Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T20:38:27.713Z Has data issue: false hasContentIssue false

16 - Role of metabotropic glutamate receptors in CNS disorders

from PART V - PHYSIOLOGICAL FUNCTIONS AND DRUG TARGETING OF GPCRS

Published online by Cambridge University Press:  05 June 2012

Richard M. O'Connor
Affiliation:
University College Cork
John F. Cryan
Affiliation:
University College Cork
Sandra Siehler
Affiliation:
Novartis Institute for Biomedical Research
Graeme Milligan
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
G Protein-Coupled Receptors
Structure, Signaling, and Physiology
, pp. 321 - 379
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Niederberger, E., Schmidtko, A., Coste, O., Marian, C., Ehnert, C. & Geisslinger, G. (2006) The glutamate transporter GLAST is involved in spinal nociceptive processing. Biochem Biophys Res Commun, 346, 393–9.CrossRefGoogle ScholarPubMed
Conn, P. J. & Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol, 37, 205–37.CrossRefGoogle ScholarPubMed
Ferraguti, F. & Shigemoto, R. (2006) Metabotropic glutamate receptors. Cell Tissue Res, 326, 483–504.CrossRefGoogle ScholarPubMed
Swanson, C. J., Bures, M., Johnson, M. P., Linden, A. M., Monn, J. A. & Schoepp, D. D. (2005) Metabotropic glutamate receptors as novel targets for anxiety and stress disorders. Nat Rev Drug Discov, 4, 131–44.CrossRefGoogle ScholarPubMed
Bockaert, J. & Pin, J. P. (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. Embo J, 18, 1723–9.CrossRefGoogle Scholar
Meldrum, B. S. (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr, 130, 1007S-15S.CrossRefGoogle ScholarPubMed
Mckenna, M. C. (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res, 85, 3347–58.CrossRefGoogle Scholar
Azbill, R. D., Mu, X. & Springer, J. E. (2000) Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res, 871, 175–80.CrossRefGoogle ScholarPubMed
Schousboe, A., Svenneby, G. & Hertz, L. (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem, 29, 999–1005.CrossRefGoogle ScholarPubMed
Danbolt, N. C. (2001) Glutamate uptake. Prog Neurobiol, 65, 1–105.CrossRefGoogle ScholarPubMed
Conn, P. J. (2003) Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann N Y Acad Sci, 1003, 12–21.CrossRefGoogle ScholarPubMed
Parmentier, M. L., Galvez, T., Acher, F., Peyre, B., Pellicciari, R., Grau, Y., Bockaert, J. & Pin, J. P. (2000) Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology, 39, 1119–31.CrossRefGoogle ScholarPubMed
Riedel, G., Platt, B. & Micheau, J. (2003) Glutamate receptor function in learning and memory. Behav Brain Res, 140, 1–47.CrossRefGoogle ScholarPubMed
Valenti, O., Conn, P. J. & Marino, M. J. (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations. J Cell Physiol, 191, 125–37.CrossRefGoogle ScholarPubMed
Anwyl, R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev, 29, 83–120.CrossRefGoogle ScholarPubMed
O'Riordan, K. J., Huang, I. C., Pizzi, M.Spano, P.Boroni, F., Egli, R., Desai, P., Fitch, O., Malone, L., Ahn, H. J., Liou, H. C., Sweatt, J. D., & Levenson, J. M., (2006) Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors. J Neurosci, 26, 4870–9.CrossRefGoogle ScholarPubMed
Yang, L., Mao, L., Chen, H., Catavsan, M., Kozinn, J., Arora, A., Liu, X. & Wang, J. Q. (2006) A signaling mechanism from G alpha q-protein-coupled metabotropic glutamate receptors to gene expression: role of the c-Jun N-terminal kinase pathway. J Neurosci, 26, 971–80.CrossRefGoogle Scholar
Kingston, A. E., Burnett, J. P., Mayne, N. G. & Lodge, D. (1995) Pharmacological analysis of 4-carboxyphenylglycine derivatives: comparison of effects on mGluR1 alpha and mGluR5a subtypes. Neuropharmacology, 34, 887–94.CrossRefGoogle ScholarPubMed
Andlin-Sobocki, P., Jonsson, B., Wittchen, H. U. & Olesen, J. (2005) Cost of disorders of the brain in Europe. Eur J Neurol, 12 Suppl 1, 1–27.CrossRefGoogle Scholar
Cryan, J. F. & Holmes, A. (2005) The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov, 4, 775–90.CrossRefGoogle ScholarPubMed
Schoepp, D. D., Wright, R. A., Levine, L. R., Gaydos, B. & Potter, W. Z. (2003) LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress. Stress, 6, 189–97.CrossRefGoogle ScholarPubMed
Chojnacka-Wojcik, E., Tatarczynska, E. & Pilc, A. (1997) The anxiolytic-like effect of metabotropic glutamate receptor antagonists after intrahippocampal injection in rats. Eur J Pharmacol, 319, 153–6.CrossRefGoogle ScholarPubMed
Tatarczynska, E., Klodzinska, A., Kroczka, B., Chojnacka-Wojcik, E. & Pilc, A. (2001b) The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacology (Berl), 158, 94–9.Google Scholar
Tatarczynska, E., Klodzinska, A., Chojnacka-Wojcik, E., Palucha, A., Gasparini, F., Kuhn, R. & Pilc, A. (2001a) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol, 132, 1423–30.CrossRefGoogle ScholarPubMed
Varty, G. B., Grilli, M., Forlani, A., Fredduzzi, S., Grzelak, M. E., Guthrie, D. H., Hodgson, R. A., Lu, S. X., Nicolussi, E., Pond, A. J., Parker, E. M., Hunter, J. C., Higgins, G. A., Reggiani, A. & Bertorelli, R. (2005) The antinociceptive and anxiolytic-like effects of the metabotropic glutamate receptor 5 (mGluR5) antagonists, MPEP and MTEP, and the mGluR1 antagonist, LY456236, in rodents: a comparison of efficacy and side-effect profiles. Psychopharmacology (Berl), 179, 207–17.CrossRefGoogle ScholarPubMed
Koch, M. (1993) Microinjections of the metabotropic glutamate receptor agonist, trans-(+/-)-1-amino-cyclopentane-1,3-dicarboxylate (trans-ACPD) into the amygdala increase the acoustic startle response of rats. Brain Res, 629, 176–9.CrossRefGoogle ScholarPubMed
Lima, V. C., Molchanov, M. L., Aguiar, D. C., Campos, A. C. & Guimaraes, F. S. (2008) Modulation of defensive responses and anxiety-like behaviors by group I metabotropic glutamate receptors located in the dorsolateral periaqueductal gray. Prog Neuropsychopharmacol Biol Psychiatry, 32, 178–85.CrossRefGoogle Scholar
Rodrigues, S. M., Bauer, E. P., Farb, C. R., Schafe, G. E. & Ledoux, J. E. (2002) The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci, 22, 5219–29.CrossRefGoogle Scholar
Schulz, B., Fendt, M., Gasparini, F., Lingenhohl, K., Kuhn, R. & Koch, M. (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology, 41, 1–7.CrossRefGoogle ScholarPubMed
Riedel, G., Casabona, G., Platt, B., Macphail, E. M. & Nicoletti, F. (2000) Fear conditioning-induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology, 39, 1943–51.CrossRefGoogle ScholarPubMed
Muller, N. & Schwarz, M. J. (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry, 12, 988–1000.CrossRefGoogle Scholar
Page, M. E., Szeliga, P., Gasparini, F. & Cryan, J. F. (2005) Blockade of the mGlu5 receptor decreases basal and stress-induced cortical norepinephrine in rodents. Psychopharmacology (Berl), 179, 240–6.CrossRefGoogle ScholarPubMed
