Skip to main content Accessibility help
×
  • Cited by 4
Publisher:
Cambridge University Press
Online publication date:
December 2021
Print publication year:
2022
Online ISBN:
9781108993791

Book description

Ancient iron formations - iron and silica-rich chemical sedimentary rocks that formed throughout the Precambrian eons - provide a significant part of the evidence for the modern scientific understanding of palaeoenvironmental conditions in Archaean (4.0–2.5 billion years ago) and Proterozoic (2.5–0.539 billion years ago) times. Despite controversies regarding their formation mechanisms, iron formations are a testament to the influence of the Precambrian biosphere on early ocean chemistry. As many iron formations are pure chemical sediments that reflect the composition of the waters from which they precipitated, they can also serve as nuanced geochemical archives for the study of ancient marine temperatures, redox states, and elemental cycling, if proper care is taken to understand their sedimentological context.

References

Albut, G., Babechuk, M. G., Kleinhanns, I. C., et al. (2018). Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochimica et Cosmochimica Acta, 228, 157189.
Albut, G., Kamber, B. S., Brüske, A., et al. (2019). Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 265, 330353.
Andersen, M. B., Romaniello, S., Vance, D., et al. (2014). A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth and Planetary Science Letters, 400, 184194.
Arnold, G. L., Anbar, A. D., Barling, J., & Lyons, T. W. (2004). Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 304(5667), 8790.
Asael, D., Rouxel, O., Poulton, S. W., et al. (2018). Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. American Journal of Science, 318(3), 275299.
Bao, H. (2019). Triple oxygen isotopes. In Lyons, T., Turchyn, A. & Reinhard, C. (Eds.), Elements in Geochemical Tracers in Earth System Science, Cambridge University Press, Cambridge, UK.
Barling, J., & Anbar, A. D. (2004). Molybdenum isotope fractionation during adsorption by manganese oxides. Earth and Planetary Science Letters, 217(3–4), 315329.
Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79(1), 3755.
Bekker, A., & Kovalick, A. (2021). Ironstones and iron formations. In Alderton, D. & Elias, S. A., eds., Encyclopedia of Geology (2nd ed.), Oxford: Academic Press, pp. 914921.
Bekker, A., Krapež, B., Slack, J. F., et al. (2012). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes – a reply. Economic Geology, 107, 379380.
Bekker, A., Planavsky, N. J., Krapež, B., et al. (2014). Iron formations: Their origins and implications for ancient seawater chemistry. In Holland, H. D. & Turekian, K. K., eds., Treatise on Geochemistry (2nd ed.), Oxford: Elsevier, pp. 561628.
Bekker, A., Slack, J. F., Planavsky, N., et al. (2010). Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105(3), 467508.
Beukes, N. J., & Gutzmer, J. (2008). Origin and paleoenvironmental significance of major iron formations at the Archean-Paleoproterozoic boundary. In Hagemann, S., Rosière, C. A., Gutzmer, J., & Beukes, N. J., eds., Banded Iron Formation-Related High-Grade Iron Ore, Vol. 15, Society of Economic Geologists Littleton, CO, USA, pp. 547.
Beukes, N. J., Swindell, E. P. W., & Wabo, H. (2016). Manganese deposits of Africa. Episodes Journal of International Geoscience, 39(2), 285317.
Bindeman, I. N., Bekker, A., & Zakharov, D. O. (2016). Oxygen isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with emphasis on Paleoproterozoic glaciations and Great Oxygenation Event. Earth and Planetary Science Letters, 437, 101113.
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al. (2018). Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature, 557, 545548.
Breillat, N., Guerrot, C., Marcoux, E., & Négrel, Ph. (2016). A new global database of δ98Mo in molybdenites: A literature review and new data. Journal of Geochemical Exploration, 161, 115.
Busigny, V., Lebeau, O., Ader, M., et al. (2013). Nitrogen cycle in the Late Archean ferruginous ocean. Chemical Geology, 363, 115130.
Cabral, A. R., Zeh, A., Vianna, N. C., et al. (2019). Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Scientific Reports, 9(1), 4570.
Chi Fru, E., Rodríguez, N. P., Partin, C. A., et al. (2016). Cu isotopes in marine black shales record the Great Oxidation Event. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 49414946.
Chi Fru, E., Somogyi, A., Albani, A. E., et al. (2019). The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology, 47(3), 243246.
