Skip to main content Accessibility help
×
Home
  • Print publication year: 2020
  • Online publication date: December 2020

3 - Deliveries of Cosmic Carbon Continue

Summary

When the formation of the Moon and the phase of giant impacts had mostly run its course, a final round-up of the remaining planetesimals took place. Gravitational forces exerted by the eight planets scoured interplanetary space: some planetesimals were flipped into the Sun, others thumped into terrestrial or giant planets, and the remainder were expelled to interstellar space by gravitational slingshot effects. Unsurprisingly, gravity’s purge of the solar system was not an entirely clean sweep. Comets, asteroids, meteors (meteorites once they make the journey through Earth’s atmosphere) and mere specks of dust lingered. In our age, this debris has become an indispensable archival source of data for revealing how, over billions of years, the elements have been sieved and sorted for distribution throughout the solar system. Detailed investigations of the composition of asteroids and meteorites became a hot area of planetary science research at the beginning of the present century. In 2015, the NASA spacecraft Dawn began a three-year survey mission to Ceres, the largest asteroid.

1.Piazzi, G. Letter to Friend Barnaba Oriani, Director of the Brera Observatory, Milan (1801).
2.Cunningham, C. J., Marsden, B. G. and Orchiston, W. Giuseppe Piazzi: the controversial discovery and loss of Ceres in 1801. Journal for the History of Astronomy 42, 283306 (2011).
3.Cleeves, L. I. et al. The ancient heritage of water ice in the solar system. Science 345, 15901593 (2014).
4.Biot, J. B. Memoires de la classe des sciences mathématiques et physiques de l’Institut National de France. 7 (1803).
5.Gounelle, M. The meteorite fall at L’Aigle and the Biot report: exploring the cradle of meteoritics. Geological Society of London, Special Publications 256, 7389 (2006).
6.Thénard, L. J. Analyse d’un aerolite tombé dans l’arrondisement d’Alais, le 15 mars 1803. Annales de Chemie 59, 103112 (1806).
7.Berzelius, J. J. Ueber Meteorsteine. Annalen der Physik 109, 113148 (1834).
8.Gounelle, M. and Zolensky, M. E. The Orgueil meteorite: 150 years of history. Meteoritics and Planetary Science 49, 17691794 (2014).
9.Cloëz, S. Analyse chimique de la pierre météorique d’Orgueil. Comptes Rendus de l’Academie des Sciences Paris 59, 3740 (1864).
10.Cloëz, S. Note sur la composition chimique de la pierre météoritique d’Orgueil. Comptes Rendus de l’Academie des Sciences Paris 58, 986988 (1864).
11.Daubrée, G. A. Complément d’observations sur la chute de météorites qui a eu lieu le 14 mai 1864 aux environs d’Orgueil. (Tarn et Garonne). Nouvelles Archives du Muséum d’Histoire Naturell 3, 119 (1867).
12.Nagy, B., Meinschein, W. G. and Hennessy, D. J. Mass spectroscopic analysis of the Orgueil meteorite: evidence for biogenic hydrocarbons. Annals of the New York Academy of Sciences 93, 2735 (1961).
13.Nagy, B., Claus, G. and Hennessy, D. J. Organic particles embedded in minerals in the Orgueil and Ivuna carbonaceous chondrites. Nature 193, 1129 (1962).
14.Fitch, F., Schwarcz, H. P. and Anders, E. Organized elements in carbonaceous chondrites. Nature 193, 1123 (1962).
15.Anders, E. et al. Contaminated meteorite. Science 146, 11571161 (1964).
16.Lovering, J. F., Le Maitre, R. W. and Chappell, B. W. Murchison C2 carbonaceous chondrite and its inorganic composition. Nature Physical Science 230, 1820 (1971).
17.Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. and Wasson, J. Progressive aqueous alteration of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta 71, 23612382 (2007).
18.Chyba, C. and Sagan, C. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125 (1992).
19.Callahan, M. P. et al. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proceedings of the National Academy of Sciences 108, 1399513998 (2011).
20.Sephton, M. A. Organic compounds in carbonaceous meteorite. Natural Product Reports 19, 292311 (2002).
21.Brownlee, D. E. The origin and properties of dust impacting the Earth. In Accretion of Extraterrestrial Matter throughout Earth’s History (Springer, 2001), pp. 112.
22.Pizzarello, S. and Shock, E. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harbor Perspectives in Biology 2, a002105 (2010).