Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T16:37:17.272Z Has data issue: false hasContentIssue false

Part II - Genome Editing in Model Organisms

Published online by Cambridge University Press:  30 July 2018

Krishnarao Appasani
Affiliation:
GeneExpression Systems, Inc.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Genome Editing and Engineering
From TALENs, ZFNs and CRISPRs to Molecular Surgery
, pp. 69 - 162
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Asada, M, Kato, Y, Matsuura, T, Watanabe, H. 2014. Visualization of ecdysteroid activity using a reporter gene in the crustacean, Daphnia. Mar Environ Res 93: 118122.CrossRefGoogle ScholarPubMed
Auer, TO, Duroure, K, De Cian, A, Concordet, JP, Del Bene, F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24: 142153.CrossRefGoogle ScholarPubMed
Cade, L, Reyon, D, Hwang, WY, et al. 2012. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40: 80018010.CrossRefGoogle ScholarPubMed
Carroll, D. 2014. Genome engineering with targetable nucleases. Annu Rev Biochem 83: 409439.CrossRefGoogle ScholarPubMed
Cermak, T, Doyle, EL, Christian, M, et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39: e82.CrossRefGoogle ScholarPubMed
Colbourne, JK, Pfrender, ME, Gilbert, D, et al. 2011. The ecoresponsive genome of Daphnia pulex. Science 331: 555561.CrossRefGoogle ScholarPubMed
Doyle, EL, Booher, NJ, Standage, DS, et al. 2012. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40: W117W122.CrossRefGoogle ScholarPubMed
Eads, BD, Colbourne, JK, Bohuski, E, Andrews, J. 2007. Profiling sex-biased gene expression during parthenogenetic reproduction in Daphnia pulex. BMC Genomics 8: 464.CrossRefGoogle ScholarPubMed
Ebert, D. 2011. A genome for the environment. Science 331: 539540.CrossRefGoogle ScholarPubMed
Gaj, T, Gersbach, CA, Barbas, CF. 2013. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31: 397405.CrossRefGoogle ScholarPubMed
Gratz, SJ, Cummings, AM, Nguyen, JN, et al. 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194: 10291035.CrossRefGoogle ScholarPubMed
Hill, RE, Favor, J, Hogan, BL, et al. 1991. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354: 522525.CrossRefGoogle Scholar
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816821.CrossRefGoogle ScholarPubMed
Kanda, T, Sullivan, KF, Wahl, GM. 1998. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8: 377385.CrossRefGoogle ScholarPubMed
Kato, Y, Matsuura, T, Watanabe, H. 2012. Genomic integration and germline transmission of plasmid injected into crustacean Daphnia magna eggs. PLoS One 7: e45318.CrossRefGoogle ScholarPubMed
Kato, Y, Shiga, Y, Kobayashi, K, et al. 2011. Development of an RNA interference method in the cladoceran crustacean Daphnia magna. Dev Genes Evol 220: 337345.CrossRefGoogle ScholarPubMed
Kayukawa, T, Tateishi, K, Shinoda, T. 2013. Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep 3: 1570.CrossRefGoogle ScholarPubMed
Kronhamn, J, Frei, E, Daube, M, et al. 2002. Headless flies produced by mutations in the paralogous Pax6 genes eyeless and twin of eyeless. Development 129: 10151026.CrossRefGoogle ScholarPubMed
Miner, BE, De Meester, L, Pfrender, ME, Lampert, W, Hairston, NG. 2012. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc Biol Sci 279: 18731882.Google ScholarPubMed
Naitou, A, Kato, Y, Nakanishi, T, Matsuura, T, Watanabe, H. 2015. Heterodimeric TALENs induce targeted heritable mutations in the crustacean Daphnia magna. Biol Open 4: 364369.CrossRefGoogle ScholarPubMed
Nakajima, K, Yaoita, Y. 2013. Comparison of TALEN scaffolds in Xenopus tropicalis. Biol Open 2: 13641370.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2014. CRISPR/Cas-mediated targeted mutagenesis in Daphnia magna. PLoS One 9: e98363.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2015. TALEN-mediated homologous recombination in Daphnia magna. Sci Rep 5: 18312.CrossRefGoogle ScholarPubMed
Nakanishi, T, Kato, Y, Matsuura, T, Watanabe, H. 2016. TALEN-mediated knock-in via non-homologous end joining in the crustacean Daphnia magna. Sci Rep 6: 36252.CrossRefGoogle ScholarPubMed
Orsini, L, Decaestecker, E, De Meester, L, Pfrender, ME, Colbourne, JK. 2011. Genomics in the ecological arena. Biol Lett 7: 23.CrossRefGoogle ScholarPubMed
Pan, Y, Xiao, L, Li, ASS, et al. 2013. Biological and biomedical applications of engineered nucleases. Mol Biotechnol 55: 5462.CrossRefGoogle ScholarPubMed
Piña, B, Barata, C. 2011. A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment. Aquat Toxicol 105: 4049.CrossRefGoogle ScholarPubMed
Quiring, R, Walldorf, U, Kloter, U, Gehring, WJ. 1994. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265: 785789.CrossRefGoogle Scholar
Sagawa, K, Yamagata, H, Shiga, Y. 2005. Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker. Gene Expr Patterns 5: 669678.CrossRefGoogle ScholarPubMed
Streubel, J, Blucher, C, Landgraf, A, Boch, J. 2012. TAL effector RVD specificities and efficiencies. Nat Biotechnol 30: 593595.CrossRefGoogle ScholarPubMed
Törner, K, Nakanishi, T, Matsuura, T, Kato, Y, Watanabe, H. 2014. Optimization of mRNA design for protein expression in the crustacean Daphnia magna. Mol Genet Genomics 289: 707715.CrossRefGoogle ScholarPubMed
Turner, DL, Weintraub, H. 1994. Expression of achaete-scute homolog-3 in xenopus-embryos converts ectodermal cells to a neural fate. Genes Dev 8: 14341447.CrossRefGoogle ScholarPubMed
Watanabe, H, Takahashi, E, Nakamura, Y, et al. 2007. Development of a Daphnia magna DNA microarray for evaluating the toxicity of environmental chemicals. Environ Toxicol Chem 26: 669676.CrossRefGoogle ScholarPubMed
Watanabe, H, Tatarazako, N, Oda, S, et al. 2005. Analysis of expressed sequence tags of the water flea Daphnia magna. Genome 48: 606609.CrossRefGoogle ScholarPubMed

References

Abu-Daya, A, Sater, AK, Wells, DE, Mohun, TJ, Zimmerman, LB. 2009. Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev Biol 336: 2029.CrossRefGoogle ScholarPubMed
Aslan, Y, Tadjuidje, E, Zorn, AM, Cha, SW. 2017. High-efficiency no-mosaic CRISPR-mediated knock-in and indel mutation in F0 Xenopus. Development 144: 28522858.Google Scholar
Bhattacharya, D, Marfo, CA, Li, D, Lane, M, Khokha, MK. 2015. CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408: 196204.CrossRefGoogle ScholarPubMed
Blackler, AW. 1960. Transfer of germ-cells in Xenopus laevis. Nature 185: 859860.CrossRefGoogle ScholarPubMed
Blackler, AW, Fischberg, M. 1961. Transfer of primordial germ-cells in Xenopus laevis. J Embryol Exp Morph 9: 634641.Google Scholar
