Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T10:49:54.958Z Has data issue: false hasContentIssue false

5 - The Early Earth

from Part III - History of Life on Earth

Published online by Cambridge University Press:  05 December 2012

Chris Impey
Affiliation:
University of Arizona
Jonathan Lunine
Affiliation:
Cornell University, New York
José Funes
Affiliation:
Vatican Observatory, Vatican City
Get access

Summary

In this chapter we will look at the environment of the early Earth as a habitat for life and at the primitive life forms that inhabited it. The early Earth was a very different planet from today's Earth. Hotter, much more volcanically active, with an oxygen-poor atmosphere and ocean waters that were probably slightly more acidic and more salty than today's ocean, at first glance the early Earth seems to have been an inhospitable planet. But this was the Earth upon which life first appeared. In fact, life could not have appeared on today's Earth because of the ubiquitous presence of oxygen – an active molecule that effectively destroys the organic ingredients of life by oxidation. Despite its apparent inhospitality, the early Earth was habitable because it had conditions that were conducive to the appearance of simple life forms: it had liquid water, carbon molecules, energy sources, and the elements necessary for both the building bricks of cells and for its metabolic processes (HNOPS, plus transition metals). And this early, different planet apparently teemed with primitive forms of life.

The environment of the early Earth

After consolidation of the planetesimals forming the proto-planet, early radiogenic heat from short-lived radiogenic species, such as 26Al, fused the accreted planetesimals into a molten mass, producing a magma ocean, which allowed differentiation of the heavier elements, iron and nickel, into the core and the lighter elements, forming silicate minerals, into the mantle. Degassing of the early mantle expelled the lighter elements (volatile elements) that were originally contained in the planetesimals to create a weakly reducing atmosphere of N2, CO2, and water, with traces of other gases (Kasting and Brown 1998). About 40 My after the consolidation of the proto-Earth, it was impacted by another smaller planet having a composition not too different from that of the Earth. It is possible to estimate the timing of this impact from the age of differentiation of the cores of the Earth and the Moon. Using the ratio of the quantity of the radiogenic isotope 182H and its daughter 182W remaining in the mantle of the Earth and the Moon, the impact has been dated to approximately between 40 and 100 My after accretion (Yin et al. 2002, Kleine et al. 2009). The planetary material issuing from this glancing impact produced the Earth's satellite, the Moon. The existence of the Moon had a number of consequences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allwood, A. C.Walter, M. R.Kamber, B. S. 2006 Stromatolite reef from the Early Archaean Era of AustraliaNature 441 714CrossRefGoogle Scholar
Allwood, A. C.Grotzinger, J. P.Knoll, A. H. 2009 Controls on development and diversity of Early Archean stromatolitesProceedings of the National Academy of Sciences 106 9548CrossRefGoogle ScholarPubMed
Anbar, A. D.Zahnle, K. J.Arnold, G.Mojzsis, S. J. 2001 Extraterrestrial iridium, sediment accumulation and the habitability of the early Earth's surface,”Journal of Geophysical Research 106 3219CrossRefGoogle Scholar
Arndt, N. T. 1994 Archean komatiitesArchean Crustal EvolutionCondie, K. C.AmsterdamElsevier11CrossRefGoogle Scholar