Chowdari, K. V., Mirnics, K., Semwal, P., Wood, J., Lawrence, E., Bhatia, T., Deshpande, S. N., B, K. T., Ferrell, R. E., Middleton, F. A., Devlin, B., Levitt, P., Lewis, D. A. & Nimgaonkar, V. L. (2002) Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet, 11, 1373–80.CrossRefGoogle Scholar
Brann, D. W. (1995) Glutamate: a major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology, 61, 213–25.CrossRefGoogle Scholar
Johnson, M. P., Kelly, G. & Chamberlain, M. (2001) Changes in rat serum corticosterone after treatment with metabotropic glutamate receptor agonists or antagonists. J Neuroendocrinol, 13, 670–7.CrossRefGoogle ScholarPubMed
Pecknold, J. C., Mcclure, D. J., Appeltauer, L., Wrzesinski, L. & Allan, T. (1982) Treatment of anxiety using fenobam (a nonbenzodiazepine) in a double-blind standard (diazepam) placebo-controlled study. J Clin Psychopharmacol, 2, 129–33.CrossRefGoogle Scholar
Porter, R. H., Jaeschke, G., Spooren, W., Ballard, T. M., Buttelmann, B., Kolczewski, S., Peters, J. U., Prinssen, E., Wichmann, J., Vieira, E., Muhlemann, A., Gatti, S., Mutel, V. & Malherbe, P. (2005) Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J Pharmacol Exp Ther, 315, 711–21.CrossRefGoogle ScholarPubMed
Riedel, G., Casabona, G. & Reymann, K. G. (1995a) Inhibition of long-term potentiation in the dentate gyrus of freely moving rats by the metabotropic glutamate receptor antagonist MCPG. J Neurosci, 15, 87–98.CrossRefGoogle ScholarPubMed
Riedel, G., Wetzel, W. & Reymann, K. G. (1994b) (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) blocks spatial learning in rats and long-term potentiation in the dentate gyrus in vivo. Neurosci Lett, 167, 141–4.CrossRefGoogle ScholarPubMed
Riedel, G. & Reymann, K. (1993) An antagonist of the metabotropic glutamate receptor prevents LTP in the dentate gyrus of freely moving rats. Neuropharmacology, 32, 929–31.CrossRefGoogle ScholarPubMed
Richter-Levin, G., Errington, M. L., Maegawa, H. & Bliss, T. V. (1994) Activation of metabotropic glutamate receptors is necessary for long-term potentiation in the dentate gyrus and for spatial learning. Neuropharmacology, 33, 853–7.CrossRefGoogle ScholarPubMed
Balschun, D. & Wetzel, W. (1998) Inhibition of group I metabotropic glutamate receptors blocks spatial learning in rats. Neurosci Lett, 249, 41–4.CrossRefGoogle Scholar
Balschun, D., Manahan-Vaughan, D., Wagner, T., Behnisch, T., Reymann, K. G. & Wetzel, W. (1999) A specific role for group I mGluRs in hippocampal LTP and hippocampus-dependent spatial learning. Learn Mem, 6, 138–52.Google Scholar
Balschun, D. & Wetzel, W. (2002) Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol Biochem Behav, 73, 375–80.CrossRefGoogle ScholarPubMed
Riedel, G., Manahan-Vaughan, D., Kozikowski, A. P. & Reymann, K. G. (1995b) Metabotropic glutamate receptor agonist trans-azetidine-2,4-dicarboxylic acid facilitates maintenance of LTP in the dentate gyrus in vivo. Neuropharmacology, 34, 1107–9.CrossRefGoogle ScholarPubMed
Riedel, G., Wetzel, W., Kozikowski, A. P. & Reymann, K. G. (1995c) Block of spatial learning by mGluR agonist tADA in rats. Neuropharmacology, 34, 559–61.CrossRefGoogle ScholarPubMed
Conquet, F., Bashir, Z. I., Davies, C. H., Daniel, H., Ferraguti, F., Bordi, F., Franz-Bacon, K., Reggiani, A., Matarese, V., Conde, F. & ET AL. (1994) Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature, 372, 237–43.CrossRefGoogle ScholarPubMed
Lu, Y. M., Jia, Z., Janus, C., Henderson, J. T., Gerlai, R., Wojtowicz, J. M. & Roder, J. C. (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci, 17, 5196–205.CrossRefGoogle ScholarPubMed
Carlsson, A., Hansson, L. O., Waters, N. & Carlsson, M. L. (1997) Neurotransmitter aberrations in schizophrenia: new perspectives and therapeutic implications. Life Sci, 61, 75–94.CrossRefGoogle ScholarPubMed
Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W. & Holzmuller, B. (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett, 20, 379–82.CrossRefGoogle Scholar
Carlsson, A., Waters, N., Holm-Waters, S., Tedroff, J., Nilsson, M. & Carlsson, M. L. (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol, 41, 237–60.CrossRefGoogle ScholarPubMed
Allen, R. M. & Young, S. J. (1978) Phencyclidine-induced psychosis. Am J Psychiatry, 135, 1081–4.Google ScholarPubMed
Dulawa, S. C. & Geyer, M. A. (1996) Psychopharmacology of prepulse inhibition in mice. Chin J Physiol, 39, 139–46.Google ScholarPubMed
Collier, D. A. & Li, T. (2003) The genetics of schizophrenia: glutamate not dopamine?Eur J Pharmacol, 480, 177–84.CrossRefGoogle Scholar
Harrison, P. J., Lyon, L., Sartorius, L. J., Burnet, P. W. & Lane, T. A. (2008) The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia. J Psychopharmacol, 22, 308–22.CrossRefGoogle Scholar
Krivoy, A., Fischel, T. & Weizman, A. (2008) The possible involvement of metabotropic glutamate receptors in schizophrenia. Eur Neuropsychopharmacol, 18, 395–405.CrossRefGoogle Scholar
Geyer, M. A. & Braff, D. L. (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull, 13, 643–68.CrossRefGoogle ScholarPubMed
Henry, S. A., Lehmann-Masten, V., Gasparini, F., Geyer, M. A. & Markou, A. (2002) The mGluR5 antagonist MPEP, but not the mGluR2/3 agonist LY314582, augments PCP effects on prepulse inhibition and locomotor activity. Neuropharmacology, 43, 1199–209.CrossRefGoogle Scholar
Kinney, G. G., Burno, M., Campbell, U. C., Hernandez, L. M., Rodriguez, D., Bristow, L. J. & Conn, P. J. (2003) Metabotropic glutamate subtype 5 receptors modulate locomotor activity and sensorimotor gating in rodents. J Pharmacol Exp Ther, 306, 116–23.CrossRefGoogle ScholarPubMed
Vry, J., Horvath, E. & Schreiber, R. (2001) Neuroprotective and behavioral effects of the selective metabotropic glutamate mGlu(1) receptor antagonist BAY 36–7620. Eur J Pharmacol, 428, 203–14.CrossRefGoogle ScholarPubMed
Kinney, G. G., O'Brien, J. A., Lemaire, W.,Burno, M., Bickel, D. J., Clements, M. K., Chen, T. B., Wisnoski, D. D., Lindsley, C. W., Tiller, P. R., Smith, S.Jacobson, M. A., Sur, C., Duggan, M. E., Pettibone, D. J., Conn, P. J. & Williams, D. L., JR. (2005) A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models. J Pharmacol Exp Ther, 313, 199–206.CrossRefGoogle ScholarPubMed
Devon, R. S., Anderson, S., Teague, P. W., Muir, W. J., Murray, V., Pelosi, A. J., Blackwood, D. H. & Porteous, D. J. (2001) The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiatry, 6, 311–4.CrossRefGoogle ScholarPubMed
Gupta, D. S., Mccullumsmith, R. E., Beneyto, M., Haroutunian, V., Davis, K. L. & Meador-Woodruff, J. H. (2005) Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse, 57, 123–31.CrossRefGoogle Scholar
Brody, S. A., Conquet, F. & Geyer, M. A. (2003) Disruption of prepulse inhibition in mice lacking mGluR1. Eur J Neurosci, 18, 3361–6.CrossRefGoogle ScholarPubMed
Saugstad, J. A., Marino, M. J., Folk, J. A., Hepler, J. R. & Conn, P. J. (1998) RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci, 18, 905–13.CrossRefGoogle ScholarPubMed
