Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T04:18:03.162Z Has data issue: false hasContentIssue false

Structural Heart Disease in the Fetus

from Section 2: - Fetal Disease: Pathogenesis and Treatment

Published online by Cambridge University Press:  21 October 2019

Mark D. Kilby
Affiliation:
University of Birmingham
Anthony Johnson
Affiliation:
University of Texas Medical School at Houston
Dick Oepkes
Affiliation:
Leids Universitair Medisch Centrum
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Fetal Therapy
Scientific Basis and Critical Appraisal of Clinical Benefits
, pp. 110 - 165
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Poelmann, RE, Gittenberger-de Groot, AC, Biermans, MWM, Dolfing, AI, Jagessar, A, van Hattum, S, et al. Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. Evodevo; 2017; 8: 9.CrossRefGoogle ScholarPubMed
DeRuiter, MC, Poelmann, RE, VanderPlas-de Vries, I, Mentink, MM, Gittenberger-de Groot, AC. The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol (Berl). 1992; 185: 461–73.Google Scholar
Buckingham, M, Meilhac, S, Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6: 826–35.Google Scholar
Cai, CL, Liang, X, Shi, Y, Chu, PH, Pfaff, SL, Chen, J, Evans, S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5: 877–89.Google Scholar
de la Cruz, M, Sanchez-Gomez, C, Palomino, MA. The primitive cardiac regions in the straight tube heart (Stage 9-) and their anatomical expression in the mature heart: an experimental study in the chick heart. J Anat. 1989; 165: 121–31.Google Scholar
Miquerol, L, Kelly, RG. Organogenesis of the vertebrate heart. Wiley Interdiscip Rev Dev Biol. 2013; 2: 1729.Google Scholar
Kirby, ML, Gale, TF, Stewart, DE. Neural crest cells contribute to normal aorticopulmonary septation. Science. 1983; 220: 1059–61.Google Scholar
Bergwerff, M, Verberne, ME, DeRuiter, MC, Poelmann, RE, Gittenberger-de Groot, AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res. 1998; 82: 221–31.Google Scholar
Farrell, MJ, Burch, JL, Wallis, K, Rowley, L, Kumiski, D, Stadt, H, Godt, RE, Creazzo, TL, Kirby, ML. FGF-8 in the ventral pharynx alters development of myocardial calcium transients after neural crest ablation. J Clin Invest. 2001; 107: 1509–17.CrossRefGoogle ScholarPubMed
Lindsay, EA, Vitelli, F, Su, H, Morishima, M, Huynh, T, Pramparo, T, Jurecic, V, Ogunrinu, G, Sutherland, HF, Scambler, PJ, Bradley, A, Baldini, A. Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice. Nature. 2001; 410: 97101.Google Scholar
Poelmann, RE, Mikawa, T, Gittenberger-de Groot, AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn. 1998; 212: 373–84.Google Scholar
Poelmann, RE, Gittenberger-de Groot, AC. A dual pathway to the heart links neural crest to in- and outflow tract septation and to differentiation of the conduction system. Anat Embryol. 2000; 231–5.Google Scholar
Gurjarpadhye, A, Hewett, KW, Justus, C, Wen, X, Stadt, H, Kirby, ML, Sedmera, D, Gourdie, RG. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol. 2007; 292: H1291–300.CrossRefGoogle ScholarPubMed
Bax, NA, Bleyl, SB, Gallini, R, Wisse, LJ, Hunter, J, van Oorschot, AAM, Mahtab, EAF, Lie-Venema, H, Goumans, M-J, Betsholtz, C, Gittenberger-de Groot, AC. Cardiac malformations in Pdgfralpha mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn. 2010; 239: 2307–17.Google Scholar
Kruithof, BP, van Wijk, B, Somi, S, Kruithof-de Julio, M, Pérez Pomares, JM, Weesie, F, Wessels, A, Moorman, AF, van den Hoff, MJ. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006; 295: 507–22.Google Scholar
Pérez-Pomares, JM, Phelps, A, Sedmerova, M, Carmona, R, González-Iriarte, M, Muñoz-Chápuli, R, Wessels, A. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol. 2002; 247: 307–26.Google Scholar
Gittenberger-de Groot, AC, Winter, EM, Bartelings, MM, Goumans, MJ, DeRuiter, MC, Poelmann, RE. The arterial and cardiac epicardium in development, disease and repair. Differentiation. 2012 ; 84: 4153.Google Scholar
