 2007.
[34] Divsalar, D., Dolinar, S., Jones, C.R., and Andrews, K. 2009. Capacity-approaching protograph codes. IEEE J. Sel. Areas Commun., 27(6), 876–888.
[35] Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., and Lin, S. 2003. A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols. IEEE Commun. Lett., 7(7), 317–319.
[36] Dolecek, L., Divsalar, D., Sun, Y., and Amiri, B. 2014. Non-binary protograph-based LDPC codes: Enumerators, analysis, and designs. IEEE Trans. Inf. Theory, 60(7), 3913–3941.
[37] El-Khamy, M., and McEliece, R.J. 2006. Iterative algebraic soft-decision list decoding of Reed–Solomon codes. IEEE J. Sel. Areas Commun., 24(3), 481–490.
[38] Fan, J.L. 2000 (Sep.). Array codes as low-density parity-check codes. Pages 543–546 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[39] Fossorier, M.P.C. 2004. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory, 50(8), 1788–1793.
[40] Gallager, R.G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory, IT-8(Jan.), 21–28.
[41] Han, Y., and Ryan, W.E. 2009. Low-floor decoders for LDPC codes. IEEE Trans. Commun., 57(6), 1663–1673.
[42] Horn, R.A., and Johnson, C.R. 1985. Matrix Analysis. Cambridge, UK: Cambridge University Press.
[43] Hu, X.Y., Eleftheriou, E., and Arnold, D.M. 2001. Progressive edge-growth Tanner graphs. Pages 995–1001 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Antonio, TX, USA, November 25–29, 2001.
[44] Hu, X.Y., Eleftheriou, E., and Arnold, D.M. 2005. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory, 51(1), 386–398.
[45] Huang, J., Liu, L., Zhou, W., and Zhou, S. 2010. Large-girth nonbinary QC-LDPC codes of various lengths. IEEE Trans. Commun., 58(12), 3436–3447.
[46] Huang, Q., Diao, Q., Lin, S., and Abdel-Ghaffar, K. 2012. Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets. IEEE Trans. Inf. Theory, 58(5), 2648–2671.
[47] Iyengar, A.R., Papaleo, M., Siegel, P.H., Wolf, J.K., Vanelli-Coralli, A., and Corazza, G.E. 2012. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels. IEEE Trans. Inf. Theory, 58(4), 2303–2320.
[48] Jiang, J., and Narayanan, K.R. 2008. Algebraic soft-decision decoding of Reed–Solomon codes using bit-level soft information. IEEE Trans. Inf. Theory, 54(9), 3907–3928.
[49] Jimenez Felstrom, A., and Zigangirov, K.S. 1999. Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Trans. Inf. Theory, 45(6), 2181–2191.
[50] Kang, J., Huang, Q., Zhang, L., Zhou, B., and Lin, S. 2010. Quasi-cyclic LDPC codes: An algebraic construction. IEEE Trans. Commun., 58(5), 1383–1396.
[51] Kang, J., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2011. An iterative decoding algorithm with backtracking to lower the error-floors of LDPC codes. IEEE Trans. Commun., 59(1), 64–73.
[52] Karlin, M. 1969. New binary coding results by circulants. IEEE Trans. Inf. Theory, 15(1), 81–92.
[53] Kasami, T. 1974. A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2. IEEE Trans. Inf. Theory, 20(5), 679.
[54] Köetter, R., and Vardy, A. 2003. Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory, 49(11), 2809–2825.
[55] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000a (Sep.). Construction of low density parity check codes: A geometric approach. Pages 137–140 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[56] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000b. Low density parity check codes based on finite geometries: A rediscovery. Page 200 of: Proc. IEEE Int. Symp. Inf. Theory. Sorrento, Italy, June 25–30, 2000.
[57] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000c (Nov./Dec.). Low density parity check codes: Construction based on finite geometries. Pages 825–829 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Francisco, CA, USA, November 27–December 1, 2000.
[58] Kou, Y., Lin, S., and Fossorier, M.P.C. 2001. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. Inf. Theory, 47(7), 2711–2736.
[59] Kudekar, S., Richardson, T.J., and Urbanke, R.L. 2011. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inf. Theory, 57(2), 803–834.
[60] Kudekar, S., Richardson, T., and Urbanke, R.L. 2013. Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans. Inf. Theory, 59(12), 7761–7813.
[61] Kumar, S., and Pfister, H.D. 2015. Reed–Muller codes achieve capacity on erasure channels. CoRR, arXiv:abs/1505.05123.
[62] Laendner, S., and Milenkovic, O. 2005. Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes. Pages 630–635 of: Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, vol. 1. Maui, HI, USA, June 13–16, 2005.
[63] Laendner, S., and Milenkovic, O. 2007. LDPC codes based on Latin squares: Cycle structure, stopping set, and trapping set analysis. IEEE Trans. Commun., 55(2), 303–312.
[64] Lan, L., Zeng, L., Tai, Y.Y., Chen, L., Lin, S., and Abdel-Ghaffar, K. 2007. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field approach. IEEE Trans. Inf. Theory, 53(7), 2429–2458.