Williams, N. M., Preece, A., Spurlock, G., Norton, N., Williams, H. J., Zammit, S., O'Donovan, M. C. & Owen, M. J. (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatry, 8, 485–7.CrossRefGoogle Scholar
Grottick, A. J., Bagnol, D., Phillips, S., Mcdonald, J., Behan, D. P., Chalmers, D. T. & Hakak, Y. (2005) Neurotransmission- and cellular stress-related gene expression associated with prepulse inhibition in mice. Brain Res Mol Brain Res, 139, 153–62.CrossRefGoogle ScholarPubMed
Javitt, D. C. (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry, 9, 984–97, 979.CrossRefGoogle ScholarPubMed
Paul, I. A. & Skolnick, P. (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci, 1003, 250–72.CrossRefGoogle ScholarPubMed
Pilc, A., Branski, P., Palucha, A., Tokarski, K. & Bijak, M. (1998) Antidepressant treatment influences group I of glutamate metabotropic receptors in slices from hippocampal CA1 region. Eur J Pharmacol, 349, 83–7.CrossRefGoogle Scholar
Pilc, A. & Legutko, B. (1995b) The influence of prolonged antidepressant treatment on the changes in cyclic AMP accumulation induced by excitatory amino acids in rat cerebral cortical slices. Neuroreport, 7, 85–8.CrossRefGoogle ScholarPubMed
Pilc, A. & Legutko, B. (1995a) Antidepressant treatment influences cyclic AMP accumulation induced by excitatory amino acids in rat brain. Pol J Pharmacol, 47, 359–61.Google ScholarPubMed
Zahorodna, A. & Bijak, M. (1999) An antidepressant-induced decrease in the responsiveness of hippocampal neurons to group I metabotropic glutamate receptor activation. Eur J Pharmacol, 386, 173–9.CrossRefGoogle ScholarPubMed
Molina-Hernandez, M., Tellez-Alcantara, N. P., Perez-Garcia, J., Olivera-Lopez, J. I. & Jaramillo, M. T. (2006) Antidepressant-like and anxiolytic-like actions of the mGlu5 receptor antagonist MTEP, microinjected into lateral septal nuclei of male Wistar rats. Prog Neuropsychopharmacol Biol Psychiatry, 30, 1129–35.CrossRefGoogle ScholarPubMed
Belozertseva, I. V., Kos, T., Popik, P., Danysz, W. & Bespalov, A. Y. (2007) Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests. Eur Neuropsychopharmacol, 17, 172–9.CrossRefGoogle ScholarPubMed
Bear, M. F., Huber, K. M. & Warren, S. T. (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci, 27, 370–7.CrossRefGoogle ScholarPubMed
Oliet, S. H., Malenka, R. C. & Nicoll, R. A. (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron, 18, 969–82.CrossRefGoogle ScholarPubMed
Weiler, I. J., Irwin, S. A., Klintsova, A. Y., Spencer, C. M., Brazelton, A. D., Miyashiro, K., Comery, T. A., Patel, B., Eberwine, J. & Greenough, W. T. (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci U S A, 94, 5395–400.CrossRefGoogle ScholarPubMed
Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A, 99, 7746–50.CrossRefGoogle Scholar
Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. (2005) Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology, 49, 1053–66.CrossRefGoogle ScholarPubMed
Dolen, G. & Bear, M. F. (2008) Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome. J Physiol, 586, 1503–8.CrossRefGoogle ScholarPubMed
Ossowska, K., Wardas, J., Pietraszek, M., Konieczny, J. & Wolfarth, S. (2003) The striopallidal pathway is involved in antiparkinsonian-like effects of the blockade of group I metabotropic glutamate receptors in rats. Neurosci Lett, 342, 21–4.CrossRefGoogle Scholar
Betarbet, R., Sherer, T. B. & Greenamyre, J. T. (2002) Animal models of Parkinson's disease. Bioessays, 24, 308–18.CrossRefGoogle ScholarPubMed
Ossowska, K. (1994) The role of excitatory amino acids in experimental models of Parkinson's disease. J Neural Transm Park Dis Dement Sect, 8, 39–71.CrossRefGoogle ScholarPubMed
Bradley, S. R., Marino, M. J., Wittmann, M., Rouse, S. T., Awad, H., Levey, A. I. & Conn, P. J. (2000) Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia Nigra pars reticulata. J Neurosci, 20, 3085–94.CrossRefGoogle ScholarPubMed
Konieczny, J., Ossowska, K., Wolfarth, S. & Pilc, A. (1998) LY354740, a group II metabotropic glutamate receptor agonist with potential antiparkinsonian properties in rats. Naunyn Schmiedebergs Arch Pharmacol, 358, 500–2.CrossRefGoogle ScholarPubMed
Dawson, L., Chadha, A., Megalou, M. & Duty, S. (2000) The group II metabotropic glutamate receptor agonist, DCG-IV, alleviates akinesia following intranigral or intraventricular administration in the reserpine-treated rat. Br J Pharmacol, 129, 541–6.CrossRefGoogle ScholarPubMed
Ossowska, K., Konieczny, J., Wolfarth, S. & Pilc, A. (2005) MTEP, a new selective antagonist of the metabotropic glutamate receptor subtype 5 (mGluR5), produces antiparkinsonian-like effects in rats. Neuropharmacology, 49, 447–55.CrossRefGoogle Scholar
Ossowska, K., Konieczny, J., Wolfarth, S., Wieronska, J. & Pilc, A. (2001) Blockade of the metabotropic glutamate receptor subtype 5 (mGluR5) produces antiparkinsonian-like effects in rats. Neuropharmacology, 41, 413–20.CrossRefGoogle ScholarPubMed
Wardas, J., Pietraszek, M., Wolfarth, S. & Ossowska, K. (2003) The role of metabotropic glutamate receptors in regulation of striatal proenkephalin expression: implications for the therapy of Parkinson's disease. Neuroscience, 122, 747–56.CrossRefGoogle ScholarPubMed
Breysse, N., Amalric, M. & Salin, P. (2003) Metabotropic glutamate 5 receptor blockade alleviates akinesia by normalizing activity of selective basal-ganglia structures in parkinsonian rats. J Neurosci, 23, 8302–9.CrossRefGoogle ScholarPubMed
Coccurello, R., Breysse, N. & Amalric, M. (2004) Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology, 29, 1451–61.CrossRefGoogle ScholarPubMed
Oueslati, A., Breysse, N., Amalric, M., Kerkerian-Le Goff, L. & Salin, P. (2005) Dysfunction of the cortico-basal ganglia-cortical loop in a rat model of early parkinsonism is reversed by metabotropic glutamate receptor 5 antagonism. Eur J Neurosci, 22, 2765–74.CrossRefGoogle Scholar
Phillips, J. M., Lam, H. A., Ackerson, L. C. & Maidment, N. T. (2006) Blockade of mGluR glutamate receptors in the subthalamic nucleus ameliorates motor asymmetry in an animal model of Parkinson's disease. Eur J Neurosci, 23, 151–60.CrossRefGoogle Scholar
Turle-Lorenzo, N., Breysse, N., Baunez, C. & Amalric, M. (2005) Functional interaction between mGlu 5 and NMDA receptors in a rat model of Parkinson's disease. Psychopharmacology (Berl), 179, 117–27.CrossRefGoogle Scholar
Parelkar, N. K. & Wang, J. Q. (2003) Preproenkephalin mRNA expression in rat dorsal striatum induced by selective activation of metabotropic glutamate receptor subtype-5. Synapse, 47, 255–61.CrossRefGoogle ScholarPubMed
Leonibus, E., Manago, F., Giordani, F., Petrosino, F., Lopez, S., Oliverio, A., Amalric, M. & Mele, A. (2009) Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson's disease. Neuropsychopharmacology, 34, 729–38.CrossRefGoogle Scholar
Ossowska, K., Konieczny, J., Pilc, A. & Wolfarth, S. (2002) The striatum as a target for anti-rigor effects of an antagonist of mGluR1, but not an agonist of group II metabotropic glutamate receptors. Brain Res, 950, 88–94.CrossRefGoogle Scholar