Gittenberger-de Groot, AC, Vrancken Peeters, MP, Mentink, MM, Gourdie, RG, Poelmann, RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82: 1043–52.Google Scholar
Lie-Venema, H, van den Akker, NM, Bax, NA, Winter, EM, Maas, S, Kekarainen, T, Hoeben, RC, deRuiter, MC, Poelmann, RE, Gittenberger-de Groot, AC. Origin, fate, and function of epicardium-derived cells (EPCDs) in normal and abnormal cardiac development. ScientificWorldJournal. 2007; 7: 1777–98.CrossRefGoogle Scholar
Red-Horse, K, Ueno, H, Weissman, IL, Krasnow, MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010; 464: 549–53.CrossRefGoogle ScholarPubMed
Palmquist-Gomes, P, Guadix, JA, Pérez-Pomares, JM. Avian embryonic coronary arterio-venous patterning involves the contribution of different endothelial and endocardial cell populations. Dev Dyn. 2018; 247: 686–98.Google Scholar
Tian, X, Hu, T, He, L, Zhang, H, Huang, X, Poelmann, RE, Liu, W, Yang, Z, Yan, Y, Pu, WT, Zhou, B. Peritruncal coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLoS One. 2013; 8: e80857.CrossRefGoogle ScholarPubMed
Zhou, B, Ma, Q, Rajagopal, S, Wu, SM, Domian, I, Rivera-Feliciano, J, Jiang, D, von Gise, A, Ikeda, S, Chien, KR, Pu, WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454: 109–13.CrossRefGoogle Scholar
Gittenberger-de Groot, AC, Winter, EM, Poelmann, RE. Epicardium-derived cells (EPDCs) in development, cardiac disease and repair of ischemia. J Cell Mol Med. 2010; 14: 1056–60.Google Scholar
Goumans, MJ, de Boer, TP, Smits, AM, van Laake, LW, van Vliet, P, Metz, CH, et al. TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res. 2007; 1: 138–49.Google ScholarPubMed
Winter, EM, Van Oorschot, AA, Hogers, B, van der Graaf, LM, Doevendans, PA, Poelmann, RE, Atsma, DE, Gittenberger-de Groot, AC, Goumans, MJ. A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail. 2009; 2: 643–53.Google Scholar
van Vliet, P, Smits, AM, de Boer, TP, Korfage, TH, Metz, CH, Roccio, M, van der Heyden, MA, van Veen, TA, Sluijter, JP, Doevendans, PA, Goumans, MJ. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med. 2010; 14: 861–70.Google Scholar
Poelmann, RE, Jongbloed, MR, Gittenberger-de Groot, AC. Pitx2: a challenging teenager. Circ Res. 2008; 102: 749–51.Google Scholar
Franco, D, Campione, M. The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med. 2003; 13: 157–63.Google Scholar
Manasek, FJ, Monroe, RG. Early cardiac morphogenesis is independent of function. Dev Biol. 1972; 27: 584–8.CrossRefGoogle ScholarPubMed
Bouman, HG, Broekhuizen, ML, Baasten, AM, Gittenberger-de Groot, AC, Wenink, AC. Spectrum of looping disturbances in stage 34 chicken hearts after retinoic acid treatment. Anat Rec. 1995; 243: 101–8.Google Scholar
Blom, NA, Gittenberger-de Groot, AC, DeRuiter, MC, Poelmann, RE, Mentink, MM, Ottenkamp, J. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation. 1999; 99: 800–6.CrossRefGoogle ScholarPubMed
Gittenberger-de Groot, AC, Calkoen, EE, Poelmann, RE, Bartelings, MM, Jongbloed, MR. Morphogenesis and molecular considerations on congenital cardiac septal defects. Ann Med. 2014; 46: 640–52.Google Scholar
Scherptong, RW, Jongbloed, MR, Wisse, LJ, Vicente-Steijn, R, Bartelings, MM, Poelmann, RE, Schalij, MJ, Gittenberger-de Groot, AC. Morphogenesis of outflow tract rotation during cardiac development: the pulmonary push concept. Dev Dyn. 2012; 241: 1413–22.Google Scholar
Bartelings, MM, Gittenberger-de Groot, AC, Wenink, ACG, et al. The morphogenesis of common arterial trunk reconsidered. Recent and classical views. Cardia Selectief. 1992; 5: 10-10.Google Scholar
Conway, SJ, Bundy, J, Chen, J, Dickman, E, Rogers, R, Will, BM. Decreased neural crest stem cell expansion is responsible for the conotruncal heart defects within the splotch (Sp(2H))/Pax3 mouse mutant. Cardiovasc Res. 2000; 47: 314–28.CrossRefGoogle ScholarPubMed
