Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T19:33:32.228Z Has data issue: false hasContentIssue false

11 - The Respiratory System

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
Affiliation:
University of Chicago
Louis G. Tassinary
Affiliation:
Texas A & M University
Gary G. Berntson
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albéri, L. (2013). Asthma: a clinical condition for brain health. Experimental Neurology, 248: 338342.Google Scholar
Alpher, V. S., Nelson, R. B., & Blanton, R. L. (1986). Effects of cognitive and psychomotor tasks on breath-holding span. Journal of Applied Physiology, 61: 11491152.Google Scholar
Arzi, A., Shedlesky, L., Secundo, L., & Sobel, N. (2014). Mirror sniffing: humans mimic olfactory sampling behavior. Chemical Senses, 39: 277281.Google Scholar
Begnignus, V. & Prah, J. D. (1980) A computer-controlled vapor-dilution olfactometer. Behavior Research Methods & Instrumentation, 12: 535540.Google Scholar
Berntson, G. G., Cacioppo, J. T., & Grossman, P. (2007). Whither vagal tone. Biological Psychology, 74: 295300.Google Scholar
Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40: 644654.Google Scholar
Bloch-Salisbury, E., Harver, A., & Squires, N. K. (1998). Event-related potentials to inspiratory flow-resistive loads in young adults: stimulus magnitude effects. Biological Psychology, 49: 165186.Google Scholar
Boiten, F. A., Frijda, N. H., & Wientjes, C. J. (1994). Emotions and respiratory patterns: review and critical analysis. International Journal of Psychophysiology, 17: 103128.Google Scholar
Braman, S. S. (1995). The regulation of normal lung function. Allergy and Asthma Proceedings, 16: 223226).Google Scholar
Brumbaugh, C. C., Kothuri, R., Marci, C., Siefert, C., & Pfaff, D. D. (2013). Physiological correlates of the Big 5: autonomic responses to video presentations. Applied Psychophysiology and Biofeedback, 38: 293301.Google Scholar
Burtt, H. E. (1921). Further technique for inspiration-expiration ratios. Journal of Experimental Psychology, 4: 106110.CrossRefGoogle Scholar
Casali, J. G., Wierwille, W. W., & Cordes, R. E. (1983). Respiration measurement: overview and new instrumentation. Behavior Research Methods & Instruments, 15: 401405.Google Scholar
Chang, Y. C. & Huang, S. L. (2012). The influence of attention levels on psychophysiological responses. International Journal of Psychophysiology, 86: 3947.Google Scholar
Chen, E. & Miller, G. E. (2007). Stress and inflammation in exacerbations of asthma. Brain, Behavior, and Immunity, 21: 993999.CrossRefGoogle ScholarPubMed
Comroe, J. H. (1974). Mechanical factors in breathing. In Physiology of Respiration, 2nd edn. (pp. 94141). Chicago, IL: Yearbook Medical.Google Scholar
Dalton, P. (2002). Olfaction. In Pashler, H. & Yantis, S. (eds.), Stevens’ Handbook of Experimental Psychology, Volume 1 (pp. 691746). New York: John Wiley.Google Scholar
Elmes, D. G. & Lorig, T. S. (2008). Adequacy of control comparisons in olfactory experiments. Chemosensory Perception, 1: 247252.Google Scholar
Ernst, J. M., Litvack, D. A., Lozano, D. L., Cacioppo, J. T., & Berntson, G. G. (1999). Impedance pneumography: noise as signal in impedance cardiography. Psychophysiology, 36: 333338.Google Scholar
Feleky, A. (1916). The influence of the emotions on respiration. Journal of Experimental Psychology, 1: 218241.Google Scholar
Frank, R. A., Gesteland, R. C., Bailie, J., Rybalsky, K., Seiden, A., & Dulay, M. F. (2006). Characterization of the sniff magnitude test. Archives of Otolaryngology – Head & Neck Surgery, 132: 532536.CrossRefGoogle ScholarPubMed
Freeman, W. J. & Schneider, W. (1982). Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology, 19: 4456.CrossRefGoogle ScholarPubMed
Freeman, W. J. & Viana Di Prisco, G. (1986). Relation of olfactory EEG to behavior: time series analysis. Behavioral Neuroscience, 100: 753763.Google Scholar
Glower, D. D., Spratt, J. A., Snow, N. D., Kabas, J. S., Davis, J. W., Olsen, C. O., … & Rankin, J. S. (1985). Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation, 71: 9941009.Google Scholar
Gomez, P., Zimmermann, P., Guttormsen-Schär, S., & Danuser, B. (2005). Respiratory responses associated with affective processing of film stimuli. Biological Psychology, 68: 223235.Google Scholar
Gross, R. D., Atwood, C. W. Jr., Ross, S. B., Eichhorn, K. A., Olszewski, J. W., & Doyle, P. J. (2008). The coordination of breathing and swallowing in Parkinson’s disease. Dysphagia, 23: 136145.Google Scholar