Samadi, P., Gregoire, L., Morissette, M., Calon, F., Hadj Tahar, A., Dridi, M., Belanger, N., Meltzer, L. T., Bedard, P. J. & DI PAOLO, T. (2008) mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging, 29, 1040–51.CrossRefGoogle ScholarPubMed
Sanchez-Pernaute, R., Wang, J. Q., Kuruppu, D., Cao, L., Tueckmantel, W., Kozikowski, A., Isacson, O. & Brownell, A. L. (2008) Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. Neuroimage, 42, 248–51.CrossRefGoogle ScholarPubMed
Chapman, A. G. (2000) Glutamate and epilepsy. J Nutr, 130, 1043S-5S.CrossRefGoogle ScholarPubMed
Tizzano, J. P., Griffey, K. I. & Schoepp, D. D. (1995) Induction or protection of limbic seizures in mice by mGluR subtype selective agonists. Neuropharmacology, 34, 1063–7.CrossRefGoogle ScholarPubMed
Camon, L., Vives, P., Vera, N. & Martinez, E. (1998) Seizures and neuronal damage induced in the rat by activation of group I metabotropic glutamate receptors with their selective agonist 3,5-dihydroxyphenylglycine. J Neurosci Res, 51, 339–48.3.0.CO;2-H>CrossRefGoogle Scholar
Thomsen, C. & Dalby, N. O. (1998) Roles of metabotropic glutamate receptor subtypes in modulation of pentylenetetrazole-induced seizure activity in mice. Neuropharmacology, 37, 1465–73.CrossRefGoogle ScholarPubMed
Thomsen, C., Klitgaard, H., Sheardown, M., Jackson, H. C., Eskesen, K., Jacobsen, P., Treppendahl, S. & Suzdak, P. D. (1994) (S)-4-carboxy-3-hydroxyphenylglycine, an antagonist of metabotropic glutamate receptor (mGluR) 1a and an agonist of mGluR2, protects against audiogenic seizures in DBA/2 mice. J Neurochem, 62, 2492–5.CrossRefGoogle ScholarPubMed
Tang, E., Yip, P. K., Chapman, A. G., Jane, D. E. & Meldrum, B. S. (1997) Prolonged anticonvulsant action of glutamate metabotropic receptor agonists in inferior colliculus of genetically epilepsy-prone rats. Eur J Pharmacol, 327, 109–15.CrossRefGoogle ScholarPubMed
Hayashi, Y., Sekiyama, N., Nakanishi, S., Jane, D. E., Sunter, D. C., Birse, E. F., Udvarhelyi, P. M. & Watkins, J. C. (1994) Analysis of agonist and antagonist activities of phenylglycine derivatives for different cloned metabotropic glutamate receptor subtypes. J Neurosci, 14, 3370–7.CrossRefGoogle ScholarPubMed
Shannon, H. E., Peters, S. C. & Kingston, A. E. (2005) Anticonvulsant effects of LY456236, a selective mGlu1 receptor antagonist. Neuropharmacology, 49 Suppl 1, 188–95.CrossRefGoogle ScholarPubMed
Merlin, L. R. (2002) Differential roles for mGluR1 and mGluR5 in the persistent prolongation of epileptiform bursts. J Neurophysiol, 87, 621–5.CrossRefGoogle ScholarPubMed
Witkin, J. M., Baez, M., Yu, J. & Eiler, W. J., 2ND (2008) mGlu5 receptor deletion does not confer seizure protection to mice. Life Sci, 83, 377–80.CrossRefGoogle Scholar
Loscher, W., Dekundy, A., Nagel, J., Danysz, W., Parsons, C. G. & Potschka, H. (2006) mGlu1 and mGlu5 receptor antagonists lack anticonvulsant efficacy in rodent models of difficult-to-treat partial epilepsy. Neuropharmacology, 50, 1006–15.CrossRefGoogle ScholarPubMed
Wieseler-Frank, J., Maier, S. F. & Watkins, L. R. (2004) Glial activation and pathological pain. Neurochem Int, 45, 389–95.CrossRefGoogle ScholarPubMed
Verne, G. N., Himes, N. C., Robinson, M. E., Gopinath, K. S., Briggs, R. W., Crosson, B. & Price, D. D. (2003) Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain, 103, 99–110.CrossRefGoogle ScholarPubMed
Bleakman, D., Alt, A. & Nisenbaum, E. S. (2006) Glutamate receptors and pain. Semin Cell Dev Biol, 17, 592–604.CrossRefGoogle ScholarPubMed
Fisher, K. & Coderre, T. J. (1996) The contribution of metabotropic glutamate receptors (mGluRs) to formalin-induced nociception. Pain, 68, 255–63.CrossRefGoogle Scholar
Noda, K., Anzai, T., Ogata, M., Akita, H., Ogura, T. & Saji, M. (2003) Antisense knockdown of spinal-mGluR1 reduces the sustained phase of formalin-induced nociceptive responses. Brain Res, 987, 194–200.CrossRefGoogle ScholarPubMed
Fundytus, M. E., Osborne, M. G., Henry, J. L., Coderre, T. J. & Dray, A. (2002) Antisense oligonucleotide knockdown of mGluR1 alleviates hyperalgesia and allodynia associated with chronic inflammation. Pharmacol Biochem Behav, 73, 401–10.CrossRefGoogle ScholarPubMed
Li, W. & Neugebauer, V. (2004) Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons. J Neurophysiol, 91, 13–24.CrossRefGoogle ScholarPubMed
Cartmell, J. & Schoepp, D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem, 75, 889–907.CrossRefGoogle ScholarPubMed
Sugiyama, C., Nakamichi, N., Ogura, M., Honda, E., Maeda, S., Taniura, H. & Yoneda, Y. (2007) Activator protein-1 responsive to the group II metabotropic glutamate receptor subtype in association with intracellular calcium in cultured rat cortical neurons. Neurochem Int, 51, 467–75.CrossRefGoogle Scholar
Ohishi, H., Shigemoto, R., Nakanishi, S. & Mizuno, N. (1993a) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience, 53, 1009–18.CrossRefGoogle ScholarPubMed
Ohishi, H., Shigemoto, R., Nakanishi, S. & Mizuno, N. (1993b) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol, 335, 252–66.CrossRefGoogle Scholar
Dube, G. R. & Marshall, K. C. (1997) Modulation of excitatory synaptic transmission in locus coeruleus by multiple presynaptic metabotropic glutamate receptors. Neuroscience, 80, 511–21.CrossRefGoogle ScholarPubMed
Marek, G. J., Wright, R. A., Schoepp, D. D., Monn, J. A. & Aghajanian, G. K. (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther, 292, 76–87.Google ScholarPubMed
Neugebauer, V., Keele, N. B. & Shinnick-Gallagher, P. (1997) Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J Neurosci, 17, 983–95.CrossRefGoogle ScholarPubMed
Ferris, P., Seward, E. & Dawson, G. R. (2001) Interactions between LY354740, a group II metabotropic agonist and the GABA(A)-benzodiazepine receptor complex in the rat elevated plus-maze. J Psychopharmacol, 15, 76–82.CrossRefGoogle ScholarPubMed
Linden, A. M., Greene, S. J., Bergeron, M. & Schoepp, D. D. (2004) Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions. Neuropsychopharmacology, 29, 502–13.CrossRefGoogle Scholar
Grillon, C., Cordova, J., Levine, L. R. & Morgan, C. A., 3RD (2003) Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology (Berl), 168, 446–54.CrossRefGoogle ScholarPubMed
Kellner, M., Muhtz, C., Stark, K., Yassouridis, A., Arlt, J. & Wiedemann, K. (2005) Effects of a metabotropic glutamate(2/3) receptor agonist (LY544344/LY354740) on panic anxiety induced by cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology (Berl), 179, 310–5.CrossRefGoogle ScholarPubMed
Johnson, M. P., Barda, D., Britton, T. C., Emkey, R., Hornback, W. J., Jagdmann, G. E., Mckinzie, D. L., Nisenbaum, E. S., Tizzano, J. P. & Schoepp, D. D. (2005) Metabotropic glutamate 2 receptor potentiators: receptor modulation, frequency-dependent synaptic activity, and efficacy in preclinical anxiety and psychosis model(s). Psychopharmacology (Berl), 179, 271–83.CrossRefGoogle Scholar