[65] Lan, L., Tai, Y.Y., Lin, L., Behshad, M., and Honary, B. 2008. New constructions of quasi-cyclic LDPC codes based on special classes of BIBDs for the AWGN and binary erasure channels. IEEE Trans. Commun., 56(1), 39–48.
[66] Lentmaier, M., Sridharan, A., Zigangirov, K.S., and Costello, D.J., Jr. 2005 (Sep.). Terminated LDPC convolutional codes with thresholds close to capacity. Pages 1372–1376 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[67] Lentmaier, M., Sridharan, A., Costello, D.J., Jr., and Zigangirov, K.S. 2010. Iterative decoding threshold analysis for LDPC convolutional codes. IEEE Trans. Inf. Theory, 56(10), 5274–5289.
[68] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014a. Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme. IEEE Trans. Commun., 62(8), 2626–2637.
[69] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014b (Feb.). Decoding of quasi-cyclic LDPC codes with section-wise cyclic structure. Pages 1–10 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 9–14, 2014.
[70] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014c (Jun.). Quasi-cyclic LDPC codes on two arbitrary sets of a finite field. Pages 2454–2458 of: Proc. IEEE Int. Symp. Inf. Theory. Honolulu, HI, USA, June 29–July 4, 2004.
[71] Li, J., Lin, S., and Abdel-Ghaffar, K. 2015 (Jun.). Improved message-passing algorithm for counting short cycles in bipartite graphs. In: Proc. IEEE Int. Symp. Inf. Theory. Hong Kong, China, June 14–19, 2015.
[72] Li, Z., Chen, L., Zeng, L., Lin, S., and Fong, W.H. 2006. Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 54(1), 71–81.
[73] Lidl, R., and Niederreiter, H. 1997. Finite Fields. Cambridge, UK: Cambridge University Press.
[74] Lin, S., and Costello, D.J., Jr. 2004. Error Control Coding: Fundamentals and Applications, 2nd edition. Upper Saddle River, NJ: Prentice Hall.
[75] Lin, S., Kasami, T., Fujiwara, T., and Fossorier, M.P.C. 1998. Trellis and Trellis-Based Decoding Algorithm for Linear Block Codes. New York, NY: Springer-Verlag New York.
[76] Lin, S., Xu, J., Djurdjevic, I., and Tang, H. 2002 (Oct.). Hybrid construction of LDPC codes. Pages 1149–1158 of: Proc. 40th Annual Allerton Conf. Commun., Control, Computing. Monticello, IL, USA, October 1–3, 2002.
[77] Lin, S., Diao, Q., and Blake, I.F. 2014a (Aug.). Error floors and finite geometries. Pages 42–46 of: Proc. 8th Int. Sym. on Turbo Codes and Iterative Inf. Processing. Bremen, Germany, August 18–22, 2014.
[78] Lin, S., Liu, K., Li, J., and Abdel-Ghaffar, K. 2014b (Nov.). A reduced-complexity iterative scheme for decoding quasi-cyclic low-density parity-check codes. Pages 119–125 of: Proc. 48th Annual Allerton Conf. Commun., Control, Computing. Pacific Grove, CA, USA, November 2–5, 2014.
[79] Liu, K., Lin, S., and Abdel-Ghaffar, K. 2013. A Revolving iterative algorithm for decoding algebraic cyclic and quasi-cyclic LDPC codes. IEEE Trans. Commun., 61(12), 4816–4827.
[80] Liva, G., and Chiani, M. 2007 (Nov.). Protograph LDPC codes design based on EXIT analysis. Pages 3250–3254 of: Proc. IEEE Glob. Commun. Conf. Washington, DC, USA, November 26–30, 2007.
[81] MacKay, D.J.C. 1999. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory, 45(2), 399–431.
[82] MacKay, D.J.C., and Davey, M.C. 2001. Evaluation of Gallager codes for short block length and high rate applications. The IMA Volumes in Mathematics and its Applications, 123(Jun.), 113–130.
[83] MacKay, D.J.C., and Neal, R.M. 1996. Near Shannon limit performance of low density parity-check codes. Electro. Lett., 32(18), 1645–1646.
[84] Mann, H. 1949. Analysis and Design of Experiments. New York, NY: Dover.
[85] Mitchell, D.G.M., Smarandache, R., and Costello, D.J., Jr. 2014. Quasi-cyclic LDPC codes based on pre-lifted protographs. IEEE Trans. Inf. Theory, 60(10), 5856–5874.
[86] Mitchell, D.G.M., Lentmaier, M., and Costello, D.J., Jr. 2015. Spatially coupled LDPC codes constructed from protographs. IEEE Trans. Inf. Theory, 61(9), 4866–4889.
[87] NASA, Standards. 2008. GSFC-STD-9100. https://standards.nasa.gov/documents/ viewdoc/3315856/3315856. Accessed May 4, 2015.
[88] Nguyen, T.V., Nosratinia, A., and Divsalar, D. 2012. The design of rate-compatible protograph LDPC codes. IEEE Trans. Commun., 60(10), 2841–2850.
