Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T06:46:17.257Z Has data issue: false hasContentIssue false

26 - Photovoltaic retinal prosthesis for restoring sight to the blind

from Part V - Bionics

Published online by Cambridge University Press:  05 September 2015

Daniel Palanker
Affiliation:
Stanford University
Yossi Mandel
Affiliation:
Bar Ilan University
Keith Mathieson
Affiliation:
University of Strathclyde
James Loudin
Affiliation:
Stanford University
Georges Goetz
Affiliation:
Stanford University
Philip Huie
Affiliation:
Stanford University
Lele Wang
Affiliation:
University of California, San Diego
Theodore I. Kamins
Affiliation:
Stanford University
Richard Smith
Affiliation:
University of California, Santa Cruz
James S. Harris
Affiliation:
Stanford University
Alexander Sher
Affiliation:
University of California, Santa Cruz
Sandro Carrara
Affiliation:
École Polytechnique Fédérale de Lausanne
Krzysztof Iniewski
Affiliation:
Redlen Technologies Inc., Canada
Get access

Summary

Introduction

Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world, with an incidence of 1:500 in patients aged 55–64, and 1:8 in patients over 85 [1]. Retinitis pigmentosa (RP) is an inherited disease blinding about 1 in every 4000 individuals much earlier in life [2]. In both of these conditions the photoreceptor layer degenerates, while the inner retinal neurons survive to a large extent [3–5]. Electrically activating these neurons provides an alternative route for visual information and raises hope for the restoration of sight to the blind.

In a normal retina, photoreceptors convert light into neural signals that are processed by inner retinal neurons, leading to generation of action potentials in the retinal ganglion cells (RGCs). These signals travel to the brain through the optic nerve and serve as the basis for visual perception. Electrical stimulation of the retina with microelectrodes can also produce action potentials in RGCs, creating spatially patterned percepts of light called phosphenes. Indeed, recent clinical trials with retinal prosthetic electrode arrays have restored visual acuity to subjects blinded by retinal degeneration up to 20/1200 using epiretinal placement (facing the ganglion cell side) [6], and up to 20/550 with subretinal implantation [7]. While this serves as an important proof of concept with clinically useful implications, existing retinal prosthesis designs have a number of shortcomings.