Bandfield, J.Moreau, J. W.Chan, C. S. 2002 Mineralogical biosignatures and the search for life on MarsAstrobiology 1 447CrossRefGoogle Scholar
Baross, J. A.Hoffman Breuer, D.Labrosse, S.Spohn, T. 2010 Thermal evolution and magnetic field generation in terrestrial planets and satellitesSpace Science Review 152 449Google Scholar
Bowring, S. A.Williams, I. S. 1999 Priscoan (4.00–4.03 Ga) orthogneisses from northwestern CanadaContributions to Mineralogy and Petrology 134 3CrossRefGoogle Scholar
Brasier, M. D.Green, O. R.Jephcoat, A. P. 2002 Questioning the evidence for Earth's oldest fossilsNature 416 76CrossRefGoogle ScholarPubMed
Breuer, D.Labrosse, S.Spohn, T. 2010 Thermal evolution and magnetic field generation in terrestrial planets and satellitesSpace Science Review 152 449CrossRefGoogle Scholar
Brocks, J. J.Logan, G. A.Buick, R.Summons, R. E. 1999 Archean molecular fossils and the early rise of eukaryotesScience 285 1033CrossRefGoogle ScholarPubMed
Charbonneau, D.Berta, Z. K.Irwin, J. 2009 A super-Earth transiting a nearby low-mass starNature 462 891CrossRefGoogle ScholarPubMed
Cockell, C. S.Raven, J. A. 2004 Zones of photosynthetic potential on Mars and the early EarthIcarus 169 300CrossRefGoogle Scholar
Cox, M. M.Battista, J. R. 2005 Deinococcus radiodurans – the consummate survivorNature Reviews: Microbiology 3 882Google ScholarPubMed
Dauphas, N.Robert, F.Marty, B. 2000 The late asteroidal and cometary bombardment of Earth as recorded in water deuterium to protium ratioIcarus 148 508CrossRefGoogle Scholar
de Ronde, C. E. J.Channer, D. M. DeR.Faure, K. 1997 Fluid chemistry of Archean seafloor hydrothermal vents; implications for the composition of circa 3.2 Ga seawaterGeochimica et Cosmochimica Acta 61 4025CrossRefGoogle Scholar
Deamer, D. W. 2007 187
Derenne, S.Robert, F.Skryzpczak-Bonduelle, A. 2008 Molecular evidence for life in the 3.5-billion-year old Warreawoona chertEarth and Planetary Science Letters 272 476CrossRefGoogle Scholar
Des Marais, D. J. 2000 When did photosynthesis emerge on Earth?Science 289 1703Google Scholar
Farquhar, J.Bao, HuimingThiemens, M. 2000 Atmospheric influence of the Earth's earliest sulfur cycleScience 289 756CrossRefGoogle ScholarPubMed
Furnes, H.Banerjee, N. R.Muehlenbachs, K. 2004 Early life recorded in Archean pillow lavasScience 304 578CrossRefGoogle ScholarPubMed
Furnes, H.Banerjee, N. R.Staudigel, H. 2007 Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocksPrecambrian Research 158 156CrossRefGoogle Scholar
Gaillard, F.Scaillet, B.Arndt, N. 2011 Atmospheric oxygenation caused by a change in volcanic degassing pressureNature 478 229CrossRefGoogle ScholarPubMed
Gilichinsky, D.Vishnivetskaya, T.Petrova, M. 2008 83
Golubic, S.Friedmann, I.Schneider, J. 1981 The lithobiontic ecological niche, with special reference to microorganismsJournal of Sedimentary Petrology 51 475Google Scholar
Grotzinger, J. P.Kasting, J. F. 1993 New constraints on Precambrian ocean compositionJournal of Geology 101 235CrossRefGoogle ScholarPubMed
Hartmann, W. K.Ryder, G.Dones, L.Grinspoon, D. 2000 493
Hofmann, A.Bolhar, R. 2007 The origin of carbonaceous cherts in the Barberton greenstone belt and their significance for the study of early life in mid-Archaean rocksAstrobiology 7 355CrossRefGoogle Scholar
Holm, N. G. 1992 Why are hydrothermal systems proposed as plausible environ-ments for the origin of life?Origins of Life and Evolution of Biospheres 22 5CrossRefGoogle Scholar
Javaux, E. J.Knoll, A. H.Walter, M. R. 2001 Morphological and ecological complexity in early eukaryotic ecosystemsNature 412 66CrossRefGoogle ScholarPubMed