[89] Peterson, W.W., and Weldon, E.J., Jr. 1972. Error-Correcting Codes, 2nd edition. Cambridge, MS, USA: MIT Press.
[90] Pishro-Nik, H., and Fekri, F. 2004. On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 50(3), 439–454.
[91] Pishro-Nik, H., and Fekri, F. 2007. Results on punctured low-density parity-check codes and improved iterative decoding techniques. IEEE Trans. Inf. Theory, 53(2), 599–614.
[92] Pusane, A.E., Smarandache, R., Vontobel, P.O., and Costello, D.J., Jr. 2011. Deriving good LDPC convolutional codes from LDPC block codes. IEEE Trans. Inf. Theory, 57(2), 835–857.
[93] Reed, I.S., and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math., 8(2), 300–304.
[94] Richardson, T. 2003 (October 1–3). Error-floors of LDPC codes. Pages 1426–1435 of: Proc. 41st Annual Allerton Conf. Commun. Control, Computing. Monticello, IL, USA, October 1–3, 2003.
[95] Richardson, T., and Urbanke, R.L. 2008. Morden Coding Theory. Cambridge, UK: Cambridge University Press.
[96] Richardson, T.J., Shokrollahi, M.A., and Urbanke, R.L. 2001. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory, 47(2), 619–637.
[97] Ryan, W.E., and Lin, S. 2009. Channel Codes: Classical and Modern. NewYork, NY: Cambridge University Press.
[98] Ryser, H.J. 1996. Combinatorial Mathematics. New York, NY: Wiley.
[99] Sassatelli, L., and Declercq, D. 2010. Nonbinary hybrid LDPC codes. IEEE Trans. Inf. Theory, 56(10), 5314–5334.
[100] Song, S., Zhou, B., Lin, S., and Abdel-Ghaffar, K. 2009. A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields. IEEE Trans. Commun., 57(1), 84–93.
[101] Tai, Y.Y., Lan, L., Zeng, L., Lin, S., and Abdel-Ghaffar, K. 2006. Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels. IEEE Trans. Commun., 54(10), 1765–1774.
[102] Tang, H., Xu, J., Lin, S., and Abdel-Ghaffar, K. 2005. Codes on finite geometries. IEEE Trans. Inf. Theory, 51(2), 572–596.
[103] Tanner, R.M. 1981. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27(5), 533–547.
[104] Tanner, R.M., Sridhara, D., Sridharan, A., Fuja, T.E., and Costello, D.J., Jr. 2004. LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theory, 50(12), 2966–2984.
[105] Thorpe, J. 2003. Low density parity check (LDPC) codes constructed from protographs. JPL INP Progress Report, August 15, 42–154.
[106] Townsend, R., and Weldon, E. 1967. Self-orthogonal quasi-cyclic codes. IEEE Trans. Inf. Theory, 13(2), 183–195.
[107] Vasic, B., and Milenkovic, O. 2004. Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory, 50(6), 1156–1176.
[108] Vellambi, H., and Fekri, F. 2007. Results on the improved decoding algorithm for low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 53(4), 1510–1520.
[109] Xu, J., and Lin, S. 2003 (Jun.). A combinatoric superposition method for constructing low density parity check codes. Page 30 of: Proc. IEEE Int. Symp. Inf. Theory. Pacifico Yokohama, Yokohama, Japan, June 29–July 4, 2003.
[110] Xu, J., Lin, S., and Blake, I.F. 2003 (Mar.). On products of graphs for LDPC codes. Pages 6–9 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[111] Xu, J., Chen, L., Zeng, L., Lan, L., and Lin, S. 2005. Construction of low-density parity-check codes by superposition. IEEE Trans. Commun., 53(Feb.), 243–251.
[112] Xu, J., Chen, L., Djurdjevic, I., Lin, S., and Abdel-Ghaffar, K. 2007. Construction of regular and irregular LDPC codes: Geometry decomposition and masking. IEEE Trans. Inf. Theory, 53(1), 121–134.
[113] Zhang, L., Huang, Q., Lin, S., Abdel-Ghaffar, K., and Blake, I.F. 2010. Quasi-cyclic LDPC Codes: An algebraic construction, rank analysis, and codes on Latin squares. IEEE Trans. Commun., 58(11), 3126–3139.
[114] Zhang, L., Lin, S., Abdel-Ghaffar, K., Ding, Z., and Zhou, B. 2011. Quasi-cyclic LDPC codes on cyclic subgroups of finite fields. IEEE Trans. Commun., 59(9), 2330–2336.
[115] Zhang, Z., Dolecek, L., Nikolic, B., Anantharam, V., and Wainwright, M.J. 2008 (November 30–December 4). Lowering LDPC error floors by postprocessing. Pages 1–6 of: Proc. IEEE Glob. Commun. Conf. New Orleans, LO, USA, November 30–December 4, 2008.
[116] Zhou, B., Kang, J., Tai, Y.Y., Lin, S., and Ding, Z. 2009. High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries. IEEE Trans. Commun., 57(5), 1298–1311.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.