Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T16:28:48.094Z Has data issue: false hasContentIssue false

Part IV - Genome Editing in Stem Cells and Regenerative Biology

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 235 - 312
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959): 15091512.CrossRefGoogle ScholarPubMed
Brown, A, Woods, WS, Perez-Pinera, P. 2016. Multiplexed targeted genome engineering using a universal nuclease-assisted vector integration system. ACS Synth Biol 5(7): 582588.CrossRefGoogle ScholarPubMed
Byrne, SM, Ortiz, L, Mali, P, Aach, J, Church, GM. 2014. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3): e21.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819823.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346(6213): 1258096.CrossRefGoogle ScholarPubMed
Finocchiaro, G, Ito, M, Ikeda, Y, Tanaka, K. 1988. Molecular cloning and nucleotide sequence of cDNAs encoding the alpha-subunit of human electron transfer flavoprotein. J Biol Chem 263(30): 1577315780.CrossRefGoogle ScholarPubMed
Fu, Y, Foden, JA, Khayter, C, et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9): 822826.CrossRefGoogle ScholarPubMed
Fu, Y, Sander, JD, Reyon, D, Cascio, VM, Joung, JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3): 279284.CrossRefGoogle ScholarPubMed
Gonzalez, B, Schwimmer, LJ, Fuller, RP, et al. 2010. Modular system for the construction of zinc-finger libraries and proteins. Nat Protoc 5(4): 791810.CrossRefGoogle ScholarPubMed
Guilinger, JP, Thompson, DB, Liu, DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32(6): 577582.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6): 12621278.CrossRefGoogle Scholar
Hsu, PD, Scott, DA, Weinstein, JA, et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9): 827832.CrossRefGoogle ScholarPubMed
Jackson, SP, Bartek, J. 2009. The DNA-damage response in human biology and disease. Nature 461(7267): 10711078.CrossRefGoogle ScholarPubMed
Jinek, M, East, A, Cheng, A, et al. 2013. RNA-programmed genome editing in human cells. Elife 2: e00471.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587): 490495.CrossRefGoogle ScholarPubMed
Liang, X, Potter, J, Kumar, S, et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol 208: 4453.CrossRefGoogle ScholarPubMed
Lieber, MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79(1): 181211.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823826.CrossRefGoogle ScholarPubMed
Mandell, JG, Barbas, CF. 2006. Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34(Web Server): W516W523.CrossRefGoogle ScholarPubMed
McVey, M, Lee, SE. 2008. MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11): 529538.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326(5959): 1501.CrossRefGoogle ScholarPubMed
Moynahan, ME, Jasin, M. 2010. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3): 196207.CrossRefGoogle ScholarPubMed
Nakade, S, Tsubota, T, Sakane, Y, et al. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5: 5560.CrossRefGoogle ScholarPubMed
Nussenzweig, A, Nussenzweig, MC. 2007. A backup DNA repair pathway moves to the forefront. Cell 131(2): 223225.CrossRefGoogle Scholar
Pabo, CO, Peisach, E, Grant, RA. 2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70(1): 313340.CrossRefGoogle ScholarPubMed
Pattanayak, V, Lin, S, Guilinger, JP, et al. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31(9): 839843.CrossRefGoogle ScholarPubMed
Popp, MW, Maquat, LE. 2016. Leveraging rules of nonsense-mediated mRNA decay for genome engineering and personalized medicine. Cell 165(6): 13191322.CrossRefGoogle ScholarPubMed
Sakuma, T, Nakade, S, Sakane, Y, Suzuki, KT, Yamamoto, T. 2016. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc 11(1): 118133.CrossRefGoogle ScholarPubMed
Sakuma, T, Takenaga, M, Kawabe, Y, et al. 2015. Homologous recombination: independent large gene cassette knock-in in CHO cells using TALEN and MMEJ-directed donor plasmids. Int J Mol Sci 16(10): 2384923866.CrossRefGoogle Scholar
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268): 8488.CrossRefGoogle ScholarPubMed
Tsai, SQ, Wyvekens, N, Khayter, C, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32(6): 569576.CrossRefGoogle ScholarPubMed
Wright, AV, Nunez, JK, Doudna, JA. 2016. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164(1–2): 2944.CrossRefGoogle Scholar
Yu, X, Liang, X, Xie, H, et al. 2016. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett 38(6): 919929.CrossRefGoogle ScholarPubMed

References

Ammar, I, Gogol-Doring, A, Miskey, C, et al. 2012. Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res 40(14): 66936712.CrossRefGoogle ScholarPubMed
Aronovich, EL, Bell, JB, Khan, SA, et al. 2009. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 17(7): 11361144.CrossRefGoogle ScholarPubMed
Balciunas, D, Davidson, AE, Sivasubbu, S, et al. 2004. Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5(1): 62.CrossRefGoogle ScholarPubMed
Bard-Chapeau, EA, Nguyen, AT, Rust, AG, et al. 2014. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nat Genet 46(1): 2432.CrossRefGoogle Scholar
Been, RA, Linden, MA, Hager, CJ, et al. 2014. Genetic signature of histiocytic sarcoma revealed by a sleeping beauty transposon genetic screen in mice. PLoS One 9(5): e97280.CrossRefGoogle ScholarPubMed
Belay, E, Matrai, J, Acosta-Sanchez, A, et al. 2010. Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 28(10): 17601771.CrossRefGoogle ScholarPubMed
Belcher, JD, Vineyard, JV, Bruzzone, CM, et al. 2010. Heme oxygenase-1 gene delivery by Sleeping Beauty inhibits vascular stasis in a murine model of sickle cell disease. J Mol Med (Berl) 88(7): 665675.CrossRefGoogle Scholar
Bell, JB, Podetz-Pedersen, KM, Aronovich, EL, et al. 2007. Preferential delivery of the Sleeping Beauty transposon system to livers of mice by hydrodynamic injection. Nat Protoc 2(12): 31533165.CrossRefGoogle ScholarPubMed
Bender, AM, Collier, LS, Rodriguez, FJ, et al. 2010. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 70(9): 35573565.CrossRefGoogle ScholarPubMed
Bowers, W, Mastrangelo, M, Howard, D, et al. 2006. Neuronal precursor-restricted transduction via in utero CNS gene delivery of a novel bipartite HSV amplicon/transposase hybrid vector. Mol Ther 13(3): 580588.CrossRefGoogle ScholarPubMed
Carlson, CM, Dupuy, AJ, Fritz, S, et al. 2003. Transposon mutagenesis of the mouse germline. Genetics 165(1): 243256.CrossRefGoogle ScholarPubMed
Chandrashekran, A, Sarkar, R, Thrasher, A, et al. 2014. Efficient generation of transgenic mice by lentivirus-mediated modification of spermatozoa. FASEB J 28(2): 569576.CrossRefGoogle ScholarPubMed