Cloud, P. (1973). Paleoecological significance of the banded iron-formation. Economic Geology, 68(7), 11351143.
Craddock, P. R., & Dauphas, N. (2011). Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth and Planetary Science Letters, 303(1), 121132.
Crowe, S. A., Døssing, L. N., Beukes, N. J., et al. (2013). Atmospheric oxygenation three billion years ago. Nature, 501(7468), 535538.
Dauphas, N., John, S. G., & Rouxel, O. (2017). Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82(1), 415510.
Daye, M., Klepac-Ceraj, V., Pajusalu, M., et al. (2019). Light-driven anaerobic microbial oxidation of manganese. Nature, 576(7786), 311314.
Døssing, L. N., Dideriksen, K., Stipp, S. L. S., & Frei, R. (2011). Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments. Chemical Geology, 285(1), 157166.
Farquhar, J., Zerkle, A. L., & Bekker, A. (2014). Geologic and geochemical constraints on Earth’s early atmosphere. In Holland, H. D. & Turekian, K. K., eds., Treatise on Geochemistry (2nd ed.), Oxford: Elsevier, pp. 91138.
Fischer, W., & Knoll, A. H. (2009). An iron shuttle for deepwater silica in late Archean and early Paleoproterozoic iron formation. Geological Society of America Bulletin, 121, 222235.
Frei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461(7261), 250253.
Frost, C. D., von Blanckenburg, F., Schoenberg, R., et al. (2006). Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contributions to Mineralogy and Petrology, 153(2), 211.
Galili, N., Shemesh, A., Yam, R., et al. (2019). The geologic history of seawater oxygen isotopes from marine iron oxides. Science, 365(6452), 469473.
Garvin, J., Buick, R., Anbar, A. D., et al. (2009). Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323(5917), 10451048.
Goldberg, T., Archer, C., Vance, D., & Poulton, S. W. (2009). Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochimica et Cosmochimica Acta, 73(21), 65026516.
Goto, K. T., Sekine, Y., Shimoda, G., et al. (2020). A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: Insights from modern marine hydrothermal Fe-Mn oxides. Geochimica et Cosmochimica Acta, 280, 221236.
Gross, G. A. (1980). A classification of iron formations based on depositional environments. The Canadian Mineralogist, 18, 215222.
Gueguen, B., Sorensen, J. V., Lalonde, S. V., et al. (2018). Variable Ni isotope fractionation between Fe-oxyhydroxides and implications for the use of Ni isotopes as geochemical tracers. Chemical Geology, 481, 3852.
Gumsley, A. P., Chamberlain, K. R., Bleeker, W., et al. (2017). Timing and tempo of the Great Oxidation Event. Proceedings of the National Academy of Sciences of the United States of America, 114(8), 18111816.
Halevy, I., Alesker, M., Schuster, E. M., et al. (2017). A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nature Geoscience, 10(2), 135139.
Hartman, H. (1984). The evolution of photosynthesis and microbial mats: A speculation on the banded iron formations. In Cohen, Y., Castenholz, R., & Halvorson, H., eds., Microbial Mats: Stromatolites, New York: Alan Liss, pp. 451453.
Haugaard, R., Pecoits, E., Lalonde, S., et al. (2016). The Joffre banded iron formation, Hamersley Group, Western Australia: Assessing the palaeoenvironment through detailed petrology and chemostratigraphy. Precambrian Research, 273, 1237.
Hayashi, T., Tanimizu, M., & Tanaka, T. (2004). Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La–Ce and Sm–Nd isotope systematics. Precambrian Research, 135(4), 345357.
Heard, A. W., Aarons, S. M., Hofmann, A., et al. (2021). Anoxic continental surface weathering recorded by the 2.95 Ga Denny Dalton Paleosol (Pongola Supergroup, South Africa). Geochimica et Cosmochimica Acta, 295, 123.
Heard, A. W., Dauphas, N., Guilbaud, R., et al. (2020). Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science, 370, 446449.
Heck, P. R., Huberty, J. M., Kita, N. T., et al. (2011). SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleoproterozoic banded iron formations. Geochimica et Cosmochimica Acta, 75(20), 58795891.
Heimann, A., Johnson, C. M., Beard, B. L., et al. (2010). Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5 Ga marine environments. Earth and Planetary Science Letters, 294, 818.