Shimazaki, T., Iijima, M. & Chaki, S. (2004) Anxiolytic-like activity of MGS0039, a potent group II metabotropic glutamate receptor antagonist, in a marble-burying behavior test. Eur J Pharmacol, 501, 121–5.CrossRefGoogle Scholar
Yoshimizu, T., Shimazaki, T., Ito, A. & Chaki, S. (2006) An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats. Psychopharmacology (Berl), 186, 587–93.CrossRefGoogle ScholarPubMed
Iijima, M., Shimazaki, T., Ito, A. & Chaki, S. (2007) Effects of metabotropic glutamate 2/3 receptor antagonists in the stress-induced hyperthermia test in singly housed mice. Psychopharmacology (Berl), 190, 233–9.CrossRefGoogle ScholarPubMed
Greenslade, R. G. & Mitchell, S. N. (2004) Selective action of (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell. Neuropharmacology, 47, 1–8.CrossRefGoogle Scholar
Linden, A. M., Shannon, H., Baez, M., Yu, J. L., Koester, A. & Schoepp, D. D. (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology (Berl), 179, 284–91.CrossRefGoogle ScholarPubMed
Hetzenauer, A., Corti, C., Herdy, S., Corsi, M., Ferraguti, F. & Singewald, N. (2008) Individual contribution of metabotropic glutamate receptor (mGlu) 2 and 3 to c-Fos expression pattern evoked by mGlu2/3 antagonism. Psychopharmacology (Berl), 201, 1–13.CrossRefGoogle ScholarPubMed
Riedel, G., Wetzel, W. & Reymann, K. G. (1994a) Computer-assisted shock-reinforced Y-maze training: a method for studying spatial alternation behaviour. Neuroreport, 5, 2061–4.Google ScholarPubMed
Holscher, C., Anwyl, R. & Rowan, M. J. (1997) Activation of group-II metabotropic glutamate receptors blocks induction of long-term potentiation and depotentiation in area CA1 of the rat in vivo. Eur J Pharmacol, 322, 155–63.CrossRefGoogle ScholarPubMed
Huang, L., Killbride, J., Rowan, M. J. & Anwyl, R. (1999) Activation of mGluRII induces LTD via activation of protein kinase A and protein kinase C in the dentate gyrus of the hippocampus in vitro. Neuropharmacology, 38, 73–83.CrossRefGoogle ScholarPubMed
Bianchin, M., Da Silva, R. C., Schmitz, P. K., Medina, J. H. & Izquierdo, I. (1994) Memory of inhibitory avoidance in the rat is regulated by glutamate metabotropic receptors in the hippocampus. Behav Pharmacol, 5, 356–359.CrossRefGoogle ScholarPubMed
Aultman, J. M. & Moghaddam, B. (2001) Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology (Berl), 153, 353–64.CrossRefGoogle ScholarPubMed
Moghaddam, B. & Adams, B. W. (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281, 1349–52.CrossRefGoogle ScholarPubMed
Higgins, G. A., Ballard, T. M., Kew, J. N., Richards, J. G., Kemp, J. A., Adam, G., Woltering, T., Nakanishi, S. & Mutel, V. (2004) Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology, 46, 907–17.CrossRefGoogle ScholarPubMed
Yokoi, M., Kobayashi, K., Manabe, T., Takahashi, T., Sakaguchi, I., Katsuura, G., Shigemoto, R., Ohishi, H., Nomura, S., Nakamura, K., Nakao, K., Katsuki, M. & Nakanishi, S. (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science, 273, 645–7.CrossRefGoogle ScholarPubMed
Riedel, G., Harrington, N. R., Kozikowski, A. P., Sandager-Nielsen, K. & Macphail, E. M. (2002) Variation of CS salience reveals group II mGluR-dependent and -independent forms of conditioning in the rat. Neuropharmacology, 43, 205–14.CrossRefGoogle ScholarPubMed
Gonzalez-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V., Lopez-Gimenez, J. F., Zhou, M., Okawa, Y., Callado, L. F., Milligan, G., Gingrich, J. A., Filizola, M., Meana, J. J. & Sealfon, S. C. (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature, 452, 93–7.CrossRefGoogle ScholarPubMed
Patil, S. T., Zhang, L., Martenyi, F., Lowe, S. L., Jackson, K. A., Andreev, B. V., Avedisova, A. S., Bardenstein, L. M., Gurovich, I. Y., Morozova, M. A., Mosolov, S. N., Neznanov, N. G., Reznik, A. M., Smulevich, A. B., Tochilov, V. A., Johnson, B. G., Monn, J. A. & Schoepp, D. D. (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med, 13, 1102–7.CrossRefGoogle ScholarPubMed
Nestler, E. J. & Aghajanian, G. K. (1997) Molecular and cellular basis of addiction. Science, 278, 58–63.CrossRefGoogle Scholar
Olds, J. & Milner, P. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol, 47, 419–27.CrossRefGoogle ScholarPubMed
Kenny, P. J. & Markou, A. (2004) The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci, 25, 265–72.CrossRefGoogle ScholarPubMed
Cryan, J. F., Hoyer, D. & Markou, A. (2003) Withdrawal from chronic amphetamine induces depressive-like behavioral effects in rodents. Biol Psychiatry, 54, 49–58.CrossRefGoogle ScholarPubMed
Harrison, A. A., Gasparini, F. & Markou, A. (2002) Nicotine potentiation of brain stimulation reward reversed by DH beta E and SCH 23390, but not by eticlopride, LY 314582 or MPEP in rats. Psychopharmacology (Berl), 160, 56–66.CrossRefGoogle ScholarPubMed
Kenny, P. J., Gasparini, F. & Markou, A. (2003) Group II metabotropic and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. J Pharmacol Exp Ther, 306, 1068–76.CrossRefGoogle ScholarPubMed
Baptista, M. A., Martin-Fardon, R. & Weiss, F. (2004) Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: comparison between cocaine and a potent conventional reinforcer. J Neurosci, 24, 4723–7.CrossRefGoogle Scholar
Liechti, M. E., Lhuillier, L., Kaupmann, K. & Markou, A. (2007) Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci, 27, 9077–85.CrossRefGoogle ScholarPubMed
Xi, Z. X., Ramamoorthy, S., Baker, D. A., Shen, H., Samuvel, D. J. & Kalivas, P. W. (2002) Modulation of group II metabotropic glutamate receptor signaling by chronic cocaine. J Pharmacol Exp Ther, 303, 608–15.CrossRefGoogle ScholarPubMed
Neugebauer, V., Zinebi, F., Russell, R., Gallagher, J. P. & Shinnick-Gallagher, P. (2000b) Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J Neurophysiol, 84, 759–70.CrossRefGoogle ScholarPubMed
Robbe, D., Bockaert, J. & Manzoni, O. J. (2002) Metabotropic glutamate receptor 2/3-dependent long-term depression in the nucleus accumbens is blocked in morphine withdrawn mice. Eur J Neurosci, 16, 2231–5.CrossRefGoogle ScholarPubMed
Helton, D. R., Tizzano, J. P., Monn, J. A., Schoepp, D. D. & Kallman, M. J. (1997) LY354740: a metabotropic glutamate receptor agonist which ameliorates symptoms of nicotine withdrawal in rats. Neuropharmacology, 36, 1511–6.CrossRefGoogle ScholarPubMed
Aujla, H., Martin-Fardon, R. & Weiss, F. (2008) Rats with extended access to cocaine exhibit increased stress reactivity and sensitivity to the anxiolytic-like effects of the mGluR 2/3 agonist LY379268 during abstinence. Neuropsychopharmacology, 33, 1818–26.CrossRefGoogle ScholarPubMed
Fundytus, M. E. & Coderre, T. J. (1997) Attenuation of precipitated morphine withdrawal symptoms by acute i.c.v. administration of a group II mGluR agonist. Br J Pharmacol, 121, 511–4.CrossRefGoogle ScholarPubMed
Vandergriff, J. & Rasmussen, K. (1999) The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology, 38, 217–22.CrossRefGoogle ScholarPubMed