Type
Chapter
Information
Handbook of Bioelectronics
Directly Interfacing Electronics and Biological Systems
, pp. 325 - 338
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smith, W., Assink, J., Klein, R. et al., Risk factors for age-related macular degeneration: Pooled findings from three continents. Ophthalmology, 2001. 108(4): p. 697–704.CrossRefGoogle ScholarPubMed
Haim, M., Epidemiology of retinitis pigmentosa in Denmark. Acta Ophthalmol Scand Suppl, 2002(233): p. 1–34.CrossRefGoogle Scholar
Kim, S.Y., Sadda, S., Pearlman, J. et al., Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina, 2002. 22(4): p. 471–7.CrossRefGoogle ScholarPubMed
Mazzoni, F., Novelli, E., and Strettoi, E., Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. J Neurosci, 2008. 28(52): p. 14282–92.CrossRefGoogle Scholar
Stone, J.L., Barlow, W. E., Humayan, M. S. et al., Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. Arch Ophthalmol, 1992. 110(11): p. 1634–9.CrossRefGoogle ScholarPubMed
Humayun, M.S., Dorn, J. D., da Cruz, L. et al., Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology, 2012. 119(4): p. 779–88.CrossRefGoogle ScholarPubMed
Stingl, K., Bach, M., Bartz-Schmidt, K. U. et al., Safety and efficacy of subretinal visual implants in humans: methodological aspects. Clin Exp Optom, 2013. 96(1): p. 4–13.CrossRefGoogle ScholarPubMed
Ahuja, A.K., Dorn, J. D., Caspi, A. et al., Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol, 2011. 95(4): p. 539–43.CrossRefGoogle Scholar
Zrenner, E., Bartz-Schmidt, K. U., Benav, H. et al., Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci, 2011. 278(1711): p. 1489–97.CrossRefGoogle ScholarPubMed
Mathieson, K., Loudin, J., Goetz, G. et al., Photovoltaic retinal prosthesis with high pixel density. Nature Photon, 2012. 6(6): p. 391–7.CrossRefGoogle ScholarPubMed
DeMarco, P.J., Yarbrough, G. L., Yee, C. W. et al., Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest Ophthalmol Vis Sci, 2007. 48(2): p. 916–26.CrossRefGoogle Scholar
Chow, A.Y., Chow, V.Y., Packo, K.H., et al., The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol, 2004. 122(4): p. 460–9.CrossRefGoogle ScholarPubMed
Pardue, M.T., Phillips, M., Yin, H. et al., Neuroprotective effect of subretinal implants in the RCS rat. Invest Ophthalmol Vis Sci, 2005. 46(2): p. 674–82.CrossRefGoogle ScholarPubMed
Zrenner, E., Bartz-Schmidt, K. U., Gekeler, F. et al., Seeing with subretinal electronic implants: study in ten patients with wireless implant Alpha-IMS. ARVO Meeting Abstr 2012. 53(6): p. 6948.Google Scholar
Bourne, M.C., Campbell, D.A., and Tansley, K., Hereditary degeneration of the rat retina. Br J Ophthalmol, 1938. 22(10): p. 613–23.CrossRefGoogle ScholarPubMed
Wang, L., Mathieson, K., Kamins, T. et al., Photovoltaic retinal prosthesis: implant fabrication and performance. J Neural Eng, 2012. 9(4): p. 046014.CrossRefGoogle ScholarPubMed
Nanduri, D., Fine, I., Horsager, A. et al., Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Invest Ophthalmol Vis Sci, 2012. 53(1): p. 205–14.CrossRefGoogle ScholarPubMed
Loudin, J.D., Simanovskii, D. M., Vijayraghavan, K. et al., Optoelectronic retinal prosthesis: system design and performance. J Neural Eng, 2007. 4(1): p. S72–S84.CrossRefGoogle ScholarPubMed
Palanker, D., Vankov, A., Huie, P., and Baccus, S., Design of a high resolution optoelectronic retinal prosthesis. J Neural Eng, 2005. 2: p. S105–S120.CrossRefGoogle ScholarPubMed
Loudin, J.D., Cogan, S. F., Mathieson, K. et al., Photodiode circuits for retinal prostheses. IEEE Trans Biomed Circuits Systems, 2011. 5(5): p. 468–80.CrossRefGoogle ScholarPubMed
Beebe, X. and Rose, T.L., Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng, 1988. 35(6): p. 494–5.CrossRefGoogle ScholarPubMed
Cogan, S.F., Troyk, P. R., Ehrlich, J. et al., Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes. IEEE Trans Biomed Eng, 2006. 53(2): p. 327–32.CrossRefGoogle ScholarPubMed
Negi, S., Bhandari, R., Rieth, L. et al., Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide. J Neurosci Methods, 2010. 186(1): p. 8–17.CrossRefGoogle ScholarPubMed