Chen, HJ, Wei, Z, Sun, J, et al. 2016. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol 34(8): 845851.CrossRefGoogle ScholarPubMed
Chen, ZJ, Kren, BT, Wong, PY, Low, WC, Steer, CJ. 2005. Sleeping Beauty-mediated down-regulation of huntingtin expression by RNA interference. Biochem Biophys Res Commun 329(2): 646652.CrossRefGoogle ScholarPubMed
Ciuffi, A, Llano, M, Poeschla, E, et al. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11(12): 12871289.CrossRefGoogle ScholarPubMed
Collier, LS, Adams, DJ, Hackett, CS, et al. 2009. Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Res 69(21): 84298437.CrossRefGoogle ScholarPubMed
Collier, LS, Carlson, CM, Ravimohan, S, Dupuy, AJ, Largaespada, DA. 2005. Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature 436(7048): 272276.CrossRefGoogle ScholarPubMed
Cong, L, Ran, FA, Cox, D, et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121): 819823.CrossRefGoogle ScholarPubMed
Craig, NL. 1995. Unity in transposition reactions. Science 270(5234): 253254.CrossRefGoogle ScholarPubMed
Cui, Z, Geurts, AM, Liu, G, Kaufman, CD, Hackett, PB. 2002. Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J Mol Biol 318(5): 12211235.CrossRefGoogle ScholarPubMed
Davidson, AE, Balciunas, D, Mohn, D, et al. 2003. Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263(2): 191202.CrossRefGoogle ScholarPubMed
Davis, RP, Nemes, C, Varga, E, et al. 2013. Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation 86(1–2): 3037.CrossRefGoogle ScholarPubMed
Daya, S, Berns, KI. 2008. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21(4): 583593.CrossRefGoogle ScholarPubMed
Dorr, C, Janik, C, Weg, M, et al. 2015. Transposon mutagenesis screen identifies potential lung cancer drivers and CUL3 as a tumor suppressor. Mol Cancer Res 13(8): 12381247.CrossRefGoogle ScholarPubMed
Elso, CM, Chu, EP, Alsayb, MA, et al. 2015. Sleeping Beauty transposon mutagenesis as a tool for gene discovery in the NOD mouse model of type 1 diabetes. G3 (Bethesda) 5(12): 29032911.CrossRefGoogle ScholarPubMed
Escobar, H, Schöwel, V, Spuler, S, Marg, A, Izsvák, Z. 2016. Full-length dysferlin transfer by the hyperactive Sleeping Beauty transposase restores dysferlin-deficient muscle. Mol Ther Nucleic Acids 5: e277.CrossRefGoogle ScholarPubMed
Eyjolfsdottir, H, Eriksdotter, M, Linderoth, B, et al. 2016. Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res Ther 8(1): 30.CrossRefGoogle Scholar
Fatima, A, Ivanyuk, D, Herms, S, et al. 2016. Generation of human induced pluripotent stem cell line from a patient with a long QT syndrome type 2. Stem Cell Res 16(2): 304307.CrossRefGoogle ScholarPubMed
Fjord-Larsen, L, Kusk, P, Emerich, DF, et al. 2012. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer. Gene Ther 19(10): 10101017.CrossRefGoogle ScholarPubMed
Frommolt, R, Rohrbach, F and Theobald, M. 2006. Sleeping Beauty transposon system – future trend in T-cell-based gene therapies? Future Oncol (London, England) 2(3): 345349.CrossRefGoogle ScholarPubMed
Galla, M, Schambach, A, Falk, CS, et al. 2011. Avoiding cytotoxicity of transposases by dose-controlled mRNA delivery. Nucleic Acids Res 39(16): 71477160.CrossRefGoogle ScholarPubMed
Garrels, W, Talluri, TR, Apfelbaum, R, et al. 2016. One-step multiplex transgenesis via Sleeping Beauty transposition in cattle. Sci Rep 6: 21953.CrossRefGoogle ScholarPubMed
Geurts, AM, Collier, LS, Geurts, JL, et al. 2006. Gene mutations and genomic rearrangements in the mouse as a result of transposon mobilization from chromosomal concatemers. PLoS Genet 2(9): e156.CrossRefGoogle ScholarPubMed
Gogol-Döring, A, Ammar, I, Gupta, S, et al. 2016. Genome-wide profiling reveals remarkable parallels between insertion site selection properties of the MLV retrovirus and the piggyBac transposon in primary human CD4(+) T cells. Mol Ther 24(3): 592606.CrossRefGoogle ScholarPubMed
Grabher, C, Henrich, T, Sasado, T, et al. 2003. Transposon-mediated enhancer trapping in medaka. Gene 322: 5766.CrossRefGoogle ScholarPubMed
Grabundzija, I, Irgang, M, Mátés, L, et al. 2010. Comparative analysis of transposable element vector systems in human cells. Mol Ther 18(6): 12001209.CrossRefGoogle ScholarPubMed
Grabundzija, I, Wang, J, Sebe, A, et al. 2013. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in induced pluripotent stem cells. Nucleic Acids Res 41(3): 18291847.CrossRefGoogle ScholarPubMed
Hackett, PB, Largaespada, DA, Cooper, LJ. 2010. A transposon and transposase system for human application. Mol Ther 18(4): 674683.CrossRefGoogle ScholarPubMed
Hausl, MA, Zhang, W, Muther, N, et al. 2010. Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B. Mol Ther 18(11): 18961906.CrossRefGoogle Scholar
He, X, Li, J, Long, Y, et al. 2013. Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus). Transgenic Res 22(5): 913924.CrossRefGoogle ScholarPubMed
Henssen, AG, Henaff, E, Jiang, E, et al. 2015. Genomic DNA transposition induced by human PGBD5. Elife 4: e10565.CrossRefGoogle ScholarPubMed
Holkers, M, Maggio, I, Liu, J, et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5): e63.CrossRefGoogle ScholarPubMed
Horie, K, Yusa, K, Yae, K, et al. 2003. Characterization of Sleeping Beauty transposition and its application to genetic screening in mice. Mol Cell Biol 23(24): 91899207.CrossRefGoogle ScholarPubMed
Huang, X, Guo, H, Kang, J, et al. 2008. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol Ther 16(3): 580589.CrossRefGoogle ScholarPubMed
Hyland, KA, Olson, ER, Clark, KJ, et al. 2011. Sleeping Beauty-mediated correction of Fanconi anemia type C. J Gene Med 13(9): 462469.CrossRefGoogle ScholarPubMed
Ivics, Z. 2016. Endogenous transposase source in human cells mobilizes piggyBac transposons. Mol Ther 24(5): 851854.CrossRefGoogle ScholarPubMed
Ivics, Z, Garrels, W, Mátés, L, et al. 2014a. Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 810827.CrossRefGoogle ScholarPubMed
Ivics, Z, Hackett, PB, Plasterk, RH, Izsvak, Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91(4): 501510.CrossRefGoogle ScholarPubMed
Ivics, Z, Hiripi, L, Hoffmann, OI, et al. 2014b. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 794809.CrossRefGoogle ScholarPubMed
Ivics, Z, Izsvak, Z. 2015. Sleeping Beauty transposition. Microbiol Spectr 3(2): MDNA3-0042-2014.CrossRefGoogle ScholarPubMed
Ivics, Z, Izsvak, Z, Medrano, G, Chapman, KM, Hamra, FK. 2011. Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nat Protoc 6(10): 15211535.CrossRefGoogle ScholarPubMed
Ivics, Z, Katzer, A, Stuwe, EE, et al. 2007. Targeted Sleeping Beauty transposition in human cells. Mol Ther 15(6): 11371144.CrossRefGoogle ScholarPubMed
Ivics, Z, Li, MA, Mates, L, et al. 2009. Transposon-mediated genome manipulation in vertebrates. Nat Methods 6(6): 415422.CrossRefGoogle ScholarPubMed