Kirby, ML, Waldo, KL. Role of neural crest in congenital heart disease. Circulation. 1990; 82: 332–40.Google Scholar
Baardman, ME, Zwier, MV, Wisse, LJ, Gittenberger-de Groot, AC, Kerstjens-Frederikse, WS, Hofstra, RM, et al. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development. Dis Model Mech. 2016; 9: 413–25.Google Scholar
Bogers, AJ, Bartelings, MM, Bökenkamp, R, Stijnen, T, van Suylen, RJ, Poelmann, RE, Gittenberger-de Groot, AC. Common arterial trunk, uncommon coronary arterial anatomy. J Thorac Cardiovasc Surg. 1993; 106: 1133–7.CrossRefGoogle ScholarPubMed
Gittenberger-de Groot, AC, Bartelings, MM, Bogers, AJJC, Boot, MJ, Poelmann, RE. The embryology of the common arterial trunk. Progr Pediatr Cardiol. 2002; 15: 18.CrossRefGoogle Scholar
Van Den Akker, NM, Molin, DG, Peters, PP, Maas, S, Wisse, LJ, van Brempt, R, et al. Tetralogy of Fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res. 2007; 100: 842–9.CrossRefGoogle ScholarPubMed
Molin, DG, Roest, PA, Nordstrand, H, Wisse, LJ, Poelmann, RE, Eriksson, UJ, Gittenberger-de Groot, AC. Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol. 2004; 70: 927–38.CrossRefGoogle ScholarPubMed
Bartram, U, Molin, DG, Wisse, LJ, Mohamad, A, Sanford, LP, Doetschman, T, Speer, CP, Poelmann, RE, Gittenberger-de Groot, AC. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGFß2-knockout mice. Circulation. 2001; 103: 2745–52.CrossRefGoogle ScholarPubMed
Jenkins, SJ, Hutson, DR, Kubalak, SW. Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Dev Dyn. 2005; 233: 1091–101.CrossRefGoogle ScholarPubMed
Hogers, B, DeRuiter, MC, Gittenberger-de Groot, AC, Poelmann, RE. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res. 1997; 80: 473–81.Google Scholar
Van Loo, PF, Mahtab, EA, Wisse, LJ, Hou, J, Grosveld, F, Suske, G, Philipsen, S, Gittenberger-de Groot, AC. Transcription Factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol. 2007; 27: 8571–82.Google Scholar
Gittenberger-de Groot, AC, Vrancken Peeters, MP, Bergwerff, M, Mentink, MM, Poelmann, RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87: 969–71.CrossRefGoogle ScholarPubMed
Nakajima, Y, Morishima, M, Nakazawa, M, Momma, K. Inhibition of outflow cushion mesenchyme formation in retinoic acid-induced complete transposition of the great arteries. Cardiovasc Res. 1996; 31: E77–85.Google Scholar
Moazzen, H, Lu, X, Ma, NL, Velenosi, TJ, Urquhart, BL, Wisse, LJ, Gittenberger-de Groot, AC, Feng, Q. N-Acetylcysteine prevents congenital heart defects induced by pregestational diabetes. Cardiovasc Diabetol. 2014; 18: 1346.Google Scholar
Blom, NA, Ottenkamp, J, Jongeneel, TH, DeRuiter, MC, Gittenberger-de Groot, AC. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol. 2005; 26: 338–43.CrossRefGoogle ScholarPubMed
Benson, DW, Silberbach, GM, Kavanaugh-McHugh, A, Cottrill, C, Zhang, Y, Riggs, S, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999; 104: 1567–73.Google Scholar
Moskowitz, IP, Kim, JB, Moore, ML, Wolf, CM, Peterson, MA, Shendure, J, Nobrega, MA, Yokota, Y, Berul, C, Izumo, S, Seidman, JG, Seidman, CE. A molecular pathway including Id2, Tbx5, and Nkx2–5 required for cardiac conduction system development. Cell. 2007; 129: 1365–76.Google Scholar
Blaschke, RJ, Hahurij, ND, Kuijper, S, Just, S, Wisse, LJ, Deissler, K, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 2007; 115: 1830–8.Google Scholar
Barlow, GM, Chen, X-N, Shi, ZY, Lyons, GE, Kurnit, DM, Celle, L, et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med. 2001; 3: 91101.CrossRefGoogle Scholar
Blom, NA, Ottenkamp, J, Wenink, AG, Gittenberger-de Groot, AC. Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. Am J Cardiol. 2003; 91: 180–4.Google Scholar
Mahtab, EA, Wijffels, MC, van den Akker, NM, Hahurij, ND, Lie-Venema, H, Wisse, LJ, et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008; 237: 847–57.CrossRefGoogle ScholarPubMed