Kasting, J. F.Brown, L. L. 1998 35
Kleine, T. 2009 Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planetsGeochimica et Cosmochimica Acta 73 5150CrossRefGoogle Scholar
Knauth, L. P. 1998 Salinity history of Earth's early oceanNature 395 554CrossRefGoogle ScholarPubMed
Lindsay, J. F.Brasier, M. D.McLoughlin, N. 2005 The problem of deep carbon – an Archean paradoxPrecambrian Research 143 1CrossRefGoogle Scholar
Lowe, D. R. 1980 Stromatolites 3,400-Myr old from the Archean of Western AustraliaNature 284 441CrossRefGoogle Scholar
Lowe, D. R. 1994 Abiological origin of described stromatolites older than 3.2 GaGeology 22 2872.3.CO;2>CrossRefGoogle ScholarPubMed
Martin, H.Albarède, F.Claeys, P. 2006 Building of a habitable planetEarth, Moon and Planets 98 97CrossRefGoogle Scholar
Maurette, M. 1998 Carbonaceous micrometeorites and the origin of life,” Biospheres 28 385Google Scholar
Mojzsis, S. J.Arrhenius, G.Keegan, K. D. 1996 Evidence for life on Earth before 3,800 million years agoNature 384 55CrossRefGoogle ScholarPubMed
Monty, C. L. V.Westall, F.Van Der Gaast, S. 1991 685
Morbidelli, A.Chambers, J.Lunine, J. I. 2000 Source regions and timescales for the delivery of water to the Earth,” Science 35 1309Google Scholar
Noffke, N. 2009 The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy depositsEarth Science Reviews 96 173CrossRefGoogle Scholar
Ohmoto, H.Watanabe, Y.Ikemi, H. 2006 Suphur isotope evidence for an oxic Archaean atmosphereNature 442 908CrossRefGoogle Scholar
Orange, F.Westall, F.Disnar, J.-R. 2009 Experimental silicification of the extremophilic Archaea Pyroccus abyssi and Methanocaldococcus jannaschii: applications in the search for evidence of life in early Earth and extraterrestrial rocksGeobiology 7 403CrossRefGoogle ScholarPubMed
Orange, F.Chabin, A.Gorlas, A. 2011 Experimental fossilisation of viruses from extremophilic ArchaeaBiogeosciences 8 1465CrossRefGoogle Scholar
Orgel, L. E. 1998 The origin of life – How long did it take?” Biospheres 28 91Google ScholarPubMed
Papineau, D.De Gregorio, B. T.Cody, G. D. 2011 Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formationNature Geoscience 4 376CrossRefGoogle Scholar
Pavlov, A. A.Kasting, J. F.Brown, L. L. 2001 Greenhouse warming by CH4 in the atmosphere of early EarthJournal of Geophysical Research 105 11981CrossRefGoogle Scholar
Pentecost, A. L. 2005
Plesa, A. C.Breuer, D. 2010 24
Rasmussen, B.Fletcher, I. R.Brocks, J. J.Kilburn, M. R. 2008 Reassessing the first appearance of eukaryotes and cyanobacteriaNature 455 1101CrossRefGoogle ScholarPubMed
Robert, F.Chaussidon, M. 2006 A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in chertsNature 443 969CrossRefGoogle ScholarPubMed
Rosing, M. T. 1999 13C depleted carbon microparticles in >3700 Ma seafloor sedimentary rocks from West GreenlandScience 283 674CrossRefGoogle Scholar
Ryder, G.Koeberl, C.Mojzsis, S. J. 2000 Heavy bombardment on the Earth at ~3.85 Ga: the search for petrographic and geochemical evidenceOrigin of the Earth and MoonCanup, R. M.Righter, K.Tucson: University of Arizona Press475Google Scholar
Schoenberg, R.Kamber, B. S.Collerson, K. D.Moorbath, S. 2002 Tungsten isotope evidence from approximately 3.8-Gyr metamorphosed sediments for early meteorite bombardment of the EarthNature 418 403CrossRefGoogle Scholar
Schopf, J. W. 1993 Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of lifeScience 260 640CrossRefGoogle ScholarPubMed
Schopf, J. W.Walter, M. R. 1983 Earth's Earliest BiosphereSchopf, J. W.Princeton, NJ: Princeton University Press214Google Scholar