Blitz, IL, Biesinger, J, Xie, X, Cho, KW. 2013. Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51: 827834.CrossRefGoogle ScholarPubMed
Blitz, IL, Fish, MB, Cho, KW. 2016. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes. Development 143: 28682875.Google ScholarPubMed
Blitz, IL, Pawaiso, KD, Patsushev, I, et al. 2017 A catalogue of Xenopus tropicalis transcription factors and their regional expression in the early gastrola stage embryo. Dev Biol 426: 409417.CrossRefGoogle ScholarPubMed
Brinkman, EK, Chen, T, Amendola, M, van Steensel, B. 2014. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168.CrossRefGoogle ScholarPubMed
Chung, HA, Medina-Ruiz, S, Harland, RM. 2016. Sp8 regulates inner ear development. Proc Natl Acad Sci USA 111: 63296334.CrossRefGoogle Scholar
Crowder, ME, Strzelecka, M, Wilbur, JD, et al. 2015. A comparative analysis of spindle morphometrics across metazoans. Curr Biol 25: 15421550.CrossRefGoogle ScholarPubMed
Geach, TJ, Zimmerman, LB. 2010. Paralysis and delayed Z-disc formation in the Xenopus tropicalis unc45b mutant dicky ticker. BMC Dev Biol 10: 75.CrossRefGoogle ScholarPubMed
Goda, T, Abu-Daya, A, Carruthers, S, et al. 2006. Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet 2: e91.CrossRefGoogle ScholarPubMed
Grammer, TC, Khokha, MK, Lane, MA, Lam, K, Harland, RM. 2005. Identification of mutants in inbred Xenopus tropicalis. Mech Dev 122: 263272.CrossRefGoogle ScholarPubMed
Guo, X, Zhang, T, Hu, Z, et al. 2014. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141: 707714.CrossRefGoogle ScholarPubMed
Hellsten, U, Harland, RM, Gilchrist, MJ, et al. 2010. The genome of the Western clawed frog Xenopus tropicalis. Science 328: 633636.CrossRefGoogle ScholarPubMed
Jaffe, KM, Grimes, DT, Schottenfeld-Roames, J, et al. 2016. c210rf59/kurly controls both cilia mobility and polarization. Cell Rep 14: 18411849.CrossRefGoogle Scholar
Liu, Z, Cheng, TT, Shi, Z, et al. 2016. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos. Cell Biosci 6: 22.CrossRefGoogle ScholarPubMed
Naert, T, Colpaert, R, Van Nieuwenhuysen, T, et al. 2016. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep 6: 35264.CrossRefGoogle ScholarPubMed
Nakade, S, Tsubota, T, Sakame, Y, et al. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commonun 20: 5560.CrossRefGoogle Scholar
Nakayama, T, Blitz, IL, Fish, MB, et al. 2014. Cas9-based genome editing in Xenopus tropicalis. Methods Enzymol 546: 355375.CrossRefGoogle ScholarPubMed
Nakayama, T, Fish, MB, Fisher, M, et al. 2013. Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51: 835843.CrossRefGoogle ScholarPubMed
Nakayama, T, Nakajima, K, Cox, A, et al. 2017. No privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Dev Biol 426(2): 472486.CrossRefGoogle Scholar
Nieuwkoop and Faber. 1994. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metomorphosis. New York: Garland Publishing Inc.Google Scholar
Noramly, S, Zimmerman, L, Cox, A, et al. 2005. A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech Dev 122: 273287.CrossRefGoogle ScholarPubMed
Ogino, H, McConnell, WB, Grainger, RM. 2006. High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1: 17031710.CrossRefGoogle ScholarPubMed
Owens, ND, Blitz, IL, Lane, MA, et al. 2016. Measuring absolute RNA copy numbers at high temporal resolution reveals transcriptome kinetics in development. Cell Rep 14: 632647.CrossRefGoogle ScholarPubMed
Peshkin, L, Wühr, M, Pearl, E, et al. 2015. On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev Cell 35: 383394.CrossRefGoogle ScholarPubMed
Sentmanat, MF, Peters, ST, Florian, CP, Connelly, JP, Pruett-Miller, SM. 2018. A survey of validation strategies for CRISPR-Cas9 editing. Sci Rep 8: 888.CrossRefGoogle ScholarPubMed
Session, AM, Uno, Y, Kwon, T, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 538: 336343.CrossRefGoogle ScholarPubMed
Shi, J, Wang, E, Milazzo, JP, et al. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33: 661667.CrossRefGoogle ScholarPubMed
Shigeta, M, Sakane, Y, Iida, M, et al. 2016. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders. Genes Cells 21: 755771.CrossRefGoogle ScholarPubMed
Sive, HL, Grainger, RM, Harland, RM. 2000. Early Development of Xenopus laevis: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Sive, HL, Grainger, RM, Harland, RM. 2007. Embryo dissection and micromanipulation tools. CSH Protoc: pdb.top7.CrossRefGoogle Scholar
Teboul, L, Murray, SA, Nolan, PM. 2017. Phenotyping first-generation genome editing mutants: a new standard? Mamm Genome 28(7–8): 377382.CrossRefGoogle ScholarPubMed
Van Nieuwenhuysen, T, Naert, T, Tran, HT, et al. 2015. TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience 2: 555566.CrossRefGoogle ScholarPubMed
Varshney, GK, Pei, W, LaFave, MC, et al. 2015. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res 25: 10301042.CrossRefGoogle ScholarPubMed
Wang, F, Shi, Z, Cui, Y, et al. 2015. Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5: 15.CrossRefGoogle ScholarPubMed

References

Auer, TO, Duroure, K, De Cian, A, Concordet, J-P, Del Bene, F. 2014. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24(1): 142153.CrossRefGoogle ScholarPubMed
Chari, R, Mali, P, Moosburner, M, Church, GM. 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9): 823826.CrossRefGoogle Scholar
Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011a. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9): 753755.CrossRefGoogle ScholarPubMed
Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011b. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8(9): 753755.CrossRefGoogle ScholarPubMed
Chen, Y, Cao, J, Xiong, M, et al. 2015. Engineering human stem cell lines with inducible gene knockout using CRISPR/Cas9. Cell Stem Cell 17(2): 233244.CrossRefGoogle ScholarPubMed
Chu, VT, Weber, T, Wefers, B, et al. 2015. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33(5): 543548.CrossRefGoogle ScholarPubMed
Dickinson, DJ, Pani, AM, Heppert, JK, Higgins, CD, Goldstein, B. 2015. Streamlined genome engineering with a self-excising drug selection cassette. Genetics 200(4): 10351049.CrossRefGoogle ScholarPubMed
Doench, JG, Hartenian, E, Graham, DB, et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 32(12): 12621267.CrossRefGoogle ScholarPubMed
Dow, LE, Fisher, J, O’Rourke, KP, et al. 2015. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33(4): 390394.CrossRefGoogle ScholarPubMed
Duda, K, Lonowski, LA, Kofoed-Nielsen, M, et al. 2014. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucl Acids Res 42(10): e84.CrossRefGoogle ScholarPubMed