Steimle, JD, Moskowitz, IP. TBX5: A Key Regulator of Heart Development. Curr Top Dev Biol. 2017; 122: 195221.Google Scholar
Hinton, RB Jr., Martin, LJ, Tabangin, ME, Mazwi, ML, Cripe, LH, Benson, DW. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007; 50: 1590–5.CrossRefGoogle ScholarPubMed
Wenink, AC, Gittenberger-de Groot, AC, Brom, AG. Developmental considerations of mitral valve anomalies. Int J Cardiol. 1986; 11: 8598.CrossRefGoogle ScholarPubMed
Elzenga, N, Gittenberger-de Groot, AC. Coarctation and related aortic arch anomalies in hypoplastic left heart syndrome. Int J Cardiol. 1985; 8: 379–89.Google Scholar
Sedmera, D, Pexieder, T, Rychterova, V, Hu, N, Clark, EB. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat Rec. 1999; 254: 238–52.Google Scholar
Sizarov, A, Boudjemline, Y. Valve Interventions in utero: understanding the timing, indications, and approaches. Can J Cardiol. 2017; 33: 1150–8.Google Scholar
Bartram, U, Bartelings, MM, Kramer, HH, Gittenberger-de Groot, AC. Congenital polyvalvular disease: a review. Pediatr Cardiol. 2001; 22: 93101.Google Scholar
Garg, V, Muth, AN, Ransom, JF, Schluterman, MK, Barnes, R, King, IN, Grossfeld, PD, Srivastava, D. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437: 270–4.Google Scholar
Grewal, N, DeRuiter, MC, Jongbloed, MR, Goumans, MJ, Klautz, RJ, Poelmann, RE, Gittenberger-de Groot, AC. Normal and abnormal development of the aortic wall and valve: correlation with clinical entities. Neth Heart J. 2014; 22: 363–9.CrossRefGoogle Scholar
Fernández, B, Durán, AC, Fernández-Gallego, T, Fernández, MC, Such, M, Arqué, JM, Sans-Coma, V. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol. 2009; 54: 2312–18.Google Scholar
Gittenberger-de Groot, AC, Tennstedt, C, Chaoui, R, Lie-Venema, H, Sauer, U, Poelmann, RE. Ventriculo coronary arterial communications (VCAC) and myocardial sinusoids in hearts with pulmonary artresia with intact ventricular septum: two different diseases. Progr Pediatr Cardiol. 2001; 13: 157–64.Google Scholar
Chaoui, R, Tennstedt, C, Göldner, B, Bollmann, R. Prenatal diagnosis of ventriculo-coronary communications in a second-trimester fetus using transvaginal and transabdominal color Doppler sonography. Ultrasound Obstet Gynecol. 1997; 9: 194–7.Google Scholar
Oosthoek, PW, Wenink, ACG, Macedo, AJ, Gittenberger-de Groot, AC. The parachute-like asymmetric mitral valve and its two papillary muscles. J Thorac Cardiovasc Surg. 1997; 114: 915.Google Scholar
Wu, B, Wang, Y, Lui, W, Langworthy, M, Tompkins, KL, Hatzopoulos, AK, Baldwin, HS, Zhou, B. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res. 2011; 109: 183–92.Google Scholar
Lie-Venema, H, Eralp, I, Markwald, RR, van den Akker, NM, Wijffels, MC, Kolditz, DP, et al. Periostin expression by epicardium-derived cells (EPDCs) is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation. 2008; 76: 809–19.Google Scholar
Jongbloed, MR, Vicente Steijn, R, Hahurij, ND, Kelder, TP, Schalij, MJ, Gittenberger-de Groot, AC, Blom, NA. Normal and abnormal development of the cardiac conduction system; implications for conduction and rhythm disorders in the child and adult. Differentiation. 2012; 84: 131–48.Google Scholar
Haïssaguerre, M, Jaïs, P, Shah, DC, Takahashi, A, Hocini, M, Quiniou, G, Garrigue, S, Le Mouroux, A, Le Métayer, P, Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New Engl J Med. 1998; 339: 659–66.Google Scholar
Syeda, F, Kirchhof, P, Fabritz, L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol. 2017; 595: 4019–26.Google Scholar

References

van der Linde, D, Konings, EE, Slager, MA, Witsenburg, M, Helbing, WA, Takkenberg, JJ, Roos-Hesselink, JW. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58: 2241–7.Google Scholar
Ransom, J, Srivastava, D. The genetics of cardiac birth defects. Semin Cell Dev Biol. 2007; 18: 132–9.CrossRefGoogle ScholarPubMed