Hoffman, P. F. (1987). Early Proterozoic foredeeps, foredeep magmatism, and Superior-type iron-formations of the Canadian Shield. In A. Kröner (Ed.) Geodynamics Series Volume 17: Proterozic Lithospheric Evolution, American Geophysical Union (AGU), Washington, DC, USA pp. 8598.
Holland, H. D. (1973). The oceans: A possible source of iron in iron-formations. Economic Geology, 68(7), 11691172.
James, H. L. (1954). Sedimentary facies of iron-formation. Economic Geology, 49(3), 235293.
Johnson, C. M., Beard, B. L., & Roden, E. E. (2008). The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Annual Reviews in Earth and Planetary Sciences, 36, 457493.
Johnson, C. M., Beard, B. L., & Weyer, S. (2020). Iron Geochemistry: An Isotopic Perspective, Cham: Springer International.
Johnson, J. E., Webb, S. M., Thomas, K., et al. (2013). Manganese-oxidizing photosynthesis before the rise of cyanobacteria. Proceedings of the National Academy of Sciences, 110(28), 1123811243.
Jones, C., Nomosatryo, S., Crowe, S. A., et al. (2015). Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology, 43(2), 135138.
Kappler, A., Pasquero, C., Konhauser, K. O., & Newman, D. K. (2005). Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33(11), 865868.
Kendall, B., Dahl, T. W., & Anbar, A. D. (2017). The stable isotope geochemistry of molybdenum. Reviews in Mineralogy and Geochemistry, 82(1), 683732.
Knauth, L. P. (2005). Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. In Noffke, N., ed., Geobiology: Objectives, Concepts, Perspectives, Amsterdam: Elsevier, pp. 5369.
Konhauser, K. O., Hamade, T., Raiswell, R., et al. (2002). Could bacteria have formed the Precambrian banded iron formations? Geology, 30(12), 10791082.
Konhauser, K. O., Lalonde, S. V., Amskold, L., & Holland, H. D. (2007). Was there really an Archean phosphate crisis? Science, 315(5816), 1234.
Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al. (2011). Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature, 478(7369), 369373.
Konhauser, K. O., Pecoits, E., Lalonde, S. V., et al. (2009). Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature, 458(7239), 750753.
Konhauser, K. O., Planavsky, N. J., Hardisty, D. S., et al. (2017). Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews, 172, 140177.
Konhauser, K. O., Robbins, L. J., Alessi, D. S., et al. (2018). Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. GSA Bulletin, 130(5–6), 941951.
Krapež, B., Barley, M. E., & Pickard, A. L. (2003). Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: Sedimentological evidence from the early Palaeoproterozoic Brockman supersequence of Western Australia. Sedimentology, 50, 9791011.
Lau, K. V., Romaniello, S. J., & Zhang, F. (2019). The uranium isotope paleoredox proxy. In T. Lyons, A. Turchyn & C. Reinhard (Eds.), Elements in Geochemical Tracers in Earth System Science, Cambridge University Press Cambridge, UK. pp. 128.
Li, W., Huberty, J. M., Beard, B. L., et al. (2013). Contrasting behavior of oxygen and iron isotopes in banded iron formations revealed by in situ isotopic analysis. Earth and Planetary Science Letters, 384, 132143.
Liljestrand, F. L., Knoll, A. H., Tosca, N. J., et al. (2020). The triple oxygen isotope composition of Precambrian chert. Earth and Planetary Science Letters, 537, 116167.
Mänd, K., Lalonde, S. V., Robbins, L. J., et al. (2020). Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event. Nature Geoscience, 13, 302306.
Mathur, R., Brantley, S., Anbar, A., et al. (2010). Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Mineralium Deposita, 45(1), 4350.
Mloszewska, A. M., Pecoits, E., Cates, N. L., et al. (2012). The composition of Earth’s oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada). Earth and Planetary Science Letters, 317318, 331342.
Morris, R. C. (1993). Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research, 60(1), 243286.
Moynier, F., Vance, D., Fujii, T., & Savage, P. (2017). The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82(1), 543600.
Muhling, J. R., & Rasmussen, B. (2020). Widespread deposition of greenalite to form banded iron formations before the Great Oxidation Event. Precambrian Research, 339, 105619.