Ivics, Z, Mátés, L, Yau, TY, et al. 2014c. Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons. Nat Protoc 9(4): 773793.CrossRefGoogle ScholarPubMed
Izsvak, Z, Frohlich, J, Grabundzija, I, et al. 2010a. Generating knockout rats by transposon mutagenesis in spermatogonial stem cells. Nat Methods 7(6): 443445.CrossRefGoogle ScholarPubMed
Izsvak, Z, Hackett, PB, Cooper, LJ, Ivics, Z. 2010b. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays 32(9): 756767.CrossRefGoogle ScholarPubMed
Izsvak, Z, Ivics, Z, Plasterk, RH. 2000. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J Mol Biol 302(1): 93102.CrossRefGoogle ScholarPubMed
Izsvak, Z, Stuwe, EE, Fiedler, D, et al. 2004. Healing the wounds inflicted by Sleeping Beauty transposition by double-strand break repair in mammalian somatic cells. Mol Cell 13(2): 279290.CrossRefGoogle ScholarPubMed
Jin, Z, Maiti, S, Huls, H, et al. 2011 The hyperactive Sleeping Beauty transposase SB100X improves the genetic modification of T cells to express a chimeric antigen receptor. Gene Ther 18(9): 849856.CrossRefGoogle ScholarPubMed
Johnen, S, Djalali-Talab, Y, Kazanskaya, O, et al. 2015. Antiangiogenic and neurogenic activities of sleeping beauty-mediated PEDF-transfected RPE cells in vitro and in vivo. BioMed Res Int 2015: 863845.CrossRefGoogle ScholarPubMed
Johnen, S, Izsvák, Z, Stöcker, M, et al. 2012. Sleeping Beauty transposon-mediated transfection of retinal and iris pigment epithelial cells. Invest Ophthalmol Vis Sci 53(8): 47874796.CrossRefGoogle ScholarPubMed
Katter, K, Geurts, AM, Hoffmann, O, et al. 2013. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J 27(3): 930941.CrossRefGoogle ScholarPubMed
Kebriaei, P, Huls, H, Jena, B, et al. 2012. Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies. Hum Gene Ther 23(5): 444450.CrossRefGoogle ScholarPubMed
Kebriaei, P, Singh, H, Huls, MH, et al. 2016. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest 126(9): 33633376.CrossRefGoogle ScholarPubMed
Keng, VW, Villanueva, A, Chiang, DY, et al. 2009. A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nat Biotechnol 27(3): 264274.CrossRefGoogle ScholarPubMed
Kren, BT, Unger, GM, Sjeklocha, L, et al. 2009. Nanocapsule-delivered Sleeping Beauty mediates therapeutic Factor VIII expression in liver sinusoidal endothelial cells of hemophilia A mice. J Clin Invest 119(7): 20862099.Google ScholarPubMed
Kues, WA, Herrmann, D, Barg-Kues, B, et al. 2013. Derivation and characterization of Sleeping Beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 22(1): 124135.CrossRefGoogle ScholarPubMed
Liu, L, Liu, >H, Visner, G, Fletcher, BS. 2006a. Sleeping Beauty-mediated eNOS gene therapy attenuates monocrotaline-induced pulmonary hypertension in rats. FASEB Journal 20(14): 25942596.CrossRefGoogle ScholarPubMed
Liu, L, Mah, C, Fletcher, B. 2006b. Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted Sleeping Beauty transposon. Mol Ther 13(5): 10061015.CrossRefGoogle ScholarPubMed
Luo, G, Ivics, Z, Izsvák, Z, Bradley, A. 1998. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc Natl Acad Sci USA 95(18): 1076910773.CrossRefGoogle ScholarPubMed
Luo, W-Y, Shih, Y-S, Hung, C-L, et al. 2011. Development of the hybrid Sleeping Beauty-baculovirus vector for sustained gene expression and cancer therapy. Gene Ther 19(8): 844851.CrossRefGoogle Scholar
Ma, K, Wang, DD, Lin, Y, et al. 2013. Synergetic targeted delivery of Sleeping-Beauty transposon system to mesenchymal stem cells using LPD nanoparticles modified with a phage-displayed targeting peptide. Adv Funct Mater 23(9): 11721181.CrossRefGoogle ScholarPubMed
Mali, P, Yang, L, Esvelt, KM, et al. 2013. RNA-guided human genome engineering via Cas9. Science 339(6121): 823826.CrossRefGoogle ScholarPubMed
Mandal, PK, Kazazian, HH. 2008. SnapShot: vertebrate transposons. Cell 135(1): 192192.CrossRefGoogle ScholarPubMed
Mátés, L, Chuah, MK, Belay, E, et al. 2009. Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41(6): 753761.CrossRefGoogle ScholarPubMed
Mikkelsen, JG, Yant, SR, Meuse, L, et al. 2003. Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo. Mol Ther 8(4): 654665.CrossRefGoogle ScholarPubMed
Moldt, B, Miskey, C, Staunstrup, NH, et al. 2011. Comparative genomic integration profiling of Sleeping Beauty transposons mobilized with high efficacy from integrase-defective lentiviral vectors in primary human cells. Mol Ther 19(8): 14991510.CrossRefGoogle ScholarPubMed
Moldt, B, Yant, SR, Andersen, PR, Kay, MA, Mikkelsen, JG. 2007. Cis-acting gene regulatory activities in the terminal regions of Sleeping Beauty DNA transposon-based vectors. Hum Gene Ther 18(12): 11931204.CrossRefGoogle ScholarPubMed
Molina-Estevez, FJ, Lozano, ML, Navarro, S, et al. 2013. Brief report: impaired cell reprogramming in nonhomologous end joining deficient cells. Stem Cells 31(8): 17261730.CrossRefGoogle ScholarPubMed
Molyneux, SD, Waterhouse, PD, Shelton, D, et al. 2014. Human somatic cell mutagenesis creates genetically tractable sarcomas. Nat Genet 46(9): 964972.CrossRefGoogle ScholarPubMed
Monjezi, R, Miskey, C, Gogishvili, T, et al. 2016. Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 31(1): 186194.CrossRefGoogle ScholarPubMed
Montini, E. 2002. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 6(6): 759769.CrossRefGoogle ScholarPubMed
Moriarity, BS, Largaespada, DA. 2015. Sleeping Beauty transposon insertional mutagenesis based mouse models for cancer gene discovery. Curr Opin Genet Dev 30: 6672.CrossRefGoogle ScholarPubMed
Moriarity, BS, Otto, GM, Rahrmann, EP, et al. 2015. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis. Nat Genet 47(6): 615624.CrossRefGoogle ScholarPubMed
Muenthaisong, S, Ujhelly, O, Polgar, Z, et al. 2012. Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318(19): 24822489.CrossRefGoogle ScholarPubMed
Munoz-Lopez, M, Garcia-Perez, JL. 2010. DNA transposons: nature and applications in genomics. Curr Genom 11(2): 115128.CrossRefGoogle Scholar
Muses, S, Morgan, JE, Wells, DJ. 2011. Restoration of dystrophin expression using the Sleeping Beauty transposon. PLoS Curr 3: RRN1296.CrossRefGoogle ScholarPubMed
Narayanavari, SA, Chilkunda, SS, Ivics, Z, Izsvak, Z. 2016. Sleeping Beauty transposition: from biology to applications. Crit Rev Biochem Mol Bio 52(1): 1844.CrossRefGoogle ScholarPubMed
Nikitidou, L, Torp, M, Fjord-Larsen, L, et al. 2014. Encapsulated galanin-producing cells attenuate focal epileptic seizures in the hippocampus. Epilepsia 55(1): 167174.CrossRefGoogle ScholarPubMed
Ohlfest, JR. 2005. Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system. Blood 105(7): 26912698.CrossRefGoogle ScholarPubMed