ANSI Z136.1: American National Standard for Safe Use of Lasers. The Laser Institute of America, 2007.
Delori, F.C., Webb, R.H., and Sliney, D.H., Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am A:Opt Image Sci Vision, 2007. 24(5): p. 1250–65.CrossRefGoogle Scholar
Litke, A.M., Bezayiff, N., Chichinsky, E. J. et al., What does the eye tell the brain? Development of a system for the large-scale recording of retinal output activity. IEEE Trans Nucl Sci, 2004. 51(4): p. 1434–40.CrossRefGoogle Scholar
Field, G.D., Greschner, M., Gauthier, J. L. et al., High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nature Neurosci, 2009. 12(9): p. 1159–64.CrossRefGoogle ScholarPubMed
Jones, B.W. and Marc, R.E., Retinal remodeling during retinal degeneration. Exp Eye Res, 2005. 81(2): p. 123–37.CrossRefGoogle ScholarPubMed
Derwent, J.J.K., Padnick-Silver, L., McRipley, M. et al., The electroretinogram components in Abyssinian cats with hereditary retinal degeneration. Invest Ophthalmol Vis Sci, 2006. 47(8): p. 3673–82.CrossRefGoogle Scholar
Jacobs, G.H., Fenwick, J.A., and Williams, G.A., Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol, 2001. 204(Pt 14): p. 2439–46.Google ScholarPubMed
Wells, E.F., Bernstein, G. M., Scott, B. W. et al., Critical flicker frequency responses in visual cortex. Exp Brain Res, 2001. 139(1): p. 106–10.CrossRefGoogle ScholarPubMed
Chang, B., Heckenlively, J. R., Bayley, P. R. et al., The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci, 2006. 23(1): p. 11–24.CrossRefGoogle ScholarPubMed
Jensen, R.J. and Rizzo, III J.F., Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res, 2006. 83(2): p. 367–73.CrossRefGoogle ScholarPubMed
Wilke, R.G., Moghadam, G. K., Lovell, N. H. et al., Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng, 2011. 8(4): p. 046016.CrossRefGoogle ScholarPubMed
Wilke, R., Gabel, V. P., Sachs, H. et al., Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Invest Ophthalmol Vis Sci, 2011. 52(8): p. 5995–6003.CrossRefGoogle ScholarPubMed
Nadig, M.N., Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity. Clin Neurophysiol, 1999. 110(9): p. 1545–53.CrossRefGoogle ScholarPubMed
Li, L., Cao, P., Sun, M. et al., Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol, 2009. 247(3): p. 349–61.CrossRefGoogle ScholarPubMed
Tsai, D., Morley, J. W., Suaning, G. J., and Lovell, N. H., Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation. J Neurophysiol, 2009. 102(5): p. 2982–93.CrossRefGoogle ScholarPubMed
Jensen, R.J. and Rizzo, III J.F., Responses of ganglion cells to repetitive electrical stimulation of the retina. J Neural Eng, 2007. 4(1): p. S1–6.CrossRefGoogle ScholarPubMed
Cai, C., Ren, Q., Desai, N. J. et al., Response variability to high rates of electric stimulation in retinal ganglion cells. J Neurophysiol, 2011. 106(1): p. 153–62.CrossRefGoogle ScholarPubMed
Jones, B.W., Watt, C. B., Frederick, J. M. et al., Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol, 2003. 464(1): p. 1–16.CrossRefGoogle ScholarPubMed
Marc, R., Jones, B. W., Anderson, J. R. et al., Neural reprogramming in retinal degeneration. Investig Ophthalmol Vis Sci, 2007. 48(7): p. 3364–71.CrossRefGoogle ScholarPubMed
Sekirnjak, C., Hottowy, P., Sher, A. et al., High-resolution electrical stimulation of primate retina for epiretinal implant design. J Neurosci, 2008. 28(17): p. 4446–56.CrossRefGoogle ScholarPubMed
Butterwick, A., Huie, P., Jones, B. W. et al., Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp Eye Res, 2009. 88(1): p. 22–9.CrossRefGoogle ScholarPubMed
Palanker, D., Huie, P., Vankov, A. et al., Migration of retinal cells through a perforated membrane: implications for a high-resolution prosthesis. Invest Ophthalmol Vis Sci, 2004. 45(9): p. 3266–70.CrossRefGoogle ScholarPubMed
Lorach, H., Goetz, G., Mandel, Y. et al., Performance of photovoltaic array in-vivo and characteristics of prosthetic vision in animals with retinal degradation. Vis Res, in press. doi: .

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×