Farboud, B, Meyer, BJ. 2015. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199(4): 959971.CrossRefGoogle ScholarPubMed
Flemr, M, Bühler, M. 2015. Single-step generation of conditional knockout mouse embryonic stem cells. Cell Rep 12(4): 709716.CrossRefGoogle ScholarPubMed
González, F, Zhu, Z, Shi, Z-D, et al. 2014. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15(2): 215226.CrossRefGoogle ScholarPubMed
Haeussler, M, Schönig, K, Eckert, H, et al. 2016. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1): 148.CrossRefGoogle ScholarPubMed
Hatada, S, Subramanian, A, Mandefro, B, et al. 2015. Low-dose irradiation enhances gene targeting in human pluripotent stem cells. Stem Cells Trans Med 4(9): 9981010.CrossRefGoogle ScholarPubMed
He, X, Tan, C, Wang, F, et al. 2016. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Res 44(9): e85.CrossRefGoogle ScholarPubMed
Hisano, Y, Sakuma, T, Nakade, S, et al. 2015. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Scientific Rep 5: 8841.CrossRefGoogle ScholarPubMed
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8(7): e68708.CrossRefGoogle ScholarPubMed
Kleinstiver, BP, Tsai, SQ, Prew, MS, et al. (2016). Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8): 869874.CrossRefGoogle ScholarPubMed
Li, J, Zhang, B-B, Ren, Y-G, et al. 2015. Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res 25(5): 634637.CrossRefGoogle ScholarPubMed
Liu, X, Homma, A, Sayadi, J, et al. 2016. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Rep 6: 19675.CrossRefGoogle ScholarPubMed
Maruyama, T, Dougan, SK, Truttmann, MC, et al. 2015. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33(5): 538542.CrossRefGoogle ScholarPubMed
Merkle, FT, Neuhausser, WM, Santos, D, et al. 2015. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus. Cell Rep 11(6): 875883.CrossRefGoogle ScholarPubMed
Paquet, D, Kwart, D, Chen, A, et al. 2016. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601): 125129.CrossRefGoogle ScholarPubMed
Park, A, Won, ST, Pentecost, M, Bartkowski, W, Lee, B. 2014. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function. PLoS One 9(4): e95101.CrossRefGoogle Scholar
Petrezselyova, S, Kinsky, S, Truban, D, et al. 2015. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does. Cell Mol Biol Lett 20(5): 773787.CrossRefGoogle ScholarPubMed
Pinder, J, Salsman, J, Dellaire, G. 2015. Nuclear domain “knock-in” screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res 43(19): 93799392.CrossRefGoogle ScholarPubMed
Platt, RJ, Chen, S, Zhou, Y, et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2): 440455.CrossRefGoogle ScholarPubMed
Renaud, J-B, Boix, C, Charpentier, M, et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep 14(9): 22632272.CrossRefGoogle ScholarPubMed
Richardson, CD, Ray, GJ, DeWitt, MA, Curie, GL, Corn, JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34(3): 339344.CrossRefGoogle ScholarPubMed
Song, J, Yang, D, Xu, J, et al. 2016. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Comm 7: 10548.CrossRefGoogle ScholarPubMed
Yang, L, Guell, M, Byrne, S, et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41(19): 90499061.CrossRefGoogle ScholarPubMed
Yoshimi, K, Kaneko, T, Voigt, B, Mashimo, T. 2014. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat Comm 5: 4240.CrossRefGoogle ScholarPubMed
Zetsche, B, Gootenberg, JS, Abudayyeh, OO, et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3): 759771.CrossRefGoogle ScholarPubMed
Zhu, Z, Verma, N, González, F, Shi, Z-D, Huangfu, D. 2015. A CRISPR/Cas-mediated selection-free knockin strategy in human embryonic stem cells. Stem Cell Rep 4(6): 11031111.CrossRefGoogle ScholarPubMed

References

Adam, SJ, Rund, LA, Kuzmuk, KN, et al. 2007. Genetic induction of tumorigenesis in swine. Oncogene 26(7): 10381045.CrossRefGoogle ScholarPubMed
Ao, Y, Mich-Basso, JD, Lin, B, Yang, L. 2014. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells. PLoS One 9(6): 111.CrossRefGoogle ScholarPubMed
Baltimore, D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226(5252): 12091211.CrossRefGoogle ScholarPubMed
Barreiro, LB, Quintana-Murci, L. 2010. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 11(1): 1730.CrossRefGoogle ScholarPubMed
Bergen, WG, Mersmann, HJ. 2005. Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135(11): 24992502.CrossRefGoogle ScholarPubMed
Berry, RJ 1970. The natural history of the house mouse. Field Studies 3: 219262.Google Scholar
Breuing, K, Kaplan, S, Liu, P, Onderdonk, AB, Eriksson, E. 2003. Wound fluid bacterial levels exceed tissue bacterial counts in controlled porcine partial-thickness burn infections. Plast Reconstruct Surg 111(2): 781788.CrossRefGoogle ScholarPubMed
Bufler, P, Azam, T, Gamboni-Robertson, F, et al. 2002. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Proc Natl Acad Sci USA 99(21): 1372313728.CrossRefGoogle ScholarPubMed
Butler, JE, Lager, KM, Splichal, I, et al. 2009. The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 128(1–3): 147170.CrossRefGoogle Scholar
Butler, JR, Martens, GR, Li, P, et al. 2016. The fate of human platelets exposed to porcine renal endothelium: a single-pass model of platelet uptake in domestic and genetically modified porcine organs. J Surg Res 200(2): 698706.CrossRefGoogle ScholarPubMed
Campbell, KH, McWhir, J, Ritchie, WA, Wilmut, I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6569): 6466.CrossRefGoogle ScholarPubMed
Carlson, DF, Tan, W, Lillico, SG, et al. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109(43): 1738217387.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genom 42: 437444.CrossRefGoogle ScholarPubMed
Choi, KH, Park, JK, Son, D, et al. 2016. Reactivation of endogenous genes and epigenetic remodeling are barriers for generating transgene-free induced pluripotent stem cells in pig. PLoS One 11(6): 118.Google ScholarPubMed
Cooper, DKC, Ekser, B, Ramsoondar, J, Phelps, C, Ayares, D. 2016. The role of genetically engineered pigs in xenotransplantation research. J Pathol 238(2): 288299.CrossRefGoogle ScholarPubMed
Cuttle, L, Kempf, M, Phillips, GE, et al. 2006. A porcine deep dermal partial thickness burn model with hypertrophic scarring. Burns 32(7): 806820.CrossRefGoogle ScholarPubMed
Davidson, JM. 1998. Animal models for wound repair. Arch Dermatol Res 290(14): S1S11.CrossRefGoogle ScholarPubMed
Du, Y, Kragh, PM, Zhang, Y, et al. 2007. Piglets born from handmade cloning, an innovative cloning method without micromanipulation. Theriogenology 68(8): 11041110.CrossRefGoogle ScholarPubMed