Ortiz-Urda, S, Lin, Q, Yant, SR, et al. 2003. Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer. Gene Ther 10(13): 10991104.CrossRefGoogle ScholarPubMed
Padeken, J, Zeller, P, Gasser, SM. 2015. Repeat DNA in genome organization and stability. Curr Opin Genet Dev 31: 1219.CrossRefGoogle ScholarPubMed
Park, J-S, Kim, B-H, Park, SG, et al. 2013. Induction of rat liver tumor using the Sleeping Beauty transposon and electroporation. Biochem Biophys Res Commun 434(3): 589593.CrossRefGoogle ScholarPubMed
Perna, D, Karreth, FA, Rust, AG, et al. 2015. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model. Proc Natl Acad Sci USA 112(6): E536E545.CrossRefGoogle Scholar
Peterson, EB, Mastrangelo, MA, Federoff, HJ, Bowers, WJ. 2007. Neuronal specificity of HSV/Sleeping Beauty amplicon transduction in utero is driven primarily by tropism and cell type composition. Mol Ther 15(10): 18481855.CrossRefGoogle ScholarPubMed
Plasterk, RH, Izsvak, Z, Ivics, Z. 1999. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8): 326332.CrossRefGoogle ScholarPubMed
Quintana, RM, Dupuy, AJ, Bravo, A, et al. 2013. A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 133(1): 239248.CrossRefGoogle ScholarPubMed
Rahrmann, EP, Collier, LS, Knutson, TP, et al. 2009. Identification of PDE4D as a proliferation promoting factor in prostate cancer using a Sleeping Beauty transposon-based somatic mutagenesis screen. Cancer Res 69(10): 43884397.CrossRefGoogle ScholarPubMed
Rahrmann, EP, Watson, AL, Keng, VW, et al. 2013. Forward genetic screen for malignant peripheral nerve sheath tumor formation identifies new genes and pathways driving tumorigenesis. Nat Genet 45(7): 756766.CrossRefGoogle ScholarPubMed
Ren, J, Stroncek, DF. 2016. Gene therapy simplified. Blood 128(18): 21942195.CrossRefGoogle ScholarPubMed
Richter, M, Saydaminova, K, Yumul, R, et al. 2016. In vivo transduction of primitive hematopoietic stem cells after mobilization and intravenous injection of integrating adenovirus vectors. Blood 128(18): 22062217.CrossRefGoogle ScholarPubMed
Rostovskaya, M, Fu, J, Obst, M, et al. 2012. Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res 40(19): e150e150.CrossRefGoogle ScholarPubMed
Schröder, ARW, Shinn, P, Chen, H, et al. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4): 521529.CrossRefGoogle ScholarPubMed
Sebe, A, Ivics, Z. 2016. Reprogramming of human fibroblasts to induced pluripotent stem cells with Sleeping Beauty transposon-based stable gene delivery. Methods Mol Biol 1400: 419427.CrossRefGoogle ScholarPubMed
Silva, SD, Mastrangelo, MA, Lotta, LT, et al. 2009. Extending the transposable payload limit of Sleeping Beauty (SB) using the Herpes Simplex Virus (HSV)/SB amplicon-vector platform. Gene Ther 17(3): 424431.CrossRefGoogle Scholar
Silva, SD, Mastrangelo, MA, Lotta, LT, et al. 2010. Herpes simplex virus/Sleeping Beauty vector-based embryonic gene transfer using the HSB5 mutant: loss of apparent transposition hyperactivity in vivo. Hum Gene Ther 21(11): 16031613.CrossRefGoogle ScholarPubMed
Singh, H, Huls, H, Kebriaei, P, Cooper, LJN. 2014. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev 257(1): 181190.CrossRefGoogle ScholarPubMed
Singh, H, Moyes, JS, Huls, MH, Cooper, LJ. 2015. Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor. Cancer Gene Ther 22(2): 95100.CrossRefGoogle ScholarPubMed
Sinzelle, L, Vallin, J, Coen, L, et al. 2006. Generation of trangenic Xenopus laevis using the Sleeping Beauty transposon system. Transgenic Res 15(6): 751760.CrossRefGoogle ScholarPubMed
Starr, TK, Allaei, R, Silverstein, KA, et al. 2009. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323(5922): 17471750.CrossRefGoogle ScholarPubMed
Staunstrup, NH, Moldt, B, Mátés, L, et al. 2009. Hybrid lentivirus-transposon vectors with a random integration profile in human cells. Mol Ther 17(7): 12051214.CrossRefGoogle ScholarPubMed
Staunstrup, NH, Sharma, N, Bak, RO, et al. 2011. A Sleeping Beauty DNA transposon-based genetic sensor for functional screening of vitamin D3 analogues. BMC Biotechnol 11: 33.CrossRefGoogle ScholarPubMed
Swierczek, M, Izsvak, Z, Ivics, Z. 2012. The Sleeping Beauty transposon system for clinical applications. Exp Opin Biol Ther 12(2): 139153.CrossRefGoogle ScholarPubMed
Szebenyi, K, Furedi, A, Kolacsek, O, et al. 2015. Visualization of calcium dynamics in kidney proximal tubules. J Am Soc Nephrol 26(11): 27312740.CrossRefGoogle ScholarPubMed
Talluri, TR, Herrmann, D, Barg-Kues, B, et al. 2013. Transposon-mediated reprogramming of livestock somatic cells to induced pluripotent stem cells. Reprod Biol 13: 21.CrossRefGoogle Scholar
Talluri, TR, Kumar, D, Glage, S, et al. 2015. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprog 17(2): 131140.CrossRefGoogle ScholarPubMed
Turunen, TA, Kurkipuro, J, Heikura, T, et al. 2016. Sleeping Beauty transposon vectors in liver-directed gene delivery of LDLR and VLDLR for gene therapy of familial hypercholesterolemia. Mol Ther 24(3): 620635.CrossRefGoogle ScholarPubMed
Turunen, TAK, Laakkonen, J, Alasaarela, L, Airenne, KJ, Ylä-Herttuala, S. 2014. Sleeping Beauty–baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med 16(1–2): 4053.CrossRefGoogle ScholarPubMed
van der Weyden, L, Giotopoulos, G, Rust, AG, et al. 2011. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 118(4): 10411051.CrossRefGoogle ScholarPubMed
Vigdal, TJ, Kaufman, CD, Izsvak, Z, Voytas, DF, Ivics, Z. 2002. Common physical properties of DNA affecting target site selection of sleeping beauty and other Tc1/mariner transposable elements. J Mol Biol 323(3): 441452.CrossRefGoogle ScholarPubMed
Vink, CA, Gaspar, HB, Gabriel, R, et al. 2009. Sleeping Beauty transposition from nonintegrating lentivirus. Mol Ther 17(7): 11971204.CrossRefGoogle ScholarPubMed
Voigt, F, Wiedemann, L, Zuliani, C, et al. 2016. Sleeping Beauty transposase structure allows rational design of hyperactive variants for genetic engineering. Nat Commun 7: 11126.CrossRefGoogle ScholarPubMed
Voigt, K, Gogol-Doring, A, Miskey, C, et al. 2012. Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol Ther 20(10): 18521862.CrossRefGoogle ScholarPubMed
Walisko, O, Schorn, A, Rolfs, F, et al. 2008. Transcriptional activities of the Sleeping Beauty transposon and shielding its genetic cargo with insulators. Mol Ther 16(2): 359369.CrossRefGoogle ScholarPubMed
Wang, J, Singh, M, Sun, C, et al. 2016. Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nat Protoc 11(2): 327346.CrossRefGoogle ScholarPubMed
Wang, J, Xie, G, Singh, M, et al., 2014. Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature 516(7531): 405409.CrossRefGoogle ScholarPubMed