Klodzinska, A., Chojnacka-Wojcik, E., Palucha, A., Branski, P., Popik, P. & Pilc, A. (1999) Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology, 38, 1831–9.CrossRefGoogle ScholarPubMed
Matrisciano, F., Storto, M., Ngomba, R. T., Cappuccio, I., Caricasole, A., Scaccianoce, S., Riozzi, B., Melchiorri, D. & Nicoletti, F. (2002) Imipramine treatment up-regulates the expression and function of mGlu2/3 metabotropic glutamate receptors in the rat hippocampus. Neuropharmacology, 42, 1008–15.CrossRefGoogle ScholarPubMed
Bespalov, A. Y., Gaalen, M. M., Sukhotina, I. A., Wicke, K., Mezler, M., Schoemaker, H. & Gross, G. (2008) Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol, 592, 96–102.CrossRefGoogle ScholarPubMed
Chaki, S., Yoshikawa, R., Hirota, S., Shimazaki, T., Maeda, M., Kawashima, N., Yoshimizu, T., Yasuhara, A., Sakagami, K., Okuyama, S., Nakanishi, S. & Nakazato, A. (2004) MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology, 46, 457–67.CrossRefGoogle ScholarPubMed
Samadi, P., Rajput, A., Calon, F., Gregoire, L., Hornykiewicz, O., Rajput, A. H. & Di Paolo, T. (2009) Metabotropic glutamate receptor II in the brains of Parkinsonian patients. J Neuropathol Exp Neurol, 68, 374–82.CrossRefGoogle ScholarPubMed
Moldrich, R. X., Talebi, A., Beart, P. M., Chapman, A. G. & Meldrum, B. S. (2001b) The mGlu(2/3) agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate, is anti- and proconvulsant in DBA/2 mice. Neurosci Lett, 299, 125–9.CrossRefGoogle ScholarPubMed
Folbergrova, J., Haugvicova, R. & Mares, P. (2001) Attenuation of seizures induced by homocysteic acid in immature rats by metabotropic glutamate group II and group III receptor agonists. Brain Res, 908, 120–9.CrossRefGoogle ScholarPubMed
Wilsch, V. W., Pidoplichko, V. I., Opitz, T., Shinozaki, H. & Reymann, K. G. (1994) Metabotropic glutamate receptor agonist DCG-IV as NMDA receptor agonist in immature rat hippocampal neurons. Eur J Pharmacol, 262, 287–91.CrossRefGoogle ScholarPubMed
Moldrich, R. X., Jeffrey, M., Talebi, A., Beart, P. M., Chapman, A. G. & Meldrum, B. S. (2001a) Anti-epileptic activity of group II metabotropic glutamate receptor agonists (–)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268) and (–)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795). Neuropharmacology, 41, 8–18.CrossRefGoogle Scholar
Klodzinska, A., Bijak, M., Chojnacka-Wojcik, E., Kroczka, B., Swiader, M., Czuczwar, S. J. & Pilc, A. (2000) Roles of group II metabotropic glutamate receptors in modulation of seizure activity. Naunyn Schmiedebergs Arch Pharmacol, 361, 283–8.Google ScholarPubMed
Monn, J. A., Valli, M. J., Massey, S. M., Wright, R. A., Salhoff, C. R., Johnson, B. G., Howe, T., Alt, C. A., Rhodes, G. A., Robey, R. L., Griffey, K. R., Tizzano, J. P., Kallman, M. J., Helton, D. R. & Schoepp, D. D. (1997) Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J Med Chem, 40, 528–37.CrossRefGoogle ScholarPubMed
Tang, F. R., Chia, S. C., Chen, P. M., Gao, H., Lee, W. L., Yeo, T. S., Burgunder, J. M., Probst, A., Sim, M. K. & Ling, E. A. (2004) Metabotropic glutamate receptor 2/3 in the hippocampus of patients with mesial temporal lobe epilepsy, and of rats and mice after pilocarpine-induced status epilepticus. Epilepsy Res, 59, 167–80.CrossRefGoogle ScholarPubMed
Pacheco Otalora, L. F., Couoh, J., Shigamoto, R., Zarei, M. M. & Garrido Sanabria, E. R. (2006) Abnormal mGluR2/3 expression in the perforant path termination zones and mossy fibers of chronically epileptic rats. Brain Res, 1098, 170–85.CrossRefGoogle ScholarPubMed
Neugebauer, V., Chen, P. S. & Willis, W. D. (2000a) Groups II and III metabotropic glutamate receptors differentially modulate brief and prolonged nociception in primate STT cells. J Neurophysiol, 84, 2998–3009.CrossRefGoogle ScholarPubMed
Simmons, R. M., Webster, A. A., Kalra, A. B. & Iyengar, S. (2002) Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav, 73, 419–27.CrossRefGoogle ScholarPubMed
Jones, C. K., Eberle, E. L., Peters, S. C., Monn, J. A. & Shannon, H. E. (2005) Analgesic effects of the selective group II (mGlu2/3) metabotropic glutamate receptor agonists LY379268 and LY389795 in persistent and inflammatory pain models after acute and repeated dosing. Neuropharmacology, 49 Suppl 1, 206–18.CrossRefGoogle ScholarPubMed
Du, J., Zhou, S. & Carlton, S. M. (2008) Group II metabotropic glutamate receptor activation attenuates peripheral sensitization in inflammatory states. Neuroscience, 154, 754–66.CrossRefGoogle ScholarPubMed
Li, W. & Neugebauer, V. (2006) Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol, 96, 1803–15.CrossRefGoogle Scholar
Jang, J. H., Kim, D. W., Sang Nam, T., Se Paik, K. & Leem, J. W. (2004) Peripheral glutamate receptors contribute to mechanical hyperalgesia in a neuropathic pain model of the rat. Neuroscience, 128, 169–76.CrossRefGoogle Scholar
Dolan, S., Kelly, J. G., Monteiro, A. M. & Nolan, A. M. (2003) Up-regulation of metabotropic glutamate receptor subtypes 3 and 5 in spinal cord in a clinical model of persistent inflammation and hyperalgesia. Pain, 106, 501–12.CrossRefGoogle Scholar
Flor, P. J., Putten, H., Ruegg, D., Lukic, S., Leonhardt, T., Bence, M., Sansig, G., Knopfel, T. & Kuhn, R. (1997) A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology, 36, 153–9.CrossRefGoogle ScholarPubMed
Okamoto, N., Hori, S., Akazawa, C., Hayashi, Y., Shigemoto, R., Mizuno, N. & Nakanishi, S. (1994) Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction. J Biol Chem, 269, 1231–6.Google ScholarPubMed
Palucha, A., Tatarczynska, E., Branski, P., Szewczyk, B., Wieronska, J. M., Klak, K., Chojnacka-Wojcik, E., Nowak, G. & Pilc, A. (2004) Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology, 46, 151–9.CrossRefGoogle ScholarPubMed
Stachowicz, K., Chojnacka-Wojcik, E., Klak, K. & Pilc, A. (2007) Anxiolytic-like effect of group III mGlu receptor antagonist is serotonin-dependent. Neuropharmacology, 52, 306–12.CrossRefGoogle ScholarPubMed
Stachowicz, K., Klak, K., Klodzinska, A., Chojnacka-Wojcik, E. & Pilc, A. (2004) Anxiolytic-like effects of PHCCC, an allosteric modulator of mGlu4 receptors, in rats. Eur J Pharmacol, 498, 153–6.CrossRefGoogle ScholarPubMed
Rorick-Kehn, L. M., Hart, J. C. & Mckinzie, D. L. (2005) Pharmacological characterization of stress-induced hyperthermia in DBA/2 mice using metabotropic and ionotropic glutamate receptor ligands. Psychopharmacology (Berl), 183, 226–40.CrossRefGoogle ScholarPubMed
Fendt, M., Schmid, S., Thakker, D. R., Jacobson, L. H., Yamamoto, R., Mitsukawa, K., Maier, R., Natt, F., Husken, D., Kelly, P. H., Mcallister, K. H., Hoyer, D., Putten, H., Cryan, J. F. & Flor, P. J. (2008) mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry, 13, 970–9.CrossRefGoogle ScholarPubMed
Duvoisin, R. M., Zhang, C., Pfankuch, T. F., O'Connor, H., Gayet-Primo, J., Quraishi, S. & Raber, J. (2005) Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci, 22, 425–36.CrossRefGoogle Scholar