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 1890–900.Google Scholar
Triedman, JK, Newburger, JW. Trends in Congenital Heart Disease, the next decade. Circulation. 2016; 133: 2716–33.Google Scholar
Huang, JB, Liu, YL, Sun, PW, Lv, XD, Du, M, Fan, XM. Molecular mechanisms of congenital heart disease. Cardiovasc Pathol. 2010; 19: e183–93.Google Scholar
Cai, GJ, Sun, XX, Zhang, L, Hong, Q. Association between maternal body mass index and congenital heart defects in offspring: a systematic review. Am J Obstet Gynecol. 2014; 211: 91117.Google Scholar
Botto, LD, Panichello, JD, Brown, ML, Krikov, S, Feldkamp, ML, Lammer, E, et al. Congenital heart defects after maternal fever. Am J Obstet Gynecol. 2014; 210: e1–359. e11.Google Scholar
Jenkins, KJ, Correa, A, Feinstein, JA, Botto, L, Britt, AE, Daniels, SR, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation. 2007; 115: 29953014.Google Scholar
Zhu, H, Kartiko, S, Finnell, RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet. 2009; 75: 409–23.Google Scholar
Nora, JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation. 1968; 38: 604–17.Google Scholar
Schott, JJ, Benson, DW, Basson, CT, Pease, W, Silberbach, GM, Moak, JP, et al. Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science. 1998; 281: 108–11.Google Scholar
Gebbia, M, Ferrero, GB, Pilia, G, Bassi, MT, Aylsworth, A, Penman-Splitt, M, et al. X-linked situs abnormalities result from mutations in ZIC3. Nat Genet. 1997; 17: 305–8.Google Scholar
Gong, W, Gottlieb, S, Collins, J, Blescia, A, Dietz, H, Goldmuntz, E, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects. J Med Genet. 2001; 38: E45.Google Scholar
Garg, V, Kathiriya, IS, Barnes, R, Schluterman, MK, King, IN, Butler, CA, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424: 443–7.Google Scholar
Pizzuti, A, Sarkozy, A, Newton, AL, Conti, E, Flex, E, Digilio, MC, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat. 2003; 22: 372–7.Google Scholar
Sperling, S, Grimm, CH, Dunkel, I, Mebus, S, Sperling, HP, Ebner, A, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005; 26: 575–82.Google Scholar
Reamon-Buettner, SM, Ciribilli, Y, Inga, A, Borlak, J. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet. 2008; 17: 1397–405.CrossRefGoogle ScholarPubMed
Wang, B, Yan, J, Peng, Z, Wang, J, Liu, S, Xie, X, Ma, X. Teratocarcinoma-derived growth factor 1 (TDGF1) sequence variants in patients with congenital heart defect. Int J Cardiol. 2011; 146: 225–7.Google Scholar
Kosaki, R, Gebbia, M, Kosaki, K, Lewin, M, Bowers, P, Towbin, JA, Casey, B. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet. 1999; 82: 70–6.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Kosaki, K, Bassi, MT, Kosaki, R, Lewin, M, Belmont, J, Schauer, G, Casey, B. Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet. 1999; 64: 712–21.Google Scholar
Bamford, RN, Roessler, E, Burdine, RD, Saplakoğlu, U, dela Cruz, J, Splitt, M, et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet. 2000; 26: 365–9.CrossRefGoogle ScholarPubMed
Garg, V, Muth, AN, Ransom, JF, Schluterman, MK, Barnes, R, King, IN, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437: 270–4.Google Scholar
Robinson, SW, Morris, CD, Goldmuntz, E, Reller, MD, Jones, MA, Steiner, RD, Maslen, CL. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet. 2003; 72: 1047–52.Google Scholar
Karkera, JD, Lee, JS, Roessler, E, Banerjee-Basu, S, Ouspenskaia, MV, Mez, J, et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet. 2007; 81: 987–94.Google Scholar
Mohapatra, B, Casey, B, Li, H, Ho-Dawson, T, Smith, L, Fernbach, SD, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet. 2009; 18: 861–71.Google Scholar
Britz-Cunningham, SH, Shah, MM, Zuppan, CW, Fletcher, WH. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995; 332: 1323–9.Google Scholar