El-Hamamsy, I, Stevens, LM, Vanhoutte, PM, Perrault, LP. 2005. Injury of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant 24(3): 251258.CrossRefGoogle ScholarPubMed
Ellegaard Göttingen Minipigs. 2010. Taking good care of Ellegaard Göttingen Minipigs. https://minipigs.dk/fileadmin/filer/pdf/Taking_good_care_of_Ellegaard_Goettingen_Minipigs_13.03.13.pdf (accessed October 2017).Google Scholar
Estrada, J, Martens, G, Li, P, et al. 2015. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation 22(3): 194202.CrossRefGoogle ScholarPubMed
Ezashi, T, Telugu, BPVL, Alexenko, AP, et al. 2009. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106(27): 1099310998.CrossRefGoogle ScholarPubMed
Fan, N, Chen, J, Shang, Z, et al. 2013. Piglets cloned from induced pluripotent stem cells. Cell Res 23(1): 162166.CrossRefGoogle ScholarPubMed
Farre, L, Rigau, T, Mogas, T, et al. 1999. Adenovirus-mediated introduction of DNA into pig sperm and offspring. Mol Reprod Devel 53(2): 149158.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Finn, OJ. 2012. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol 23(Suppl. 8): 811.CrossRefGoogle ScholarPubMed
Flisikowska, T, Kind, A, Schnieke, A. 2014. Genetically modified pigs to model human diseases. J Appl Genet 55(1): 5364.CrossRefGoogle ScholarPubMed
Flisikowska, T, Merkl, C, Landmann, M, et al. 2012. A porcine model of familial adenomatous polyposis. Gastroenterology 143(5): 11731177.CrossRefGoogle ScholarPubMed
Gerner, W, Käser, T, Saalmüller, A. 2009. Porcine T lymphocytes and NK cells: an update. Devel Compar Immunol 33(3): 310320.CrossRefGoogle ScholarPubMed
Gertsenstein, M, Lobe, C, Nagy, A. 2002. ES cell-mediated conditional transgenesis. Meth Mol Biol 185(5): 285307.Google ScholarPubMed
Gregory-Evans, K, Weleber, RG. 1997. An eye for an eye: new models of genetic ocular disease. Nat Biotech 15: 947948.CrossRefGoogle ScholarPubMed
Hagemann, S, Günther, T, Dennemärker, J, et al. 2004. The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. Euro J Cell Biol 83(11–12): 775780.CrossRefGoogle ScholarPubMed
Hai, T, Teng, F, Guo, R, Li, W, Zhou, Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24(3): 372375.CrossRefGoogle ScholarPubMed
Hammer, RE, Pursel, VG, Rexroad, CE, et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021): 680683.CrossRefGoogle ScholarPubMed
He, Z, Shi, X, Du, B, et al. 2015. Highly efficient enrichment of porcine cells with deletions induced by CRISPR/Cas9 using dual fluorescence selection. J Biotechnol 214: 6974.CrossRefGoogle ScholarPubMed
Holm, IE, Alstrup, AKO, Luo, Y. 2016. Genetically modified pig models for neurodegenerative disorders. J Pathol 238(2): 267287.CrossRefGoogle ScholarPubMed
Holm, IE, West, MJ. 1994. Hippocampus of the domestic pig: a stereological study of subdivisional volumes and neuron numbers. Hippocampus 4(1): 115125.CrossRefGoogle ScholarPubMed
Hyodo, A, Reger, SI, Negami, S, et al. 1995. Evaluation of a pressure sore model using monoplegic pigs. Plast Reconstr Surg 96(2): 421428.CrossRefGoogle ScholarPubMed
Ingram, DL, Legge, KF. 1970. Variations in deep body temperature in the young unrestrained pig over the 24 hour period. J Physiol 210(4): 989998.CrossRefGoogle Scholar
Ji, G, Ruan, W, Liu, K, et al. 2013. Telomere reprogramming and maintenance in porcine iPS cells. PLoS One 8(9): e74202.CrossRefGoogle ScholarPubMed
Jinek, M, Chylinski, K, Fonfara, I, et al. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6069): 816821.CrossRefGoogle ScholarPubMed
Jørgensen, FG, Hobolth, A, Hornshøj, H, et al. 2005. Comparative analysis of protein coding sequences from human, mouse and the domesticated pig. BMC Biol 3: 2.CrossRefGoogle ScholarPubMed
Kalloo, AN, Singh, VK, Jagannath, SB, et al. 2004. Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 60(1): 114117.CrossRefGoogle ScholarPubMed
Kang, J-T, Cho, B, Ryu, J, et al. 2016a. Biallelic modification of IL2RG leads to severe combined immunodeficiency in pigs. Reprod Biol Endocrinol 14(1): 74.CrossRefGoogle ScholarPubMed
Kang, J-T, Kwon, DK, Park, AR, et al. 2016b. Production of α-1,3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology. J Vet Sci 17(1): 8996.CrossRefGoogle ScholarPubMed
Kang, J-T, Ryu, J, Cho, B, et al. 2016c. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting. Reprod Dom Animals 51(6): 970978.CrossRefGoogle ScholarPubMed
Kantsevoy, SV, Jagannath, SB, Niiyama, H, et al. 2005. Endoscopic gastrojejunostomy with survival in a porcine model. Gastrointest Endosc 62(2): 287292.CrossRefGoogle ScholarPubMed
Kim, YG, Cha, J, Chandrasegaran, S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3): 11561160.CrossRefGoogle ScholarPubMed
Kraft, TW, Allen, D, Petters, RM, et al. 2005. Altered light responses of single rod photoreceptors in transgenic pigs expressing P347 L or P347S rhodopsin. Mol Vision 11: 12461256.Google ScholarPubMed
Kragh, PM, Du, Y, Corydon, TJ, et al. 2005. Efficient in vitro production of porcine blastocysts by handmade cloning with a combined electrical and chemical activation. Theriogenology 64(7): 15361545.CrossRefGoogle ScholarPubMed
Kragh, PM, Nielsen, AL, Li, J, et al. 2009. Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res 18: 545558.CrossRefGoogle ScholarPubMed
Kwon, J, Namgoong, S, Kim, N. 2015. CRISPR/Cas9 as tool for functional study of genes involved in preimplantation embryo development. PLoS One 10(3): e0120501.CrossRefGoogle ScholarPubMed
Lai, L, Kolber-Simonds, D, Park, K-W, et al. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295(5557): 10891092.CrossRefGoogle ScholarPubMed
Lai, S, Wei, S, Zhao, B, et al. 2016. Generation of knock-in pigs carrying Oct4-tdTomato Reporter through CRISPR/Cas9-mediated genome engineering. PLoS One 11(1): e0146562.CrossRefGoogle ScholarPubMed
Lavitrano, M, Camaioni, A, Fazio, VM, et al. 1989. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57(5): 717723.CrossRefGoogle ScholarPubMed
Lee, K, Kwon, D-N, Ezashi, T, et al. 2014. Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency. Proc Natl Acad Sci USA 111(20): 72607265.CrossRefGoogle ScholarPubMed
Lee, PY, Park, SG, Kim, EY, et al. 2010. Proteomic analysis of pancreata from mini-pigs treated with streptozotocin as type I diabetes models. J Microbiol Biotechnol 20(4): 817820.Google ScholarPubMed
Leeb, T, Müller, M. 2004. Comparative human-mouse-rat sequence analysis of the ICAM gene cluster on HSA 19p13.2 and a 185-kb porcine region from SSC 2q. Gene 343(2): 239244.CrossRefGoogle Scholar
Lei, S, Ryu, J, Wen, K, et al. 2016. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep 6: 25222.CrossRefGoogle ScholarPubMed