Linden, A. M., Johnson, B. G., Peters, S. C., Shannon, H. E., Tian, M., Wang, Y., Yu, J. L., Koster, A., Baez, M. & Schoepp, D. D. (2002) Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology, 43, 251–9.CrossRefGoogle ScholarPubMed
Fendt, M., Burki, H., Imobersteg, S., Putten, H., Mcallister, K., Leslie, J. C., Shaw, D. & Holscher, C. (2009) The effect of mGlu(8) deficiency in animal models of psychiatric diseases. Genes Brain Behav.Google ScholarPubMed
Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J. & Putten, H. (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci, 17, 2409–17.CrossRefGoogle Scholar
Stachowicz, K., Branski, P., Klak, K., Putten, H., Cryan, J. F., Flor, P. J. & Andrzej, P. (2008) Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharmacol, 19, 597–603.CrossRefGoogle ScholarPubMed
Callaerts-Vegh, Z., Beckers, T., Ball, S. M., Baeyens, F., Callaerts, P. F., Cryan, J. F., Molnar, E. & D'Hooge, R. (2006) Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci, 26, 6573–82.CrossRefGoogle ScholarPubMed
Altinbilek, B. & Manahan-Vaughan, D. (2007) Antagonism of group III metabotropic glutamate receptors results in impairment of LTD but not LTP in the hippo- campal CA1 region, and prevents long-term spatial memory. Eur J Neurosci, 26, 1166–72.CrossRefGoogle ScholarPubMed
Klausnitzer, J., Kulla, A. & Manahan-Vaughan, D. (2004) Role of the group III metabotropic glutamate receptor in LTP, depotentiation and LTD in dentate gyrus of freely moving rats. Neuropharmacology, 46, 160–70.CrossRefGoogle Scholar
Gerlai, R., Roder, J. C. & Hampson, D. R. (1998) Altered spatial learning and memory in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. Behav Neurosci, 112, 525–32.CrossRefGoogle ScholarPubMed
Masugi, M., Yokoi, M., Shigemoto, R., Muguruma, K., Watanabe, Y., Sansig, G., Putten, H. & Nakanishi, S. (1999) Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J Neurosci, 19, 955–63.CrossRefGoogle ScholarPubMed
Robbins, M. J., Starr, K. R., Honey, A., Soffin, E. M., Rourke, C., Jones, G. A., Kelly, F. M., Strum, J., Melarange, R. A., Harris, A. J., Rocheville, M., Rupniak, T., Murdock, P. R., Jones, D. N., Kew, J. N. & Maycox, P. R. (2007) Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res, 1152, 215–27.CrossRefGoogle Scholar
Takaki, H., Kikuta, R., Shibata, H., Ninomiya, H., Tashiro, N. & Fukumaki, Y. (2004) Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia. Am J Med Genet B Neuropsychiatr Genet, 128B, 6–14.CrossRefGoogle Scholar
Ohtsuki, T., Koga, M., Ishiguro, H., Horiuchi, Y., Arai, M., Niizato, K., Itokawa, M., Inada, T., Iwata, N., Iritani, S., Ozaki, N., Kunugi, H., Ujike, H., Watanabe, Y., Someya, T. & Arinami, T. (2008) A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr Res, 101, 9–16.CrossRefGoogle ScholarPubMed
Klak, K., Palucha, A., Branski, P., Sowa, M. & Pilc, A. (2007) Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids, 32, 169–72.CrossRefGoogle ScholarPubMed
Tatarczynska, E., Palucha, A., Szewczyk, B., Chojnacka-Wojcik, E., Wieronska, J. & Pilc, A. (2002) Anxiolytic- and antidepressant-like effects of group III metabotropic glutamate agonist (1S,3R,4S)-1-aminocyclopentane-1,3,4-tricarboxylic acid (ACPT-I) in rats. Pol J Pharmacol, 54, 707–10.Google ScholarPubMed
Mitsukawa, K., Mombereau, C., Lotscher, E., Uzunov, D. P., Putten, H., Flor, P. J. & Cryan, J. F. (2006) Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: implications for stress-related psychiatric disorders. Neuropsychopharmacology, 31, 1112–22.CrossRefGoogle ScholarPubMed
Wieronska, J. M., Klak, K., Palucha, A., Branski, P. & Pilc, A. (2007) Citalopram influences mGlu7, but not mGlu4 receptors' expression in the rat brain hippocampus and cortex. Brain Res, 1184, 88–95.CrossRefGoogle Scholar
Palucha, A., Klak, K., Branski, P., Putten, H., Flor, P. J. & Pilc, A. (2007) Activation of the mGlu7 receptor elicits antidepressant-like effects in mice. Psychopharmacology (Berl), 194, 555–62.CrossRefGoogle ScholarPubMed
Bradley, S. R., Standaert, D. G., Levey, A. I. & Conn, P. J. (1999) Distribution of group III mGluRs in rat basal ganglia with subtype-specific antibodies. Ann N Y Acad Sci, 868, 531–4.CrossRefGoogle ScholarPubMed
Lopez, S., Turle-Lorenzo, N., Acher, F., Leonibus, E., Mele, A. & Amalric, M. (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson's disease. J Neurosci, 27, 6701–11.CrossRefGoogle ScholarPubMed
Marino, M. J., Williams, D. L., JR., O'Brien, J. A., Valenti, O., Mcdonald, T. P., Clements, M. K., Wang, R., Dilella, A. G., Hess, J. F., Kinney, G. G. & Conn, P. J. (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson's disease treatment. Proc Natl Acad Sci U S A, 100, 13668–73.CrossRefGoogle ScholarPubMed
Battaglia, G., Busceti, C. L., Molinaro, G., Biagioni, F., Traficante, A., Nicoletti, F. & Bruno, V. (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci, 26, 7222–9.CrossRefGoogle ScholarPubMed
Vernon, A. C., Palmer, S., Datla, K. P., Zbarsky, V., Croucher, M. J. & Dexter, D. T. (2005) Neuroprotective effects of metabotropic glutamate receptor ligands in a 6-hydroxydopamine rodent model of Parkinson's disease. Eur J Neurosci, 22, 1799–806.CrossRefGoogle Scholar
Feeley Kearney, J. A. & Albin, R. L. (2003) mGluRs: a target for pharmacotherapy in Parkinson disease. Exp Neurol, 184 Suppl 1, S30–6.Google ScholarPubMed
Ghauri, M., Chapman, A. G. & Meldrum, B. S. (1996) Convulsant and anticonvulsant actions of agonists and antagonists of group III mGluRs. Neuroreport, 7, 1469–74.CrossRefGoogle ScholarPubMed
Chapman, A. G., Talebi, A., Yip, P. K. & Meldrum, B. S. (2001) Anticonvulsant activity of a mGlu(4alpha) receptor selective agonist, (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid. Eur J Pharmacol, 424, 107–13.CrossRefGoogle ScholarPubMed
Chen, J., Larionov, S., Pitsch, J., Hoerold, N., Ullmann, C., Elger, C. E., Schramm, J. & Becker, A. J. (2005) Expression analysis of metabotropic glutamate receptors I and III in mouse strains with different susceptibility to experimental temporal lobe epilepsy. Neurosci Lett, 375, 192–7.CrossRefGoogle Scholar
Tang, F. R. & Lee, W. L. (2001) Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol, 30, 137–43.CrossRefGoogle Scholar
Soliman, A. C., Yu, J. S. & Coderre, T. J. (2005) mGlu and NMDA receptor contributions to capsaicin-induced thermal and mechanical hypersensitivity. Neuropharmacology, 48, 325–32.CrossRefGoogle ScholarPubMed
Goudet, C., Chapuy, E., Alloui, A., Acher, F., Pin, J. P. & Eschalier, A. (2008) Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain, 137, 112–24.CrossRefGoogle ScholarPubMed
Mills, C. D., Johnson, K. M. & Hulsebosch, C. E. (2002) Role of group II and group III metabotropic glutamate receptors in spinal cord injury. Exp Neurol, 173, 153–67.CrossRefGoogle ScholarPubMed