Wang, X, Sarkar, DP, Mani, P, et al. 2009. Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of Sleeping Beauty transposon. Hepatology 50(3): 815824.CrossRefGoogle ScholarPubMed
Wang, Y. 2016. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res 45(1): 311326.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, J, Devaraj, A, et al. 2014. Suicidal autointegration of sleeping beauty and piggyBac transposons in eukaryotic cells. PLoS Genet 10(3): e1004103.CrossRefGoogle ScholarPubMed
Wilber, A, Wangensteen, KJ, Chen, Y, et al. 2006. Correction of the murine model of hereditary tyrosinemia type I using messenger RNA as a source of transposase for Sleeping Beauty mediated integration of the FAH gene. Mol Ther 13: S155S156.CrossRefGoogle Scholar
Wilber, A, Wangensteen, KJ, Chen, Y, et al. 2007. Messenger RNA as a source of transposase for Sleeping Beauty transposon-mediated correction of hereditary tyrosinemia type I. Mol Ther 15(7): 12801287.CrossRefGoogle ScholarPubMed
Williams, DA. 2008. Sleeping beauty vector system moves toward human trials in the United States. Mol Ther 16(9): 15151516.CrossRefGoogle ScholarPubMed
Wilson, MH, Coates, CJ, George, AL. 2007. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15(1): 139145.CrossRefGoogle ScholarPubMed
Woodard, LE, Wilson, MH. 2015. piggyBac-ing models and new therapeutic strategies. Trends Biotechnol 33(9): 525533.CrossRefGoogle ScholarPubMed
Wuestefeld, T, Pesic, M, Rudalska, R, et al. 2013. A direct in vivo RNAi screen identifies MKK4 as a key regulator of liver regeneration. Cell 153(2): 389401.CrossRefGoogle ScholarPubMed
Xiao, J, Meng, X-M, Huang, XR, et al. 2012. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther 20(6): 12511260.CrossRefGoogle ScholarPubMed
Yant, SR, Ehrhardt, A, Mikkelsen, JG, et al. 2002. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20(10): 9991005.CrossRefGoogle ScholarPubMed
Yant, SR, Huang, Y, Akache, B, Kay, MA. 2007. Site-directed transposon integration in human cells. Nucleic Acids Res 35(7): e50.CrossRefGoogle ScholarPubMed
Yant, SR, Meuse, L, Chiu, W, et al. 2000. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat Genet 25(1): 3541.CrossRefGoogle ScholarPubMed
Zhang, W, Solanlu, M, Müther, N, et al. 2013. Hybrid adeno-associated viral vectors utilizing transpose-mediated somatic integration for stable transgene expression in human cells. PLoS One 8(10): e76771.CrossRefGoogle Scholar
Zayed, H, Izsvak, Z, Walisko, O, Ivics, Z. 2004. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 9(2): 292304.CrossRefGoogle ScholarPubMed

References

Abudayyeh, OO, Gootenberg, JS, Konermann, S, et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353: aaf5573.CrossRefGoogle ScholarPubMed
Avior, Y, Sagi, I, Benvenisty, N. 2016. Pluripotent stem cells in disease modelling and drug discovery. Nat Rev Mol Cell Biol 17: 170182.CrossRefGoogle ScholarPubMed
Barrangou, R, Doudna, JA. 2016. Applications of CRISPR technologies in research and beyond. Nat Biotech 34: 933941.CrossRefGoogle ScholarPubMed
Beerli, RR, Segal, DJ, Dreier, B, Barbas, CF III. 1998. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci USA 95: 1462814633.CrossRefGoogle ScholarPubMed
Bhakta, MS, Henry, IM, Ousterout, DG, et al. 2013. Highly active zinc-finger nucleases by extended modular assembly. Genome Res 23: 530538.CrossRefGoogle ScholarPubMed
Bibikova, M, Beumer, K, Trautman, JK, Carroll, D. 2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300: 764.CrossRefGoogle ScholarPubMed
Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 15091512.CrossRefGoogle ScholarPubMed
Bolukbasi, MF, Gupta, A, Oikemus, S, et al. 2015. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat Methods 12: 11501156.CrossRefGoogle ScholarPubMed
Braam, SR, Tertoolen, L, Van De Stolpe, A, et al. 2010. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4: 107116.CrossRefGoogle ScholarPubMed
Capecchi, MR. 1989. Altering the genome by homologous recombination. Science 244: 12881292.CrossRefGoogle ScholarPubMed
Carroll, D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409439.CrossRefGoogle ScholarPubMed
Chung, SK, Zhu, S, Xu, Y, Fu, X. 2014. Functional analysis of the acetylation of human p53 in DNA damage responses. Protein Cell 5: 544551.CrossRefGoogle ScholarPubMed
Davis, RP, Ng, ES, Costa, M, et al. 2008. Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111: 18761884.CrossRefGoogle Scholar
De Los Angeles, A, Ferrari, F, Xi, R, et al. 2015. Hallmarks of pluripotency. Nature 525: 469478.CrossRefGoogle ScholarPubMed
Dominguez, AA, Lim, WA, Qi, LS. 2016. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17: 515.CrossRefGoogle ScholarPubMed
Doudna, JA, Charpentier, E. 2014. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346: 1258096.CrossRefGoogle ScholarPubMed
East-Seletsky, A, O’Connell, MR, Knight, SC, et al. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538(7624): 270273.CrossRefGoogle ScholarPubMed
Fu, X, Rong, Z, Zhu, S, et al. 2014a. Genetic approach to track neural cell fate decisions using human embryonic stem cells. Protein Cell 5: 6979.CrossRefGoogle ScholarPubMed
Fu, Y, Sander, JD, Reyon, D, Cascio, VM, Joung, JK. 2014b. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32: 279284.CrossRefGoogle ScholarPubMed
Gersbach, CA, Gaj, T, Gordley, RM, Mercer, AC, Barbas, CF III. 2011. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res 39: 78687878.CrossRefGoogle ScholarPubMed
Guilinger, JP, Thompson, DB, Liu, DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32: 577582.CrossRefGoogle ScholarPubMed
Gupta, A, Christensen, RG, Rayla, AL, et al. 2012. An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9: 588590.CrossRefGoogle ScholarPubMed
Hsu, PD, Lander, ES, Zhang, F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: 12621278.CrossRefGoogle Scholar
Khan, IF, Hirata, RK, Russell, DW. 2011. AAV-mediated gene targeting methods for human cells. Nat Protoc 6: 482501.CrossRefGoogle ScholarPubMed
Khan, IF, Hirata, RK, Wang, PR, et al. 2010. Engineering of human pluripotent stem cells by AAV-mediated gene targeting. Mol Ther 18: 11921199.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Pattanayak, V, Prew, MS, et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529: 490495.CrossRefGoogle ScholarPubMed
Koller, BH, Smithies, O. 1992. Altering genes in animals by gene targeting. Annu Rev Immunol 10: 705730.CrossRefGoogle ScholarPubMed
Konermann, S, Brigham, MD, Trevino, AE, et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517: 583588.CrossRefGoogle ScholarPubMed
Lancaster, MA, Knoblich, JA. 2014. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345: 1247125.CrossRefGoogle Scholar