Li, DY, Toland, AE, Boak, BB, Atkinson, DL, Ensing, GJ, Morris, CA, Keating, MT. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet. 1997; 6: 1021–8.Google Scholar
Muncke, N, Jung, C, Rüdiger, H, Ulmer, H, Roeth, R, Hubert, A, et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation. 2003; 108: 2843–50.Google Scholar
Thienpont, B, Zhang, L, Postma, AV, Breckpot, J, Tranchevent, LC, Van Loo, P, et al. Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet. 2010; 86: 839–49.CrossRefGoogle ScholarPubMed
Burn, J, Brennan, P, Little, J, Holloway, S, Coffey, R, Somerville, J, et al. Recurrence risks in offspring of adults with major heart defects: results from first cohort of British collaborative study. Lancet. 1998; 351: 311–16.Google Scholar
Grobman, W, Pergament, E. Isolated hypoplastic left heart syndrome in three siblings. Obstet Gynecol. 1996; 88: 673–5.Google Scholar
Pease, WE, Nordenberg, A, Ladda, RL. Familial atrial septal defect with prolonged atrioventricular conduction. Circulation. 1976; 53: 759–62.Google Scholar
Ferencz, C, Boughman, JA, Neill, CA, Brenner, JI, Perry, LW. Congenital cardiovascular malformations: questions on inheritance. Baltimore-Washington Infant Study Group. J Am Coll Cardiol. 1989; 14: 756–63.Google Scholar
Corone, P, Bonaiti, C, Feingold, J, Fromont, S, Berthet-Bondet, D. Familial congenital heart disease: how are the various types related? Am J Cardiol. 1983; 51: 942–5.Google Scholar
Wessels, MW, Berger, RM, Frohn-Mulder, IM, Roos-Hesselink, JW, Hoogeboom, JJ, Mancini, GS, et al. Autosomal dominant inheritance of left ventricular outflow tract obstruction. Am J Med Genet A. 2005; 134A: 171–9.Google Scholar
Musewe, NN, Alexander, DJ, Teshima, I, Smallhorn, JF, Freedom, RM. Echocardiographic evaluation of the spectrum of cardiac anomalies associated with Trisomy 13 and Trisomy 18. J Am Coll Cardiol. 1990; 15: 673–7.Google Scholar
van Egmond, H, Orye, E, Praet, M, Coppens, M, Devloo-Blancquaert, A. Hypoplastic left heart syndrome and 45X karyotype. Br Heart J. 1988; 60: 6971.Google Scholar
van Bon, BW, Mefford, HC, Menten, B, Koolen, DA, Sharp, AJ, Nillesen, WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009; 46: 511–23.CrossRefGoogle ScholarPubMed
Tartaglia, M, Mehler, EL, Goldberg, R, Zampino, G, Brunner, HG, Kremer, H, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001; 29: 465–8.Google Scholar
Zhao, Y, Ransom, JF, Li, A, Vedantham, V, von Drehle, M, Muth, AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129: 303–17.Google Scholar
Hearn, T, Renforth, GL, Spalluto, C, Hanley, NA, Piper, K, Brickwood, S, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet. 2002; 31: 7983.Google Scholar
Oda, T, Elkahloun, AG, Pike, BL, Okajima, K, Krantz, ID, Genin, A, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet. 1997; 16: 235–42.Google Scholar
Newbury-Ecob, RA, Leanage, R, Raeburn, JA, Young, ID. Holt-Oram syndrome: a clinical genetic study. J Med Genet. 1996; 33: 300–7.Google Scholar
Brassington, AM, Sung, SS, Toydemir, RM, Le, T, Roeder, AD, Rutherford, AE, et al. Expressivity of Holt-Oram syndrome is not predicted by TBX5 genotype. Am J Hum Genet. 2003; 73: 7485.Google Scholar
McElhinney, DB, Geiger, E, Blinder, J, Benson, DW, Goldmuntz, E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003; 42: 1650–5.CrossRefGoogle ScholarPubMed
Carey, AH, Kelly, D, Halford, S, Wadey, R, Wilson, D, Goodship, J, et al. Molecular genetic study of the frequency of monosomy 22q11 in DiGeorge syndrome. Am J Hum Genet. 1992; 51: 964–70.Google Scholar
Mefford, HC, Sharp, AJ, Baker, C, Itsara, A, Jiang, Z, Buysse, K, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med. 2008; 359: 1685–99.Google Scholar
Hillman, K, DeVita, M, Bellomo, R, Chen, J. Meta-analysis for rapid response teams. Arch Intern Med. 2010; 170: 996–7; author reply 997.Google Scholar