Murray, K. J., Mozafarzadeh, M. L., & Tebo, B. M. (2005). Cr(III) oxidation and Cr toxicity in cultures of the manganese(II)-oxidizing Pseudomonas putida strain gb-1. Geomicrobiology Journal, 22(3–4), 151159.
Nakada, R., Takahashi, Y., & Tanimizu, M. (2016). Cerium stable isotope ratios in ferromanganese deposits and their potential as a paleo-redox proxy. Geochimica et Cosmochimica Acta, 181, 89100.
Ossa Ossa, F., Eickmann, B., Hofmann, A., et al. (2018). Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event. Earth and Planetary Science Letters, 486, 7083.
Ostrander, C. M., Kendall, B., Olson, S. L., et al. (2020). An expanded shale δ98Mo record permits recurrent shallow marine oxygenation during the Neoarchean. Chemical Geology, 532, 119391.
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al. (2019). Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nature Geoscience, 12(3), 186.
Partin, C. A., Lalonde, S. V., Planavsky, N. J., et al. (2013). Uranium in iron formations and the rise of atmospheric oxygen. Chemical Geology, 362, 8290.
Percak‐Dennett, E. M., Beard, B. L., Xu, H., et al. (2011). Iron isotope fractionation during microbial dissimilatory iron oxide reduction in simulated Archaean seawater. Geobiology, 9(3), 205220.
Perry, E. C. (1967). The oxygen isotope chemistry of ancient cherts. Earth and Planetary Science Letters, 3, 6266.
Petrash, D. A., Robbins, L. J., Shapiro, R. S., et al. (2016). Chemical and textural overprinting of ancient stromatolites: Timing, processes, and implications for their use as paleoenvironmental proxies. Precambrian Research, 278, 145160.
Pinti, D. L., Hashizume, K., & Matsuda, J. (2001). Nitrogen and argon signatures in 3.8 to 2.8 Ga metasediments: Clues on the chemical state of the Archean ocean and the deep biosphere. Geochimica et Cosmochimica Acta, 65(14), 23012315.
Planavsky, N. J., Asael, D., Hofmann, A., et al. (2014). Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nature Geoscience, 7(4), 283286.
Planavsky, N. J., Bekker, A., Rouxel, O. J., et al. (2010a). Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta, 74(22), 63876405.
Planavsky, N. J., Robbins, L. J., Kamber, B. S., & Schoenberg, R. (2020). Weathering, alteration and reconstructing Earth’s oxygenation. Interface Focus, 10, 20190140.
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al. (2010b). The evolution of the marine phosphate reservoir. Nature, 467(7319), 10881090.
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al. (2012). Iron isotope composition of some Archean and Proterozoic iron formations. Geochimica et Cosmochimica Acta, 80, 158169.
Pons, M.-L., Fujii, T., Rosing, M., et al. (2013). A Zn isotope perspective on the rise of continents. Geobiology, 11(3), 201214.
Posth, N., Hegler, F., Konhauser, K. O., & Kappler, A. (2008). Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1, 703707.
Rasmussen, B., Muhling, J. R., Suvorova, A., & Krapež, B. (2017). Greenalite precipitation linked to the deposition of banded iron formations downslope from a late Archean carbonate platform. Precambrian Research, 290, 4962.
Raye, U., Pufahl, P. K., Kyser, T. K., et al. (2015). The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman iron formation, Labrador Trough, Canada. Geochimica et Cosmochimica Acta, 164, 205220.
Robbins, L. J., Funk, S. P., Flynn, S. L., et al. (2019a). Hydrogeological constraints on the formation of Palaeoproterozoic banded iron formations. Nature Geoscience, 12(7), 558563.
Robbins, L. J., Konhauser, K. O., Warchola, T. J., et al. (2019b). A comparison of bulk versus laser ablation trace element analyses in banded iron formations: Insights into the mechanisms leading to compositional variability. Chemical Geology, 506, 197224.
Robbins, L. J., Lalonde, S. V., Planavsky, N. J., et al. (2016). Trace elements at the intersection of marine biological and geochemical evolution. Earth-Science Reviews, 163, 323348.
Robbins, L. J., Lalonde, S. V., Saito, M. A., et al. (2013). Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution. Geobiology, 11(4), 295306.
Robbins, L. J., Swanner, E. D., Lalonde, S. V., et al. (2015). Limited Zn and Ni mobility during simulated iron formation diagenesis. Chemical Geology, 402, 3039.
Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443(7114), 969972.
Rouxel, O. J., Bekker, A., & Edwards, K. J. (2005). Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307(5712), 10881091.
Rouxel, O. J., & Luais, B. (2017). Germanium isotope geochemistry. Reviews in Mineralogy and Geochemistry, 82(1), 601656.
Rudnick, R. L., & Gao, S. (2014). Composition of the continental crust. In Holland, H. D. & Turekian, K. K. (Eds.) Treatise on Geochemistry, Amsterdam: Elsevier, pp. 151.
Schad, M., Halama, M., Bishop, B., et al. (2019). Temperature fluctuations in the Archean ocean as trigger for varve-like deposition of iron and silica minerals in banded iron formations. Geochimica et Cosmochimica Acta, 265, 386412.
Scott, C., Lyons, T. W., Bekker, A., et al. (2008). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186), 456459.
Skomurski, F. N., Ilton, E. S., Engelhard, M. H., et al. (2011). Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment. Geochimica et Cosmochimica Acta, 75(22), 72777290.
Smith, A. J. B., Beukes, N. J., & Gutzmer, J. (2013). The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Economic Geology, 108, 111134.
Smith, A. J. B., Beukes, N. J., Gutzmer, J., et al. (2017). Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition. Geobiology, 15, 731749.
Steinhoefel, G., von Blanckenburg, F., Horn, I., et al. (2010). Deciphering formation processes of banded iron formations from the Transvaal and the Hamersley successions by combined Si and Fe isotope analysis using UV femtosecond laser ablation. Geochimica et Cosmochimica Acta, 74(9), 26772696.
Stüeken, E. E., Kipp, M. A., Koehler, M. C., & Buick, R. (2016). The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Science Reviews, 160, 220239.
Swanner, E. D., Mloszewska, A. M., Cirpka, O. A., et al. (2015). Modulation of oxygen production in Archaean oceans by episodes of Fe(II) toxicity. Nature Geoscience, 8(2), 126130.
Swanner, E. D., Planavsky, N. J., Lalonde, S. V., et al. (2014). Cobalt and marine redox evolution. Earth and Planetary Science Letters, 390, 253263.
Thibon, F., Blichert-Toft, J., Albarede, F., et al. (2019). A critical evaluation of copper isotopes in Precambrian iron formations as a paleoceanographic proxy. Geochimica et Cosmochimica Acta, 264, 130140.
Thoby, M., Konhauser, K. O., Fralick, P. W., et al. (2019). Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology, 47(6), 559562.
Thompson, K. J., Kenward, P. A., Bauer, K. W., et al. (2019). Photoferrotrophy, deposition of banded iron formations, and methane production in the Archean oceans. Science Advances, 5, eaav2869.
Trendall, A. F., & Blockey, J. (1970). The iron formations of the Precambrian Hamersley Group, Western Australia with special reference to the associated crocidolite. Western Australia Geological Survey Bulletin, 119, 1366.
Trower, E. J., & Fischer, W. W. (2019). Precambrian Si isotope mass balance, weathering, and the significance of the authigenic clay silica sink. Sedimentary Geology, 384, 111.
Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society (Resumed), 1, 562581.
Wang, C., Konhauser, K. O., & Zhang, L. (2015). Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China. Economic Geology, 110, 15151539.
Wang, X., Planavsky, N. J., Hofmann, A., et al. (2018). A Mesoarchean shift in uranium isotope systematics. Geochimica et Cosmochimica Acta, 238, 438452.
Warke, M. R., Rocco, T. D., Zerkle, A. L., et al. (2020). The Great Oxidation Event preceded a Paleoproterozoic ‘snowball Earth’. Proceedings of the National Academy of Sciences, 117(24), 1331413320.
Wasylenki, L. E., Rolfe, B. A., Weeks, C. L., et al. (2008). Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochimica et Cosmochimica Acta, 72(24), 59976005.
Wei, W., Klaebe, R., Ling, H.-F., et al. (2020). Biogeochemical cycle of chromium isotopes at the modern Earth’s surface and its applications as a paleo-environment proxy. Chemical Geology, 541, 119570.
Xu, W., Zhu, J.-M., Johnson, T. M., et al. (2020). Selenium isotope fractionation during adsorption by Fe, Mn and Al oxides. Geochimica et Cosmochimica Acta, 272, 121136.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.