Liu, GH, Qu, J, Suzuki, K, et al. 2012. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491: 603607.CrossRefGoogle ScholarPubMed
Liu, GH, Suzuki, K, Qu, J, et al. 2011. Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8: 688694.CrossRefGoogle ScholarPubMed
Maeder, ML, Thibodeau-Beganny, S, Osiak, A, et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31: 294301.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.CrossRefGoogle ScholarPubMed
Porteus, MH, Baltimore, D. 2003. Chimeric nucleases stimulate gene targeting in human cells. Science 300: 763.CrossRefGoogle ScholarPubMed
Ramirez, CL, Foley, JE, Wright, DA, et al. 2008. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5: 374375.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, CY, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: 13801389.CrossRefGoogle ScholarPubMed
Rong, Z, Fu, X, Wang, M, Xu, Y. 2012. A scalable approach to prevent teratoma formation of human embryonic stem cells. J Biol Chem 287: 3233832345.CrossRefGoogle ScholarPubMed
Rong, Z, Wang, M, Hu, Z, et al. 2014. An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14: 121130.CrossRefGoogle ScholarPubMed
Sander, JD, Dahlborg, EJ, Goodwin, MJ, et al. 2011. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8: 6769.CrossRefGoogle ScholarPubMed
Schwartz, SD, Regillo, CD, Lam, BL, et al. 2015. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385: 509516.CrossRefGoogle ScholarPubMed
Shalem, O, Sanjana, NE, Zhang, F. 2015. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16: 299311.CrossRefGoogle ScholarPubMed
Shechner, DM, Hacisuleyman, E, Younger, ST, Rinn, JL. 2015. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12: 664670.CrossRefGoogle ScholarPubMed
Shmakov, S, Abudayyeh, OO, Makarova, KS, et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60: 385397.CrossRefGoogle ScholarPubMed
Slaymaker, IM, Gao, L, Zetsche, B, et al. 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351: 8488.CrossRefGoogle ScholarPubMed
Soldner, F, Laganiere, J, Cheng, AW, et al. 2011. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146: 318331.CrossRefGoogle ScholarPubMed
Song, H, Chung, SK, Xu, Y. 2010. Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6: 8089.CrossRefGoogle ScholarPubMed
Symington, LS, Gautier, J. 2011. Double-strand break end resection and repair pathway choice. Annu Rev Genet 45: 247271.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, WW, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901910.CrossRefGoogle ScholarPubMed
Thakore, PI, Black, JB, Hilton, IB, Gersbach, CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13: 127137.CrossRefGoogle ScholarPubMed
Trounson, A, Dewitt, ND. 2016. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17: 194200.CrossRefGoogle ScholarPubMed
Tsai, SQ, Wyvekens, N, Khayter, C, et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32: 569576.CrossRefGoogle ScholarPubMed
Urnov, FD, Rebar, EJ, Holmes, MC, Zhang, HS, Gregory, PD. 2010. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11: 636646.CrossRefGoogle ScholarPubMed
Xue, H, Wu, S, Papadeas, ST, et al. 2009. A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells 27: 18361846.CrossRefGoogle ScholarPubMed
Yang, Y, Wang, L, Bell, P, et al. 2016. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol 34: 334338.CrossRefGoogle ScholarPubMed
Yant, SR, Huang, Y, Akache, B, Kay, MA. 2007. Site-directed transposon integration in human cells. Nucleic Acids Res 35: e50.CrossRefGoogle ScholarPubMed
Yusa, K, Rashid, ST, Strick-Marchand, H, et al. 2011. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478: 391394.CrossRefGoogle ScholarPubMed
Zalatan, JG, Lee, ME, Almeida, R, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339350.CrossRefGoogle ScholarPubMed
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163: 759771.CrossRefGoogle ScholarPubMed
Zhu, Z, Li, QV, Lee, K, et al. 2016. Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18: 755768.CrossRefGoogle ScholarPubMed
Zwaka, TP, Thomson, JA. 2003. Homologous recombination in human embryonic stem cells. Nat Biotechnol 21: 319321.CrossRefGoogle ScholarPubMed

References

Aravalli, RN, Steer, CJ. 2016. Gene editing technology as an approach to the treatment of liver diseases. Expert Opin Biol Ther 16: 595608.CrossRefGoogle Scholar
Arber, N, Zajicek, G. 1990. Streaming liver VI: streaming intra-hepatic bile ducts. Liver 10: 205208.CrossRefGoogle ScholarPubMed
Arber, N, Zajicek, G, Ariel, I. 1988. The streaming liver II. Hepatocyte life history. Liver 8: 8087.CrossRefGoogle ScholarPubMed
Benedetti, A, Jézéquel, AM, Orlandi, F. 1988. Preferential distribution of apoptotic bodies in the acinar zone 3 of normal human and rat liver. J Hepatol 7: 319324.CrossRefGoogle ScholarPubMed
Blikkendaal-Lieftinck, LF, Kooij, M, Kramer, MF, Otter, WD. 1977. Cell kinetics in the liver of rats under normal and abnormal dietary conditions. An autoradiographic study by means of [3H] thymidine. Exp Mol Path 26: 184192.CrossRefGoogle ScholarPubMed
Carroll, J. 2015. Bluebird shares dented after gene therapy patient experiences a setback. FierceBiotech. www.fiercebiotech.com/r-d/bluebird-shares-dented-after-gene-therapy-patient-experiences-a-setback (accessed November 2017).Google Scholar
Chira, S, Jackson, CS, Oprea, I, et al. 2015. Progresses towards safe and efficient gene therapy vectors. Oncotarget 6: 3067530703.CrossRefGoogle ScholarPubMed
Fahrner, J, Labruyere, WT, Gaunitz, C, et al. 1993. Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver. Eur J Biochem 213: 10671073.CrossRefGoogle ScholarPubMed
Fischer, A, Hacein-Bey-Abina, S, Cavazzana-Calvo, M. 2013. Gene therapy of primary T cell immunodeficiencies. Gene 525: 170173.CrossRefGoogle ScholarPubMed
Gouze, E, Gouze, JN, Palmer, GD, et al. 2007. Mol Ther 15: 11141120.CrossRefGoogle Scholar
Gumucio, JJ, May, M, Dvorak, C, Chianale, J, Massey, V. 1986. The isolation of functionally heterogeneous hepatocytes of the proximal and distal half of the liver acinus in the rat. Hepatology 6: 932944.CrossRefGoogle ScholarPubMed
Gumucio, JJ, Miller, DL. 1981. Functional implications of liver cell heterogeneity. Gastroenterology 80: 393403.CrossRefGoogle ScholarPubMed
Huh, YH, King, J, Cohen, J, Sherley, JL. 2011. SACK-expanded hair follicle stem cells display asymmetric nuclear lgr5 expression with non-random sister chromatid segregation. Sci Rep 1: 175.CrossRefGoogle ScholarPubMed
Jacomino, M, Lau, C, James, SZ, Henning, SJ. 1996. Gene transfer into fetal rat intestine. Hum Gene Ther 7: 17571762.CrossRefGoogle ScholarPubMed
Klein, AM, Simons, BD. 2011. Universal patterns of stem cell fate in cycling adult tissues. Development 138: 31033111.CrossRefGoogle ScholarPubMed