Li, P, Estrada, JL, Burlak, C, et al. 2015. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22(1): 2031.CrossRefGoogle Scholar
Li, X-Q, Donnelly, DJ, Jensen, TG (eds.). 2015. Somatic Genome Manipulation. New York, NY: Springer New York.CrossRefGoogle Scholar
Liu, Y, Li, J, Løvendahl, P, et al. 2015. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reprod Fert Dev 27(3): 429.CrossRefGoogle ScholarPubMed
Luo, Y, Li, J, Liu, Y, et al. 2011. High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgen Res 20(5): 975988.CrossRefGoogle ScholarPubMed
Luo, Y, Lin, L, Bolund, L, Jensen, TG, Sørensen, CB. 2012. Genetically modified pigs for biomedical research. J Inherit Metabol Dis 35(4): 695713.CrossRefGoogle ScholarPubMed
Ma, XC, Ning, J, Ge, GB, et al. 2011. Comparative metabolism of cinobufagin in liver microsomes from mouse, rat, dog, minipig, monkey, and human. Drug Metabol Dispos 39(4): 675682.CrossRefGoogle ScholarPubMed
Marchant, JN, Whittaker, X, Broom, DM. 2001. Vocalisations of the adult female domestic pig during a standard human approach test and their relationships with behavioural and heart rate measures. Appl Animal Behav Sci 72(1): 2339.CrossRefGoogle ScholarPubMed
Merrifield, CA, Lewis, M, Claus, SP, et al. 2011. A metabolic system-wide characterisation of the pig: a model for human physiology. Mol BioSystems 7(9): 25772588.CrossRefGoogle Scholar
Mestas, J, Hughes, CCW. 2004. Of mice and not men: differences between mouse and human immunology. J Immunol 172(5): 27312738.CrossRefGoogle Scholar
Mussolino, C, Morbitzer, R, Lütge, F, et al. 2011. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39: 92839293.CrossRefGoogle ScholarPubMed
Niemann, H, Petersen, B. 2016. The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgen Res 25(3): 361374.CrossRefGoogle ScholarPubMed
Nottle, MB, Haskard, KA, Verma, PJ, et al. 2001. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgen Res 10(6): 523531.CrossRefGoogle ScholarPubMed
Parker, N, Porter, ACG. 2004. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12. BMC Genom 5(1): 8.CrossRefGoogle ScholarPubMed
Peng, J, Wang, Y, Jiang, J, et al. 2015. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5(April): 16705.CrossRefGoogle ScholarPubMed
Petters, RM, Alexander, CA, Wells, KD, et al. 1997. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15(10): 965970.CrossRefGoogle ScholarPubMed
Pillay, P, Manger, PR. 2007. Order-specific quantitative patterns of cortical gyrification. Euro J Neurosci 25(9): 27052712.CrossRefGoogle ScholarPubMed
Pond, WG, Boleman, SL, Fiorotto, ML, et al. 2000. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med 223(1): 102108.Google ScholarPubMed
Puente, X, Sánchez, L, Christopher, M, López-Otín, C. 2003. Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4(7): 544558.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Lin, C-Y, et al. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6): 13801389.CrossRefGoogle ScholarPubMed
Rao, S, Fujimura, T, Matsunari, H, et al. 2016. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev  83(1): 6170.CrossRefGoogle ScholarPubMed
Reece, WO. 2005. Dukes’ Physiology of Domestic Animals, 12th edn. Ithaca, NY: Cornell University Press.Google Scholar
Renner, S, Fehlings, C, Herbach, N, et al. 2010. Glucose intolerance and reduced proliferation of pancreatic β-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes 59(5): 12281238.CrossRefGoogle ScholarPubMed
Rogers, CS, Stoltz, DA, Meyerholz, DK, et al. 2008. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321(5897): 18371841.CrossRefGoogle Scholar
Roser, M. 2016. Life expectancy. Our World in Data. https://ourworldindata.org/life-expectancy/ (accessed November 2017).Google Scholar
Roy, S, Biswas, S, Khanna, S, et al. 2009. Characterization of a preclinical model of chronic ischemic wound. Physiol Genomics 37(3): 211224.CrossRefGoogle ScholarPubMed
Sakoda, T, Kasahara, N, Kedes, L, Ohyanagi, M. 2007. Lentiviral vector-mediated gene transfer to endotherial cells compared with adenoviral and retroviral vectors. Prep Biochem Biotechnol 37(1): 111.CrossRefGoogle ScholarPubMed
Seaton, M, Hocking, A, Gibran, NS. 2015. Porcine models of cutaneous wound healing. ILAR J 56(1): 127138.CrossRefGoogle ScholarPubMed
Shen, B, Zhang, W, Zhang, J, et al. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Meth 11(4): 399402.CrossRefGoogle ScholarPubMed
Shim, J, Al-Mashhadi, RH, Sørensen, CB, Bentzon, JF. 2016. Large animal models of atherosclerosis – new tools for persistent problems in cardiovascular medicine. J Pathol 238(2): 257266.CrossRefGoogle ScholarPubMed
Shinkai, A, Komuta-Kunitomo, M, Sato-Nakamura, N, Anazawa, H. 2002. N-terminal domain of eotaxin-3 is important for activation of CC chemokine receptor 3. Prot Engineering Design Select 15(11): 923929.CrossRefGoogle ScholarPubMed
Sieren, JC, Meyerholz, DK, Wang, XJ, et al. 2014. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest 124(9): 40524066.CrossRefGoogle ScholarPubMed
Stubhan, M, Markert, M, Mayer, K, et al. 2008. Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen minipig. J Pharmacol Toxicol Methods 57(3): 202211.CrossRefGoogle ScholarPubMed
Swindle, MM, Smith, AC, Laber-Laird, K, Dungan, L. 1994. Swine in biomedical research: management and models. ILAR J 36(1): 15.CrossRefGoogle Scholar
Talan, M. 1984. Body temperature of C57BL/6 J mice with age. Exp Gerontol 19(1): 2529.CrossRefGoogle Scholar
Tan, W, Carlson, DF, Lancto, CA, et al. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Nat Acad Sci USA 110(41): 1652616531.CrossRefGoogle ScholarPubMed
Thibault, KL, Margulies, SS. 1998. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31(12): 11191126.CrossRefGoogle ScholarPubMed
Timmers, L, Henriques, JPS, de Kleijn, DPV, et al. 2009. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 53(6): 501510.CrossRefGoogle Scholar
Tomita, S, Mickle, DAG, Weisel, RD, et al. 2002. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123(6): 11321140.CrossRefGoogle ScholarPubMed
Uechi, M, Asai, K, Osaka, M, et al. 1998. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circul Res 82(4): 416423.CrossRefGoogle ScholarPubMed
Vajta, G, Callesen, H. 2012. Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs. Theriogenology 77(7): 12631274.CrossRefGoogle ScholarPubMed
Vajta, G, Kragh, PM, Mtango, NR, Callesen, H. 2005. Hand-made cloning approach: potentials and limitations. Reprod Fertil Dev 17(1–2): 97112.CrossRefGoogle ScholarPubMed