D’Amours, G, Kibar, Z, Mathonnet, G, Fetni, R, Tihy, F, Désilets, V, et al. Whole-genome array CGH identifies pathogenic copy number variations in fetuses with major malformations and a normal karyotype. Clin Genet. 2011; 81: 128–41.Google Scholar
Lazier, J, Fruitman, D, Lauzon, J, Bernier, F, Argiropoulos, B, Chernos, J, et al. Prenatal Array Comparative Genomic Hybridization in Fetuses With Structural Cardiac Anomalies. J Obstet Gynaecol Can. 2016; 38: 619–26.Google Scholar
Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, et al. Initial sequencing and analysis of the human genome. Nature. 2001; 409: 860921.Google Scholar
Snyder, M, Du, J, Gerstein, M. Personal genome sequencing: current approaches and challenges. Genes Dev. 2010; 24: 423–31.Google Scholar

References

McGovern, E, Sands, AJ. Perinatal management of major congenital heart disease. Ulster Med J. 2014; 83: 135–9.Google Scholar
Jorgensen, M, McPherson, E, Zaleski, C, Shivaram, P, Cold, C. Stillbirth: the heart of the matter. Am J Med Genet A. 2014; 164A: 691–9.Google Scholar
Dolk, H, Loane, M, Garne, E, European Surveillance of Congenital Anomalies (EUROCAT) Working Group. Congenital heart defects in Europe: prevalence and perinatal mortality, 2000 to 2005. Circulation. 2011; 123: 841–9.Google Scholar
Hoffman, JI, Kaplan, S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39: 1890–900.Google Scholar
Chaix, MA, Andelfinger, G, Khairy, P. Genetic testing in congenital heart disease: a clinical approach. World J Cardiol. 2016; 8: 180–91.Google Scholar
Russell, MW, Chung, WK, Kaltman, JR, Miller, TA. Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes. J Am Heart Assoc. 2018; 7: e006906.Google Scholar
Weissberg, P (ed.). Children and Young People Statistics 2013. London: British Heart Foundation, 2013.Google Scholar
Fahed, AC, Nemer, GM. Genetic Causes of Syndromic and Non-syndromic Congenital Heart Disease. In Cooper, D and Chen, J-M, eds., Mutations in Human Genetic Disease. London: IntechOpen, 2012.Google Scholar
Fahed, AC, Gelb, BD, Seidman, JG, Seidman, CE. Genetics of congenital heart disease: the glass half empty. Circ Res. 2013; 112: 707–20.Google Scholar
Leatherbury, L, Berul, CI. Genetics of congenital heart disease: is the glass now half-full? Circ Cardiovasc Genet. 2017; 10: e001746.Google Scholar
Waardenberg, AJ, Ramialison, M, Bouveret, R, Harvey, RP. Genetic networks governing heart development. Cold Spring Harb Perspect Med. 2014; 4: a013839.Google Scholar
Moon, A. Mouse models of congenital cardiovascular disease. Curr Top Dev Biol. 2008; 84: 171248.Google Scholar
Dickinson, ME, Flenniken, AM, Ji, X, Teboul, L, Wong, MD, White, JK, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016; 537: 508514.Google Scholar
Wilson, R, Geyer, SH, Reissig, L, Rose, J, Szumska, D, Hardman, E, et al. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice. Wellcome Open Res. 2016; 1: 1.Google Scholar
Bellmann, K, Perrot, A, Rickert-Sperling, S. Human Genetics of Ventricular Septal Defect. In Rickert-Sperling, S, Kelly, R, Driscoll, D, eds., Congenital Heart Diseases: The Broken Heart. Vienna: Springer, 2016.Google Scholar
Penny, DJ, Vick, GW 3rd. Ventricular septal defect. Lancet. 2011; 377: 1103–12.Google Scholar
Schoenwolf, GC, Bleyl, S, Brauer, P, Francis-West, P. Larsen’s Human Embryology, 5th edn. Philadelphia: Churchill-Livingstone, 2014.Google Scholar
Geyer, SH, Reissig, L, Rose, J, Wilson, R, Prin, F, Szumska, D, et al. A staging system for correct phenotype interpretation of mouse embryos harvested on embryonic day 14 (E14.5). J Anat. 2017; 230: 710–19.Google Scholar
Geyer, SH, Reissig, LF, Hüsemann, M, Höfle, C, Wilson, R, Prin, F, et al. Morphology, topology and dimensions of the heart and arteries of genetically normal and mutant mouse embryos at stages S21-S23. J Anat. 2017; 231: 600614.Google Scholar
Webb, G, Gatzoulis, MA. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006; 114: 1645–53.Google Scholar