Harada, Y., Kuno, M. Y., & Wang, Y. Z. (1985). Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro. Journal of Physiology, 368: 679693.Google Scholar
Harver, A. (1994). Effects of feedback on the ability of asthmatic subjects to detect increases in the flow-resistive component to breathing. Health Psychology, 13: 5262.CrossRefGoogle ScholarPubMed
Henderson, A., Goldman-Eisler, F., & Skarbek, A. (1965). Temporal patterns of cognitive activity and breath control in speech. Language and Speech, 8: 236242.Google Scholar
Hlastala, M. P. & Berger, A. J. (2001). Chemical control of breathing. In Hlastala, M. P. & Berger, A. J., Physiology of Respiration, 2nd edn. (pp. 148166). Oxford University Press.Google Scholar
Hogg, J. C., Pare, P. D., Boucher, R. C., & Michoud, M. C. (1979). The pathophysiology of asthma. Canadian Medical Association Journal, 121: 409414.Google Scholar
Ismail, R. A. & Babiker, S. F. (2015). Oxygen level measurement techniques: pulse oximetry. Journal of Engineering and Computer Science, 16: 15.Google Scholar
Jamner, L. D., Shapiro, D., Goldstein, I. B., & Hug, R. (1991). Ambulatory blood pressure and heart rate in paramedics: effects of cynical hostility and defensiveness. Psychosomatic Medicine, 53: 393406.Google Scholar
Johnson, R. L. & Miller, J. M. (1968). Distribution of ventilation, blood flow, and gas transfer coefficients in the lung. Journal of Applied Physiology, 25: 115.Google Scholar
Klein, D. F. (1994). Testing the suffocation false alarm theory of panic disorder. Anxiety, 1: 17.Google Scholar
Kobal, G. & Hummel, C. (1988). Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalography & Clinical Neurophysiology/Evoked Potentials Section, 71: 241250.Google Scholar
Komisaruk, B. R. (1970). Synchrony between limbic system theta activity and rhythmical behavior in rats. Journal of Comparative and Physiological Psychology, 171: 157192.Google Scholar
Konno, K. & Mead, J. (1967). Measurement of the separate volume changes of rib cage and abdomen during breathing. Journal of Applied Physiology, 22: 407422.Google Scholar
Laing, D. G. (1983). Natural sniffing gives optimum odour perception for humans. Perception, 12: 99117.Google Scholar
Landis, C. & Gullette, R. (1925). Studies of emotional reactions: III. Systolic blood pressure and inspiration-expiration ratios. Journal of Comparative Psychology, 5: 221253.Google Scholar
Li, G., Huang, H., Wei, J., Li, D. G., Chen, Q., Gaebler, C. P., … & Mechalakos, J. (2015). Novel spirometry based on optical surface imaging. Medical Physics, 42: 16901697.Google Scholar
Lorig, T. S., Matia, D. C., Peszka, J. J., & Bryant, D. N. (1996). The effects of active and passive stimulation on chemosensory event-related potentials. International Journal of Psychophysiology, 23: 199205.Google Scholar
Lugaresi, E. & Vela-Bueno, A. (1987). Sleep-related respiratory disorders. Seminars in Neurology, 7: 259268.Google Scholar
Mainland, J. & Sobel, N. (2006). The sniff is part of the olfactory percept. Chemical Senses, 31: 181196.Google Scholar
Masaoka, Y., Satoh, H., Akai, L., & Homma, I. (2010). Expiration: the moment we experience retronasal olfaction in flavor. Neuroscience Letters, 473: 9296.Google Scholar
Murdock, K. K., Robinson, E. M., Adams, S. K., Berz, J., & Rollock, M. J. (2009). Family–school connections and internalizing problems among children living with asthma in urban, low-income neighborhoods. Journal of Child Health Care, 13: 275294.CrossRefGoogle ScholarPubMed
Muth, E. R., Moss, J. D., Rosopa, P. J., Salley, J. N., & Walker, A. D. (2012). Respiratory sinus arrhythmia as a measure of cognitive workload. International Journal of Psychophysiology, 83: 96101.Google Scholar
Nardi, A. E., Freire, R. C., & Zin, W. A. (2009). Panic disorder and control of breathing. Respiratory Physiology & Neurobiology, 167: 133143.Google Scholar
Nitzan, M., Romem, A., & Koppel, R. (2014). Pulse oximetry: fundamentals and technology update. Medical Devices (Auckland, NZ), 7: 231239.Google Scholar
Pennock, B. E., Cox, C. P., Rogers, R. M., Cain, W. A., & Wells, J. H. (1979). A noninvasive technique for measurement of changes in specific airway resistance. Journal of Applied Physiology, 46: 399406.Google Scholar
Pfaltz, M. C., Michael, T., Grossman, P., Blechert, J., & Wilhelm, F. H. (2009). Respiratory pathophysiology of panic disorder: an ambulatory monitoring study. Psychosomatic Medicine, 71: 869876.Google Scholar