Vaughan, AN, Malde, P, Rogers, NJ, et al. 2000. Porcine CTLA4-Ig lacks a MYPPPY motif, binds inefficiently to human B7 and specifically suppresses human CD4+ T cell responses costimulated by pig but not human B7. J Immunol 165(6): 31753181.CrossRefGoogle Scholar
Velander, P, Theopold, C, Hirsch, T, et al. 2008. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen 16(2): 288293.CrossRefGoogle Scholar
Walpole, SC, Prieto-Merino, D, Edwards, P, et al. 2012. The weight of nations: an estimation of adult human biomass. BMC Publ Health 12(1): 439.CrossRefGoogle ScholarPubMed
Wang, D, Mou, H, Li, S, et al. 2015. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Human Gene Ther 26(7): 432442.CrossRefGoogle ScholarPubMed
Wang, X, Cao, C, Huang, J, et al. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620.CrossRefGoogle ScholarPubMed
Wang, XQ, Kempf, M, Liu, PY, et al. 2008. Conservative surgical debridement as a burn treatment: supporting evidence from a porcine burn model. Wound Repair Regen 16(6): 774783.CrossRefGoogle ScholarPubMed
Wang, Y, Du, Y, Shen, B, et al. 2015. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep 5: 8256.CrossRefGoogle ScholarPubMed
Weaver, BK, Bohn, E, Judd, BA, Gil, MP, Schreiber, RD. 2007. ABIN-3: a molecular basis for species divergence in interleukin-10-induced anti-inflammatory actions. Mol Cell Biol 27(13): 46034616.CrossRefGoogle ScholarPubMed
Wernersson, R, Schierup, MH, Jørgensen, FG, et al. 2005. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genom 6: 70.CrossRefGoogle ScholarPubMed
Whitelaw, CBA, Lillico, SG, King, T. 2008. Production of transgenic farm animals by viral vector-mediated gene transfer. Reprod Domest Animals 43(Suppl. 2): 355358.CrossRefGoogle ScholarPubMed
Whitworth, KM, Lee, K, Benne, JA, et al. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos 1. Biol Reprod 91: 113.CrossRefGoogle Scholar
Wilmut, I, Schnieke, AE, McWhir, J, Kind, AJ, Campbell, KH. 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619): 810813.CrossRefGoogle ScholarPubMed
Wolf, E, Braun-Reichhart, C, Streckel, E, Renner, S. 2014. Genetically engineered pig models for diabetes research. Transgen Res 23(1): 2738.CrossRefGoogle ScholarPubMed
Woo, JS, Kim, W, Ha, S., et al. 2013. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. Arterioscler Thrombo Vasc Biol 33(9): 22522260.CrossRefGoogle ScholarPubMed
Xie, B, Wang, JJ, Liu, S, et al. 2014. Positive correlation between the efficiency of induced pluripotent stem cells and the development rate of nuclear transfer embryos when the same porcine embryonic fibroblast lines are used as donor cells. Cell Reprog 16(3): 206214.CrossRefGoogle ScholarPubMed
Xin, J, Yang, H, Fan, N, et al. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8(12): 19.CrossRefGoogle ScholarPubMed
Yang, D, Wang, CE, Zhao, B, et al. 2010. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Human Mol Genet 19(20): 39833994.CrossRefGoogle ScholarPubMed
Yang, L, Güell, M, Niu, D, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350(6264): 11011104.CrossRefGoogle ScholarPubMed
Yao, J, Huang, J, Zhao, J. 2016. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Human Genet 135(9): 10931105.CrossRefGoogle ScholarPubMed
Zerhouni, EA, Parish, DM, Rogers, WJ, Yang, A, Shapiro, EP. 1988. Human heart: tagging with MR imaging – a method for noninvasive assessment of myocardial motion. Radiology 169(1): 5963.CrossRefGoogle ScholarPubMed
Zhou, X, Wang, L, Du, Y, et al. 2016. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Human Mutat 37(1): 110118.CrossRefGoogle ScholarPubMed
Zhou, X, Xin, J, Fan, N, et al. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72(6): 11751184.CrossRefGoogle ScholarPubMed
Zhu, KQ, Engrav, LH, Gibran, NS, et al. 2003. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin. Burns 29(7): 649664.CrossRefGoogle ScholarPubMed

References

Barrangou, R, Fremaux, C, Deveau, H, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 17091712.CrossRefGoogle ScholarPubMed
Bevacqua, RJ, Fernandez-Martin, R, Savy, V, et al. 2016. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology 86(8): 18861896.CrossRefGoogle ScholarPubMed
Bi, Y, Hua, Z, Liu, X, et al. 2016. Isozygous and selectable marker-free MSTN knockout cloned pigs generated by the combined use of CRISPR/Cas9 and Cre/LoxP. Sci Rep 6: 31729.CrossRefGoogle ScholarPubMed
Boch, J, Scholze, H, Schornack, S, et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326: 15091512.CrossRefGoogle ScholarPubMed
Bolotin, A, Quinquis, B, Sorokin, A, Ehrlich, SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151: 25512561.CrossRefGoogle ScholarPubMed
Bonifati, V, Rizzu, P, van Baren, MJ, et al. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299: 256259.CrossRefGoogle ScholarPubMed
Butler, JR, Martens, GR, Estrada, JL, et al. 2016a. Silencing porcine genes significantly reduces human-anti-pig cytotoxicity profiles: an alternative to direct complement regulation. Transgenic Res 25(5): 751759.CrossRefGoogle ScholarPubMed
Butler, JR, Skill, NJ, Priestman, DL, et al. 2016b. Silencing the porcine iGb3s gene does not affect Galalpha3 Gal levels or measures of anticipated pig-to-human and pig-to-primate acute rejection. Xenotransplantation 23: 106116.CrossRefGoogle ScholarPubMed
Byrne, GW, Du, Z, Stalboerger, P, Kogelberg, H, McGregor, CG. 2014. Cloning and expression of porcine beta1,4 N-acetylgalactosaminyl transferase encoding a new xenoreactive antigen. Xenotransplantation 21: 543554.CrossRefGoogle ScholarPubMed
Cabot, RA, Kuhholzer, B, Chan, AW, et al. 2001. Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol 12(2): 205214.CrossRefGoogle ScholarPubMed
Calvert, JG, Slade, DE, Shields, SL, et al. 2007. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol 81: 73717379.CrossRefGoogle ScholarPubMed
Carlson, DF, Lancto, CA, Zang, B, et al. 2016. Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34: 479481.CrossRefGoogle ScholarPubMed
Carlson, DF, Tan, W, Lillico, SG, et al. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci USA 109: 1738217387.CrossRefGoogle ScholarPubMed
Cathomen, T, Joung, JK. 2008. Zinc-finger nucleases: the next generation emerges. Mol Ther 16: 12001207.CrossRefGoogle ScholarPubMed
Chen, F, Wang, Y, Yuan, Y, et al. 2015. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genomics 42(8): 437444.CrossRefGoogle ScholarPubMed
Choi, YJ, Lee, K, Park, WJ, et al. 2016. Partial loss of interleukin 2 receptor gamma function in pigs provides mechanistic insights for the study of human immunodeficiency syndrome. Oncotarget 7(32): 5091450926.CrossRefGoogle Scholar