Maione, S., Oliva, P., Marabese, I., Palazzo, E., Rossi, F., Berrino, L. & Filippelli, A. (2000) Periaqueductal gray matter metabotropic glutamate receptors modulate formalin-induced nociception. Pain, 85, 183–9.CrossRefGoogle ScholarPubMed
Zhang, H. M., Chen, S. R. & Pan, H. L. (2009) Effects of activation of group III metabotropic glutamate receptors on spinal synaptic transmission in a rat model of neuropathic pain. Neuroscience, 158, 875–84.CrossRefGoogle Scholar
Palazzo, E., Fu, Y., Ji, G., Maione, S. & Neugebauer, V. (2008) Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology, 55, 537–45.CrossRefGoogle ScholarPubMed
Osikowicz, M., Mika, J., Makuch, W. & Przewlocka, B. (2008) Glutamate receptor ligands attenuate allodynia and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain. Pain, 139, 117–26.CrossRefGoogle Scholar
Gerber, U. (2003) Metabotropic glutamate receptors in vertebrate retina. Doc Ophthalmol, 106, 83–7.CrossRefGoogle ScholarPubMed
Brandstatter, J. H. (2002) Glutamate receptors in the retina: the molecular substrate for visual signal processing. Curr Eye Res, 25, 327–31.CrossRefGoogle ScholarPubMed
Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R. & ET AL. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 80, 757–65.CrossRefGoogle ScholarPubMed
Takao, M., Morigiwa, K., Sasaki, H., Miyoshi, T., Shima, T., Nakanishi, S., Nagai, K. & Fukuda, Y. (2000) Impaired behavioral suppression by light in metabotropic glutamate receptor subtype 6-deficient mice. Neuroscience, 97, 779–87.CrossRefGoogle ScholarPubMed
Zeitz, C., Genderen, M., Neidhardt, J., Luhmann, U. F., Hoeben, F., Forster, U., Wycisk, K., Matyas, G., Hoyng, C. B., Riemslag, F., Meire, F., Cremers, F. P. & Berger, W. (2005) Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci, 46, 4328–35.CrossRefGoogle ScholarPubMed
Dryja, T. P., Mcgee, T. L., Berson, E. L., Fishman, G. A., Sandberg, M. A., Alexander, K. R., Derlacki, D. J. & Rajagopalan, A. S. (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci U S A, 102, 4884–9.CrossRefGoogle ScholarPubMed
Dyka, F. M., May, C. A. & Enz, R. (2004) Metabotropic glutamate receptors are differentially regulated under elevated intraocular pressure. J Neurochem, 90, 190–202.CrossRefGoogle ScholarPubMed
Spooren, W. P., Vassout, A., Neijt, H. C., Kuhn, R., Gasparini, F., Roux, S., Porsolt, R. D. & Gentsch, C. 2000b. Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther, 295, 1267–75.Google ScholarPubMed
Spooren, W. P., Schoeffter, P., Gasparini, F., Kuhn, R. & Gentsch, C. 2002. Pharmacological and endocrinological characterisation of stress-induced hyperthermia in singly housed mice using classical and candidate anxiolytics (LY314582, MPEP and NKP608). Eur J Pharmacol, 435, 161–70.CrossRefGoogle Scholar
Spooren, W. P., Gasparini, F., Bergmann, R. & Kuhn, R. 2000a. Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. Eur J Pharmacol, 406, 403–10.CrossRefGoogle ScholarPubMed
Chapman, A. G., Nanan, K., Williams, M. & Meldrum, B. S. (2000) Anticonvulsant activity of two metabotropic glutamate group I antagonists selective for the mGlu5 receptor: 2-methyl-6-(phenylethynyl)-pyridine (MPEP), and (E)-6-methyl-2-styryl-pyridine (SIB 1893). Neuropharmacology, 39, 1567–74.CrossRefGoogle Scholar
Zhang, L., Lu, Y., Chen, Y. & Westlund, K. N. 2002. Group I metabotropic glutamate receptor antagonists block secondary thermal hyperalgesia in rats with knee joint inflammation. J Pharmacol Exp Ther, 300, 149–56.CrossRefGoogle Scholar
Bhave, G., Karim, F., Carlton, S. M. & Gereau, R. W. T. 2001. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci, 4, 417–23.CrossRefGoogle Scholar
Ansah, O. B., Goncalves, L., Almeida, A. & Pertovaara, A. 2009. Enhanced pronociception by amygdaloid group I metabotropic glutamate receptors in nerve-injured animals. Exp Neurol, 216, 66–74.CrossRefGoogle Scholar
Han, J. S. & Neugebauer, V. 2005. mGluR1 and mGluR5 antagonists in the amygdala inhibit different components of audible and ultrasonic vocalizations in a model of arthritic pain. Pain, 113, 211–22.CrossRefGoogle Scholar
Bruijnzeel, A. W., Stam, R. & Wiegant, V. M. 2001. LY354740 attenuates the expression of long-term behavioral sensitization induced by a single session of foot shocks. Eur J Pharmacol, 426, 77–80.CrossRefGoogle ScholarPubMed
Walker, D. L. & Davis, M. 2002. The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharmacol Biochem Behav, 71, 379–92.CrossRefGoogle ScholarPubMed
Smialowska, M., Wieronska, J. M., Domin, H. & Zieba, B. 2007. The effect of intrahippocampal injection of group II and III metobotropic glutamate receptor agonists on anxiety; the role of neuropeptide Y. Neuropsychopharmacology, 32, 1242–50.CrossRefGoogle ScholarPubMed
Mathis, C. & Ungerer, A. 1999. The retention deficit induced by (RS)-alpha-methyl-4-carboxyphenylglycine in a lever-press learning task is blocked by selective agonists of either group I or group II metabotropic glutamate receptors. Exp Brain Res, 129, 147–55.CrossRefGoogle ScholarPubMed
Cartmell, J., Monn, J. A. & Schoepp, D. D. 2000. Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology (Berl), 148, 423–9.CrossRefGoogle ScholarPubMed
Grauer, S. M. & Marquis, K. L. 1999. Intracerebral administration of metabotropic glutamate receptor agonists disrupts prepulse inhibition of acoustic startle in Sprague-Dawley rats. Psychopharmacology (Berl), 141, 405–12.CrossRefGoogle ScholarPubMed
Bradford, H. F. 1998. Specific group II metabotropic glutamate receptor activation inhibits the development of kindled epilepsy in rats. Brain Res, 787, 286Ossowska, K., Pietraszek, M., Wardas, J., Nowak, G., Zajaczkowski, W., Wolfarth, S. & Pilc, A. 2000. The role of glutamate receptors in antipsychotic drug action. Amino Acids, 19, 87–94.Google Scholar
Schreiber, R., Lowe, D., Voerste, A. & Vry, J. 2000. LY354740 affects startle responding but not sensorimotor gating or discriminative effects of phencyclidine. Eur J Pharmacol, 388, R3–4.CrossRefGoogle ScholarPubMed
Schlumberger, C., Schafer, D., Barberi, C., More, L., Nagel, J., Pietraszek, M., Schmidt, W. J. & Danysz, W. 2009. Effects of a metabotropic glutamate receptor group II agonist LY354740 in animal models of positive schizophrenia symptoms and cognition. Behav Pharmacol, 20, 56–66.CrossRefGoogle ScholarPubMed
Attwell, P. J., Koumentaki, A., Abdul-Ghani, A. S., Croucher, M. J. & –91.
Senkowska, A. & Ossowska, K. (2003) Role of metabotropic glutamate receptors in animal models of Parkinson's disease. Pol J Pharmacol, 55, 935–50.Google ScholarPubMed
Mela, F., Marti, M., Dekundy, A., Danysz, W., Morari, M. & Cenci, M. A. 2007. Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease. J Neurochem, 101, 483–97.CrossRefGoogle Scholar
Simmons, R. M., Webster, A. A., Kalra, A. B. & Iyengar, S. 2002. Group II mGluR receptor agonists are effective in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav, 73, 419–27.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×