Le Lay, J, Kaestner, KH. 2010. The FOX genes in the liver: from organogenesis to functional integration. Physiol Rev 90: 122.CrossRefGoogle ScholarPubMed
Lee, H-S, Crane, GG, Merok, JR, et al. 2003. Clonal expansion of adult rat liver epithelial stem cells by suppression of asymmetric cell kinetics (SACK). Biotech Bioeng 83: 760771.CrossRefGoogle ScholarPubMed
Loeffler, M, Potten, CS. 1997. Stem cells and cellular pedigrees: a conceptual introduction. In Stem Cells, Potten, CS, ed., San Diego, CA: Harcourt Brace & Co., pp. 128.Google Scholar
MacDonald, RA. 1961. Lifespan of liver cells. Arch Intern Med 107: 335343.CrossRefGoogle ScholarPubMed
McClelland, R, Wauthier, E, Uronis, J, Reid, L. 2008a. Gradients in the liver’s extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A 14: 5970.CrossRefGoogle ScholarPubMed
McClelland, R, Wauthier, E, Zhang, L, et al. 2008b. Ex vivo conditions for self-replication of human hepatic stem cells. Tissue Eng Part C 14: 341351.CrossRefGoogle ScholarPubMed
Messier, B, Leblond, CP. 1960. Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Am J Anat 106: 247285.CrossRefGoogle ScholarPubMed
Miao, CH. 2016. Hemophilia A gene therapy via intraosseous delivery of factor VIII-lentiviral vectors. Thrombosis J 14(Suppl. 1): 9399.CrossRefGoogle ScholarPubMed
Mukherjee, S, Thrasher, AJ. 2013. Gene therapy for PIDs: progress, pitfalls, and prospects. Gene 525: 174181.CrossRefGoogle ScholarPubMed
Nahon, J-L. 1987. The regulation of albumin and α-fetoprotein gene expression in mammals. Biochimie 69: 445459.CrossRefGoogle ScholarPubMed
Noh, M, Smith, JL, Huh, YH, Sherley, JL. 2011. A resource for discovering specific and universal biomarkers for distributed stem cells. PLoS One 6(7): e22077.CrossRefGoogle ScholarPubMed
Ouspenskaia, T, Matos, I, Mertz, AF, Fiore, VF, Fuchs, E. 2016. WNT-SHH antagonism specifies and expands stem cells prior to niche formation. Cell 164: 156169.CrossRefGoogle ScholarPubMed
Panchalingam, K, Noh, M, Hu, YH, Sherley, JL. 2016. Distributed stem cell kinetotoxicity: a new concept to account for the human carcinogenicity of non-genotoxic toxicants. In Human Stem Cell Toxicology, Issues in Toxicology No. 29, Sherley, JL, ed., London: Royal Society of Chemistry.Google Scholar
Paradinas, FJ, Bull, TB, Westaby, D, Murray-Lyon, IM. 1977. Hyperplasia and prolapse of hepatocytes into hepatic veins during longterm methyltestosterone therapy: possible relationships of these changes to the development of peliosis hepatis and liver tumors. Histopathology 1: 225246.CrossRefGoogle Scholar
Paré, J-F, Sherley, JL. 2013. Ex vivo expansion of human pancreatic distributed stem cells by suppression of asymmetric cell kinetics (SACK). J Stem Cell Res Ther 3: 149.Google Scholar
Potten, CS, Morris, RJ. 1988. Epithelial stem cells in vivo. J Cell Sci Suppl 10: 4562.CrossRefGoogle ScholarPubMed
Potten, CS, Schofield, R, Lajtha, LG. 1979. A comparison of cell replacement in bone marrow, testis, and three regions of surface epithelium. Biochim et Biophys Acta 560: 281299.Google ScholarPubMed
Rappaport, AM. 1973. The microcirculatory hepatic unit. Microvasc Res 6: 212228.CrossRefGoogle ScholarPubMed
Schmelzer, E, Wauthier, E, Reid, LM. 2006. The phenotypes of pluripotent human hepatic progenitors. Stem Cells 24: 18521858.CrossRefGoogle ScholarPubMed
Schmelzer, E, Zhang, L, Bruce, A, et al. 2007. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 204: 19731987.CrossRefGoogle ScholarPubMed
Schwartz-Arad, D, Zajicek, G, Bartfeld, E. 1989. The streaming liver IV. DNA content of the hepatocyte increases with age. Liver 9: 9399.CrossRefGoogle Scholar
Sherley, JL. 2005. Asymmetric self-renewal: the mark of the adult stem cell. In Stem Cell Repair and Regeneration, Habib, NA, Gordon, MY, Levicar, N, Jiao, G, Thomas-Black, L, eds., London: Imperial College Press, pp. 2128.CrossRefGoogle Scholar
Sherley, JL. 2006. Mechanisms of genetic fidelity in mammalian adult stem cells. In Tissue Stem Cells, Potten, CS, Clarke, RB, Wilson, J, Renehan, AG, eds., New York: Taylor Francis, pp. 3754.Google Scholar
Sherley, JL. 2008. A new mechanism for aging: chemical “age spots” in immortal DNA strands in distributed stem cells. Breast Dis 29: 3746.CrossRefGoogle ScholarPubMed
Sherley, JL. 2013. New cancer diagnostics and therapeutics from a 9th “hallmark of cancer”: symmetric self-renewal by mutated distributed stem cells. Expert Rev Mol Diagn 13: 797810.CrossRefGoogle Scholar
Sherley, JL. 2016. Advancing stem cell medicine by supplying private stem cell clinics. Clinical Trials Arena Supply Chain. www.clinicaltrialsarena.com/news/supply-chain/advancing-stem-cell-medicine-by-supplying-private-stem-cell-clinics-5669514 (accessed November 2017).Google Scholar
Sherley, JL, Panchalingam, K. 2010. Methods for ex vivo propagation of adult hepatic stem cells. US Patent No. 7,824,912.Google Scholar
Sigal, SH, Brill, S, Fiorino, AS, Reid, LM. 1992. The liver as a stem cell and lineage system. Am J Physiol 263: G139G148.Google ScholarPubMed
Szybalski, W. 2013. The 50th anniversary of gene therapy: beginnings and present realities. Gene 525: 151154.CrossRefGoogle ScholarPubMed
Ungar, H. 1984. Primary portal venopathy in the golden hamster treated with low doses of dimethyl nitrosamine. Liver 4: 244254.CrossRefGoogle Scholar
Weber, GF. 2013. Gene therapy: why can it fail? Med Hypoth 80: 613616.CrossRefGoogle ScholarPubMed
Wirth, T, Parker, N, Ylä-Herttuala, S. 2013. History of gene therapy. Gene 525: 162169.CrossRefGoogle ScholarPubMed
Wright, N, Alison, M. 1984. The Biology of Epithelial Cell Populations, Vol. 2. Oxford: Clarendon Press, pp. 880980.Google Scholar
Xiong, X, Chen, M, Lim, WA, Zhao, D, Qi, LS. 2016. CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genom Hum Genet 17: 131154.CrossRefGoogle ScholarPubMed
Yu, K-R, Natanson, H, Dunbar, CE. 2016. Gene editing of human hematopoietic stem can progenitor cells: promise and potential hurdles. Hum Gene Ther 27: 729740.CrossRefGoogle ScholarPubMed
Zajicek, G, Arber, N, Schwartz-Arad, D. 1991. Streaming liver VIII: cell production rates following partial hepatectomy. Liver 11: 347351.CrossRefGoogle ScholarPubMed
Zajicek, G, Ariel, I, Arber, N. 1988. The streaming liver III. Littoral cells accompany the streaming hepatocyte. Liver 8: 213218.CrossRefGoogle ScholarPubMed
Zajicek, G, Oren, R, Weinreb, M Jr. 1985. The streaming liver. Liver 5: 293300.CrossRefGoogle ScholarPubMed
Zajicek, G, Swhwartz-Arad, D. 1990. Streaming liver VII: DNA turnover in acinus zone-3. Liver 10: 137140.CrossRefGoogle ScholarPubMed