Christian, M, Cermak, T, Doyle, EL, et al. 2010. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186: 757761.CrossRefGoogle ScholarPubMed
Dai, Y, Vaught, TD, Boone, J, et al. 2002. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20: 251255.CrossRefGoogle ScholarPubMed
Dauer, W, Przedborski, S, 2003. Parkinson’s disease: mechanisms and models. Neuron 39: 889909.CrossRefGoogle ScholarPubMed
Estrada, JL, Martens, G, Li, P, et al. 2015. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes. Xenotransplantation 22: 194202.CrossRefGoogle ScholarPubMed
Galili, U, Shohet, SB, Kobrin, E, Stults, CL, Macher, BA. 1988. Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J Biol Chem 263: 1775517762.CrossRefGoogle ScholarPubMed
Grobet, L, Martin, LJ, Poncelet, D, et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17: 7174.CrossRefGoogle ScholarPubMed
Hai, T, Teng, F, Guo, R, Li, W, Zhou, Q. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24: 372375.CrossRefGoogle ScholarPubMed
Hammer, RE, Pursel, VG, Rexroad, CE Jr., et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680683.CrossRefGoogle ScholarPubMed
Holm, IE, Alstrup, AK, Luo, Y. 2016. Genetically modified pig models for neurodegenerative disorders. J Pathol 238: 267287.CrossRefGoogle ScholarPubMed
Holtkamp, DJ, Kliebenstein, JB, Neumann, EJ, et al. 2013. Assessment of the economic impact of porcine reprodutive and respiratory syndrome virus on United States pork producers. J Swine Health Prod 21: 7284.Google Scholar
Hwang, WY, Fu, Y, Reyon, D, et al. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227229.CrossRefGoogle ScholarPubMed
Hyun, S, Lee, G, Kim, D, et al. 2003. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 69: 10601068.CrossRefGoogle ScholarPubMed
Kambadur, R, Sharma, M, Smith, TP, Bass, JJ. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7: 910916.CrossRefGoogle ScholarPubMed
Keffaber, KK. 1989. Reproductive failure of unknown etiology. Am Assoc Swine Practit Newsletter 1: 19.Google Scholar
Kim, YG, Cha, J, Chandrasegaran, S. 1996. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93: 11561160.CrossRefGoogle ScholarPubMed
Kim, YG, Chandrasegaran, S. 1994. Chimeric restriction endonuclease. Proc Natl Acad Sci USA 91: 883887.CrossRefGoogle ScholarPubMed
Kreutz, LC, Ackermann, MR. 1996. Porcine reproductive and respiratory syndrome virus enters cells through a low pH-dependent endocytic pathway. Virus Res 42(1–2): 137147.CrossRefGoogle ScholarPubMed
Kurome, M, Ueda, H, Tomii, R, Naruse, K, Nagashima, H. 2006. Production of transgenic-clone pigs by the combination of ICSI-mediated gene transfer with somatic cell nuclear transfer. Transgenic Res 15: 229240.CrossRefGoogle ScholarPubMed
Kuwaki, K, Tseng, YL, Dor, FJ, et al. 2005. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11: 2931.CrossRefGoogle ScholarPubMed
Kwon, DN, Lee, K, Kang, MJ, et al. 2013. Production of biallelic CMP-Neu5Ac hydroxylase knock-out pigs. Sci Rep 3: 1981.CrossRefGoogle ScholarPubMed
Lai, L, Kang, JX, Li, R, et al. 2006. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 24: 435436.CrossRefGoogle Scholar
Lai, L, Kolber-Simonds, D, Park, KW, et al. 2002a. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295: 10891092.CrossRefGoogle ScholarPubMed
Lai, L, Park, KW, Cheong, HT, et al. 2002b. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 62: 300306.CrossRefGoogle ScholarPubMed
Lai, L, Prather, RS. 2002. Progress in producing knockout models for xenotransplantation by nuclear transfer. Ann Med 34: 501506.CrossRefGoogle ScholarPubMed
Li, P, Estrada, JL, Burlak, C, et al. 2015. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation 22: 2031.CrossRefGoogle Scholar
Lillico, SG, Proudfoot, C, Carlson, DF, et al. 2013. Live pigs produced from genome edited zygotes. Sci Rep 3: 2847.CrossRefGoogle ScholarPubMed
Lillico, SG, Proudfoot, C, King, TJ, et al. 2016. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Sci Rep 6: 21645.CrossRefGoogle ScholarPubMed
Lutz, AJ, Li, P, Estrada, JL, et al. 2013. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1,3-galactose reduce the humoral barrier to xenotransplantation. Xenotransplantation 20: 2735.CrossRefGoogle ScholarPubMed
Marraffini, LA, Sontheimer, EJ. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322: 18431845.CrossRefGoogle ScholarPubMed
McPherron, AC, Lee, SJ, 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 1245712461.CrossRefGoogle ScholarPubMed
Menoret, S, Plat, M, Blancho, G, et al. 2004. Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination. Transplantation 77: 14681471.CrossRefGoogle ScholarPubMed
Mercer, J, Schelhaas, M, Helenius, A. 2010. Virus entry by endocytosis. Ann Rev Biochem 79: 803833.CrossRefGoogle ScholarPubMed
Mojica, FJ, Diez-Villasenor, C, Garcia-Martinez, J, Soria, E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60: 174182.CrossRefGoogle ScholarPubMed
Moscou, MJ, Bogdanove, AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326: 1501.CrossRefGoogle ScholarPubMed
Palgrave, CJ, Gilmour, L, Lowden, CS, et al. 2011. Species-specific variation in RELA underlies differences in NF-kappaB activity: a potential role in African swine fever pathogenesis. J Virol 85: 60086014.CrossRefGoogle ScholarPubMed
Park, KW, Lai, L, Cheong, HT, et al. 2001. Developmental potential of porcine nuclear transfer embryos derived from transgenic fetal fibroblasts infected with the gene for the green fluorescent protein: comparison of different fusion/activation conditions. Biol Reprod 65: 16811685.CrossRefGoogle ScholarPubMed
Peng, J, Wang, Y, Jiang, J, et al. 2015. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5: 16705.CrossRefGoogle ScholarPubMed
Pickrell, AM, Youle, RJ. 2015. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85: 257273.CrossRefGoogle ScholarPubMed
Popescu, LN, Gaudreault, N, Whitworth, KM, et al. 2016. Genetically edited pigs lacking CD163 show no resistance following infection with the African swine fever (ASF) Georgia 07 virus. Virology 501: 102106.CrossRefGoogle Scholar
Porteus, M. 2008. Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol 435: 4761.CrossRefGoogle ScholarPubMed
Pourcel, C, Salvignol, G, Vergnaud, G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653663.CrossRefGoogle ScholarPubMed
Prather, RS, Rowland, RR, Ewen, C, et al. 2013. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol 87: 95389546.CrossRefGoogle Scholar
Ramsoondar, JJ, Machaty, Z, Costa, C, et al. 2003. Production of alpha 1,3-galactosyltransferase-knockout cloned pigs expressing human alpha 1,2-fucosylosyltransferase. Biol Reprod 69: 437445.CrossRefGoogle Scholar