Porges, S. W. (1995). Cardiac vagal tone: a physiological index of stress. Neuroscience & Biobehavioral Reviews, 19: 225233.Google Scholar
Quinn, S. J., Huang, L., Ellis, P. D. M., & Williams, J. F. (1996). The differentiation of snoring mechanisms using sound analysis. Clinical Otolaryngology & Allied Sciences, 21: 119123.Google Scholar
Raichle, M. E. (2010). The brain’s dark energy. Scientific American, 302: 4449.Google Scholar
Richards, D. W. Jr. (1953). The nature of cardiac and pulmonary dyspnea. Circulation, 7: 1529.Google Scholar
Rittweger, J., Lambertz, M., & Langhorst, P. (1997). Influences of mandatory breathing on rhythmical components of electrodermal activity. Clinical Physiology, 17: 609618.Google Scholar
Ritz, T., Dahme, B., Dubois, A. B., Folgering, H., Fritz, G. K., Harver, A., … & Woestijne, K. P. (2002). Guidelines for mechanical lung function measurements in psychophysiology. Psychophysiology, 39: 546567.Google Scholar
Sandberg, S., Paton, J. Y., Ahola, S., McCann, D. C., McGuinness, D., Hillary, C. R., & Oja, H. (2000). The role of acute and chronic stress in asthma attacks in children. The Lancet, 356: 982987.Google Scholar
Sasaki, C. T. & Mann, D. G. (1976). Dilator naris function: a useful test of facial nerve integrity. Archives of Otolaryngology, 102: 365367.Google Scholar
Seoane, F., Mohino-Herranz, I., Ferreira, J., Alvarez, L., Buendia, R., Ayllón, D., … & Gil-Pita, R. (2014). Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors, 14: 71207141.Google Scholar
Sobel, N., Prabhakaran, V., Hartley, C. A., Desmond, J. E., Zhao, Z., Glover, G. H., … & Sullivan, E. V. (1998). Odorant-induced and sniff-induced activation in the cerebellum of the human. Journal of Neuroscience, 18: 89909001.Google Scholar
Spyer, K. M. (2009). To breathe or not to breathe? That is the question. Experimental Physiology, 94: 110.Google Scholar
Stick, S. M., Ellis, E., LeSouëf, P. N., & Sly, P. D. (1992). Validation of respiratory inductance plethysmography (“Respitrace”®) for the measurement of tidal breathing parameters in newborns. Pediatric Pulmonology, 14: 187191.Google Scholar
Strauss-Blasche, G., Moser, M., Voica, M., McLeod, D. R., Klammer, N., & Marktl, W. (2000). Relative timing of inspiration and expiration affects respiratory sinus arrhythmia. Clinical and Experimental Pharmacology and Physiology, 27: 601606.Google Scholar
Sul, B., Wallqvist, A., Morris, M. J., Reifman, J., & Rakesh, V. (2014). A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Computers in Biology and Medicine, 52: 130143.Google Scholar
Thayer, J. F. & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61: 201216.Google Scholar
Vanderwolf, C. H. (1992). Hippocampal activity, olfaction, and sniffing: an olfactory input to the dentate gyrus. Brain Research, 593: 197208.Google Scholar
Van Diest, I., Thayer, J. F., Vandeputte, B., Van de Woestijne, K. P., & Van den Bergh, O. (2006). Anxiety and respiratory variability. Physiology & Behavior, 89: 189195.CrossRefGoogle ScholarPubMed
Verhagen, J. V., Wesson, D. W., Netoff, T. I., White, J. A., & Wachowiak, M. (2007). Sniffing controls an adaptive filter of sensory input to the olfactory bulb. Nature Neuroscience, 10: 631639.Google Scholar
Vlemincx, E., Abelson, J. L., Lehrer, P. M., Davenport, P. W., Van Diest, I., & Van den Bergh, O. (2013). Respiratory variability and sighing: a psychophysiological reset model. Biological Psychology, 93: 2432.Google Scholar
Vlemincx, E., Taelman, J., De Peuter, S., Van Diest, I., & Van Den Bergh, O. (2011). Sigh rate and respiratory variability during mental load and sustained attention. Psychophysiology, 48: 117120.Google Scholar
Wachowiak, M. (2011). All in a sniff: olfaction as a model for active sensing. Neuron, 71: 962973.Google Scholar
Wientjes, C. J. & Grossman, P. (1998). Respiratory psychophysiology as a discipline: introduction to the special issue. Biological Psychology, 49: 18.Google Scholar
Wilhelm, F. H., Roth, W. T., & Sackner, M. A. (2003). The LifeShirt: an advanced system for ambulatory measurement of respiratory and cardiac function. Behavior Modification, 27: 671691.Google Scholar
Woodworth, R. S. & Schlosberg, S. (1965). Experimental Psychology. New York: Holt.Google Scholar
Yeh, H. C. & Schum, G. M. (1980). Models of human lung airways and their application to inhaled particle deposition. Bulletin of Mathematical Biology, 42: 461480.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×