Zajicek, G, Swhwartz-Arad, D, Bartfeld, E. 1989. The streaming liver V. Time and age-dependent changes of hepatocyte DNA content, following partial hepatectomy. Liver 9: 164171.CrossRefGoogle ScholarPubMed
Zepeda, ML, Chinov, MR, Wilson, JM. 1995. Characterization of stem cells in human airway capable of reconstituting a fully differentiated bronchial epithelium. Somat Cell Mol Genet 21: 6173.CrossRefGoogle ScholarPubMed
Zhou, S, Mody, D, DeRavin, SS, et al. 2010. A self-inactivating lentiviral vector for SCID-XI gene therapy that does not activate LMO2 expression in human T cells. Blood 116: 900908.CrossRefGoogle Scholar

References

Bak, RO, Porteus, MH. 2017. CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep 20(3): 750756.CrossRefGoogle ScholarPubMed
Butler, JM, Gars, EJ, James, DJ, et al. 2012. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120: 13441347.CrossRefGoogle ScholarPubMed
Canver, MC, Smith, EC, Sher, F, et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527: 192197.CrossRefGoogle ScholarPubMed
De Ravin, SS, Reik, A, Liu, PQ, et al. 2016. Targeted gene addition in human CD34(+) hematopoietic cells for correction of X-linked chronic granulomatous disease. Nature Biotechnol 34: 424429.CrossRefGoogle ScholarPubMed
Dever, DP, Bak, RO, Reinisch, A, et al. 2016. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539: 384389.CrossRefGoogle ScholarPubMed
DeWitt, MA, Magis, W, Bray, NL, et al. 2016. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells. Sci Transl Med 8: 360ra134.CrossRefGoogle ScholarPubMed
DiGiusto, DL, Cannon, PM, Holmes, MC, et al. 2016. Preclinical development and qualification of ZFN-mediated CCR5 disruption in human hematopoietic stem/progenitor cells. Mol Ther Methods Dev 3: 16067.CrossRefGoogle ScholarPubMed
Doulatov, S, Notta, F, Laurenti, E, Dick, JE. 2012. Hematopoiesis: a human perspective. Cell Stem Cell 10: 120136.CrossRefGoogle ScholarPubMed
Fares, I, Chagraoui, J, Gareau, Y, et al. 2014. Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345: 15091512.CrossRefGoogle ScholarPubMed
Genovese, P, Schiroli, G, Escobar, G, et al. 2014. Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510: 235240.CrossRefGoogle ScholarPubMed
Hendel, A, Bak, RO, Clark, JT, et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33: 985989.CrossRefGoogle ScholarPubMed
Hoban, MD, Cost, GJ, Mendel, MC, et al. 2015. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood 125: 25972604.CrossRefGoogle ScholarPubMed
Holt, N, Wang, J, Kim, K, et al. 2010. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28: 839847.CrossRefGoogle ScholarPubMed
Hubbard, N, Hagin, D, Sommer, K, et al. 2016. Targeted gene editing restores regulated CD40 L function in X-linked hyper-IgM syndrome. Blood 127: 25132522.CrossRefGoogle Scholar
Hutter, G. 2016. HIV+ patients and HIV eradication: allogeneic transplantation. Exp Rev Hematol 9: 615616.CrossRefGoogle ScholarPubMed
Lombardo, A, Cesana, D, Genovese, P, et al. 2011. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods 8: 861869.CrossRefGoogle ScholarPubMed
Lombardo, A, Genovese, P, Beausejour, CM, et al. 2007. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25: 12981306.CrossRefGoogle ScholarPubMed
Majeti, R, Park, CY, Weissman, IL. 2007. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1: 635645.CrossRefGoogle ScholarPubMed
Mandal, PK, Ferreira, LM, Collins, R, et al. 2014. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell 15: 643652.CrossRefGoogle ScholarPubMed
Milyavsky, M, Gan, OI, Trottier, M, et al. 2010. A distinctive DNA damage response in human hematopoietic stem cells reveals an apoptosis-independent role for p53 in self-renewal. Cell Stem Cell 7: 186197.CrossRefGoogle ScholarPubMed
Mohrin, M, Bourke, E, Alexander, D, et al. 2010. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7: 174185.CrossRefGoogle ScholarPubMed
Mussolino, C, Alzubi, J, Fine, EJ, et al. 2014. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 42: 67626773.CrossRefGoogle ScholarPubMed
Nagai, Y, Garrett, KP, Ohta, S, et al. 2006. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24: 801812.CrossRefGoogle ScholarPubMed
Nelson, CE, Hakim, CH, Ousterout, DG, et al. 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351: 403407.CrossRefGoogle Scholar
Notta, F, Doulatov, S, Laurenti, E, et al. 2011. Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333: 218221.CrossRefGoogle ScholarPubMed
Perez, EE, Wang, J, Miller, JC, et al. 2008. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26: 808816.CrossRefGoogle ScholarPubMed
Porteus, M. 2016. Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56: 163190.CrossRefGoogle ScholarPubMed
Porteus, MH, Connelly, JP, Pruett, SM. 2006. A look to future directions in gene therapy research for monogenic diseases. PLoS Genet 2: e133.CrossRefGoogle ScholarPubMed
Rossi, DJ, Bryder, D, Seita, J, et al. 2007. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447: 725729.CrossRefGoogle ScholarPubMed
Sather, BD, Romano Ibarra, GS, Sommer, K, et al. 2015. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci Transl Med 7: 307ra156.CrossRefGoogle ScholarPubMed
Tebas, P, Stein, D, Tang, WW, et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901910.CrossRefGoogle ScholarPubMed
Traxler, EA, Yao, Y, Wang, YD, et al. 2016. A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 22(9): 987990.CrossRefGoogle ScholarPubMed
van Galen, P, Kreso, A, Mbong, N, et al. 2014. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature 510: 268272.CrossRefGoogle ScholarPubMed
Voit, RA, Hendel, A, Pruett-Miller, SM, Porteus, MH. 2014. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 42: 13651378.CrossRefGoogle ScholarPubMed
Voit, RA, McMahon, MA, Sawyer, SL, Porteus, MH. 2013. Generation of an HIV resistant T-cell line by targeted “stacking” of restriction factors. Mol Ther 21: 786795.CrossRefGoogle ScholarPubMed
Wang, J, Exline, CM, DeClercq, JJ, et al. 2015. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33: 12561263.CrossRefGoogle ScholarPubMed
Wang, W, Ye, C, Liu, J, et al. 2014. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9: e115987.CrossRefGoogle ScholarPubMed
Yahata, T, Takanashi, T, Muguruma, Y, et al. 2011. Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118: 29412950.CrossRefGoogle ScholarPubMed
Yanez, A, Murciano, C, O’Connor, JE, Gozalbo, D, Gil, ML. 2009. Candida albicans triggers proliferation and differentiation of hematopoietic stem and progenitor cells by a MyD88-dependent signaling. Microbes Infect 11: 531535.CrossRefGoogle ScholarPubMed
Ye, L, Wang, J, Beyer, AI, et al. 2014. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci USA 111: 95919596.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×