Sleep, N. H.Zahnle, K. J.Kasting, J. F.Morowitz, H. J. 1989 Annihilation of ecosystems by large asteroid impacts on the early EarthNature 342 139CrossRefGoogle ScholarPubMed
Stahl, L. J. 1994 41
Sugitani, K.Grey, K.Allwood, A. 2007 Diverse microstructures from Archaean chert from the Mount Goldsworthy–Mount Grant area, Pilbara Craton, Western Australia: microfossils, dubiofossils or pseudofossils?Precambrian Research 158 228CrossRefGoogle Scholar
Summons, R. E.Jahnke, L. L.Hope, J. M.Logan, J. H. 1999 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesisNature 400 554CrossRefGoogle ScholarPubMed
Tice, M.Lowe, D. R. 2004 Photosynthetic microbial mats in the 3,416-Myr-old oceanNature 431 549CrossRefGoogle Scholar
van den Boorn, S.Van Bergen, M. J.Nijman, W.Vroon, P. Z. 2007 Dual role of seawater and hydrothermal fluids in Early Archean chert formation: evidence from silicon isotopesGeology 35 939CrossRefGoogle Scholar
van Zuilen, M.Lepland, A.Arrhenius, G. 2002 Reassessing the evidence for the earliest traces of lifeNature 418 627CrossRefGoogle ScholarPubMed
Vreeland, R.Rosenzweig, W.Powers, D. 2000 Isolation of a 250 million year old halotolerant bacterium from a primary salt crystalNature 407 897CrossRefGoogle ScholarPubMed
Walsh, M. M. 1992 Microfossils and possible microfossils from the Early Archean Onverwacht Group Precambrian Research 54 271CrossRefGoogle ScholarPubMed
Walsh, K.Morbidelli, A.Raymond, S. N. 2011 A low mass for Mars from Jupiter's early gas-driven migrationNature 475 206CrossRefGoogle ScholarPubMed
Walter, M. R. 1983 Earth's Earliest BiosphereSchopf, J. W.Princeton, NJPrinceton University Press187Google Scholar
Westall, F. 1999 The nature of fossil bacteriaJournal of Geophysical Research 104 437CrossRefGoogle Scholar
Westall, F. 2011 Origins of Life, An Astrobiology PerspectiveGargaud, M.Cambridge: Cambridge University Press391Google Scholar
Westall, F.Cavalazzi, B. 2011 Encyclopedia of GeobiologyThiel, V.Reitner, J.BerlinSpringer189CrossRefGoogle Scholar
Westall, F.Folk, R. L. 2003 Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua greenstone belt: implications for the search for life in ancient rocksPrecambrian Research 126 313CrossRefGoogle Scholar
Westall, F.Southam, G. 2006 Archean Geodynamics and EnvironmentsBenn, K.283AGU GeophysicsMonographs164CrossRefGoogle Scholar
Westall, F.Boni, L.Guerzoni, M. E. 1995 The experimental silicification of microbesPalaeontology 38 495Google Scholar
Westall, F.de Vries, S. T.Nijman, W. 2006 The 3.466 Ga Kitty's Gap Chert, an Early Archaean microbial ecosystemProcesses on the Early EarthReimold, W. U.Gibson, R.Geological Society of America Special Publication105CrossRefGoogle Scholar
Westall, F.de Ronde, C. E. J.Southam, G. 2006 Implications of a 3,472–3,333-Ga-old subaerial microbial mat from the Barberton greenstone belt, South Africa, for the UV environmental conditions on the early EarthPhilosophical Transactions of the Royal Society B 185 1857CrossRefGoogle Scholar
Westall, F.Foucher, F.Cavalazzi, B. 2011 Early life on Earth and Mars: a case study from ~3.5-Ga-old rocks from the Pilbara, AustraliaPlanetary and Space Science 59 1093CrossRefGoogle Scholar
Westall, F.Cavalazzi, B.Lemelle, L. 2011
Wilde, S. A.Valley, J. W.Peck, W. H.Graham, C. M. 2001 Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr agoNature 409 175CrossRefGoogle ScholarPubMed
Yin, Q. Z.Jacobsen, S. B.Yamashita, K. 2002 A short timescale for terrestrial planet formation from Hf-W chronometry of meteoritesNature 418 949CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×