Redman, M, King, A, Watson, C, King, D. 2016. What is CRISPR/Cas9? Arch Disease Child Edu Pract Edn 101: 213215.CrossRefGoogle ScholarPubMed
Reyes, LM, Estrada, JL, Wang, ZY, et al. 2014. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol 193: 57515757.CrossRefGoogle Scholar
Robinson, TP, Wint, GR, Conchedda, G, et al. 2014. Mapping the global distribution of livestock. PLoS One 9(5): e96084.CrossRefGoogle ScholarPubMed
Rogers, CS, Hao, Y, Rokhlina, T, et al. 2008. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 118: 15711577.CrossRefGoogle ScholarPubMed
Ross, JW, Whyte, JJ, Zhao, J, et al. 2010. Optimization of square-wave electroporation for transfection of porcine fetal fibroblasts. Transgenic Res 19(4): 611620.CrossRefGoogle ScholarPubMed
Rowlands, RJ, Michaud, V, Heath, L, et al. 2008. African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis 14: 18701874.CrossRefGoogle ScholarPubMed
Saeki, K, Matsumoto, K, Kinoshita, M, et al. 2004. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc Natl Acad Sci USA 101: 63616366.CrossRefGoogle ScholarPubMed
Sanchez-Torres, C, Gomez-Puertas, P, Gomez-del-Moral, M, et al. 2003. Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch Virol 148: 23072323.CrossRefGoogle ScholarPubMed
Sanchez-Vizcaino, JM, Mur, L, Martinez-Lopez, B. 2013. African swine fever (ASF): five years around Europe. Vet Microbiol 165: 4550.CrossRefGoogle ScholarPubMed
Schornack, S, Meyer, A, Romer, P, Jordan, T, Lahaye, T. 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. J Plant Physiol 163: 256272.CrossRefGoogle ScholarPubMed
Tan, W, Carlson, DF, Lancto, CA, et al. 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci USA 110: 1652616531.CrossRefGoogle ScholarPubMed
Terns, MP, Terns, RM. 2011. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14: 321327.CrossRefGoogle ScholarPubMed
Urnov, FD, Miller, JC, Lee, YL, et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435: 646651.CrossRefGoogle ScholarPubMed
Valente, EM, Abou-Sleiman, PM, Caputo, V, et al. 2004. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 11581160.CrossRefGoogle ScholarPubMed
Van Breedam, W, Delputte, PL, Van Gorp, H, et al. 2010. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol 91: 16591667.CrossRefGoogle ScholarPubMed
Van Gorp, H, Delputte, PL, Nauwynck, HJ. 2010. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol Immunol 47: 16501660.CrossRefGoogle ScholarPubMed
Velander, WH, Johnson, JL, Page, RL, et al. 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA 89: 1200312007.CrossRefGoogle ScholarPubMed
Wang, K, Ouyang, H, Xie, Z, et al. 2015. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Sci Rep 5: 16623.CrossRefGoogle ScholarPubMed
Wang, R, Preamplume, G, Terns, MP, Terns, RM, Li, H. 2011. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19: 257264.CrossRefGoogle ScholarPubMed
Wang, X, Cao, C, Huang, J, et al. 2016. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep 6: 20620.CrossRefGoogle ScholarPubMed
Watanabe, S, Iwamoto, M, Suzuki, S, et al. 2005. A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol Reprod 72: 309315.CrossRefGoogle ScholarPubMed
Wells, KD, Bardot, R, Whitworth, KM, et al. 2017. Substitution of porcine CD163 SRCR domain 5 with human CD163-like homolog SRCR domain 8 confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome (PRRS) viruses. J Virol 91(2): pii: e01521–16.CrossRefGoogle ScholarPubMed
Whitworth, KM, Lee, K, Benne, JA, et al. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod 91: 78.CrossRefGoogle ScholarPubMed
Whitworth, KM, Rowland, RR, Ewen, CL, et al. 2016. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34: 2022.CrossRefGoogle ScholarPubMed
Whyte, JJ, Zhao, J, Wells, KD, et al. 2011. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78: 2.CrossRefGoogle ScholarPubMed
Wiedenheft, B, Sternberg, SH, Doudna, JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482: 331338.CrossRefGoogle ScholarPubMed
Xin, J, Yang, H, Fan, N, et al. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8: e84250.CrossRefGoogle ScholarPubMed
Yamada, K, Yazawa, K, Shimizu, A, et al. 2005. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat Med 11: 3234.CrossRefGoogle ScholarPubMed
Yang, L, Guell, M, Niu, D, et al. 2015. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350: 11011104.CrossRefGoogle ScholarPubMed
Zhou, X, Xin, J, Fan, N, et al. 2015. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72: 11751184.CrossRefGoogle ScholarPubMed

References

Chen, F, Pruett-Miller, SM, Huang, Y, et al. 2011. High frequency genome editing using ssDNA oligos and zinc finger nucleases. Nat Methods 8: 753755.CrossRefGoogle Scholar
Duda, K, Lonowski, LA, Kofoed-Nielsen, M, et al. 2014. High-efficiency genome editing via 2A-coupled co-expression of zinc finger nucleases or CRISPR/Cas nickase pairs. Nucleic Acids Res 42(10): e84.CrossRefGoogle ScholarPubMed
Frank, S, Skryabin, BV, Greber, B. 2013. A modified TALEN-based system for robust generation of knock-out human pluripotent stem cell lines and disease models. BMC Genomics 14: 773.CrossRefGoogle ScholarPubMed
Fu, XD, Ares, M Jr. 2014. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15(10): 689701.CrossRefGoogle ScholarPubMed
Hodgkins, A, Farne, A, Perera, S, et al. 2015. WGE: a CRISPR database for genome engineering. Bioinformatics 31(18): 30783080.CrossRefGoogle ScholarPubMed
Lonowski, LA, Narimatsu, Y, Riaz, A, et al. 2017. Genome editing using FACS enrichment of nuclease expressing cells and Indel Detection by Amplicon Analysis, Nat Protocols 12(3): 581603.CrossRefGoogle ScholarPubMed
Ran, FA, Hsu, PD, Wright, J, et al. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protocols 8(11): 22812308.CrossRefGoogle ScholarPubMed
Renaud, JB, Boix, C, Charpentier, M, et al. 2016. Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Reports 14(9): 22632272.CrossRefGoogle ScholarPubMed
Richardson, CD, Ray, GJ, DeWitt, M, Curie, GL, Corn, JE. 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotech 34: 339344.CrossRefGoogle ScholarPubMed
Szymczak, AL, Vignali, DA. 2005. Development of 2 A peptide-based strategies in the design of multicistronic vectors. Expert Opin Biol Ther 5(5): 627638.CrossRefGoogle Scholar
Yang, L, Guell, M, Byrne, S, et al. 2013. Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41: 90499061.CrossRefGoogle ScholarPubMed
Yang, Z, Steentoft, C, Hauge, C, et al. 2015. Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Res 43(9): e59.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×