Khan, R, Jay, PY. Human Genetics of Atrial Septal Defect. In Rickert-Sperling, S, Kelly, R, Driscoll, D, eds., Congenital Heart Diseases: The Broken Heart. Vienna: Springer, 2016.Google Scholar
Lin, CJ, Lin, CY, Chen, CH, Zhou, B, Chang, CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development. 2012; 139: 3277–99.Google Scholar
Anderson, RH, Webb, S, Brown, NA, Lamers, W, Moorman, A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart. 2003; 89: 1110–18.Google Scholar
Shaheen, R, Rahbeeni, Z, Alhashem, A, Faqeih, E, Zhao, Q, Xiong, Y, et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 2014; 94: 898904.Google Scholar
Acuna-Hidalgo, R, Schanze, D, Kariminejad, A, Nordgren, A, Kariminejad, MH, Conner, P, et al. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 2014; 95: 285–93.Google Scholar
Martin, PS, Kloesel, B, Norris, RA, Lindsay, M, Milan, D, Body, SC. Embryonic Development of the Bicuspid Aortic Valve. J Cardiovasc Dev Dis. 2015; 2: 248–72.Google Scholar
Mathieu, P, Bossé, Y, Huggins, GS, Della Corte, A, Pibarot, P, Michelena, HI, et al. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. J Pathol Clin Res. 2015; 1: 195206.Google Scholar
Combs, MD, Yutzey, KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009; 105: 408–21.Google Scholar
Freeze, SL, Landis, BJ, Ware, SM, Helm, BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns. 2016; 25: 1171–8.Google Scholar
Hinton, RB, Martin, LJ, Rame-Gowda, S, Tabangin, ME, Cripe, LH, Benson, DW. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol. 2009; 53: 1065–71.Google Scholar

References

Senat, MV, Deprest, J, Boulvain, M, Paupe, A, Winer, N, Ville, Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004; 351: 136144.Google Scholar
Szwast, A, Tian, Z, McCann, M, Donaghue, D, Rychik, J. Vasoreactive response to maternal hyperoxygenation in the fetus with hypoplastic left heart syndrome. Circ Cardiovasc Imaging. 2010; 3: 172–8.Google Scholar
Schidlow, DN, Donofrio, MT. Prenatal maternal hyperoxygenation testing and implications for critical care delivery planning among fetuses with congenital heart disease: early experience. Am J Perinatol. 2018; 35: 1623.Google ScholarPubMed
Kohl, T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Pediatr Cardiol. 2010; 31: 250–63.CrossRefGoogle ScholarPubMed
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zhang, M, Zhao, Y, et al. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016; 6: 39304.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zang, M, Wang, T, Zhou, Q. Sustained chronic maternal hyperoxygenation increases myocardial deformation in fetuses with a small aortic isthmus at risk for coarctation. J Am Soc Echocardiogr. 2017; 30; 9921000.Google Scholar
Maxwell, D, Allan, L, Tynan, MJ. Balloon dilatation of the aortic valve in the fetus: a report of two cases. Br Heart J. 1991; 65: 256–8.Google Scholar
Delius, RE, Rademecker, MA, de Leval, MR, Elliott, MJ, Stark, J. Is a high-risk biventricular repair always preferable to conversion to a single ventricle repair? J Thorac Cardiovasc Surg. 1996; 112: 1561–8; discussion 1568–9.Google Scholar
Burch, M, Kaufman, L, Archer, N, Sullivan, I. Persistent pulmonary hypertension late after neonatal aortic valvotomy: a consequence of an expanded surgical cohort. Heart. 2004; 90: 918920.Google Scholar
Emani, SM, Bacha, EA, McElhinney, DB, Marx, GR, Tworetzky, W, Pigula, FA, del Nido, PJ. Primary left ventricular rehabilitation is effective in maintaining two-ventricle physiology in the borderline left heart. J Thorac Cardiovasc Surg. 2009; 138: 1276–82.Google Scholar
Tulzer, G, Arzt, W, Franklin, RC, Loughna, PV, Mair, R, Gardiner, HM. Pulmonary valvuloplasty for critical pulmonary stenosis or atresia with intact septum. Lancet. 2002; 360: 1567–8.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124; e510–18.CrossRefGoogle ScholarPubMed
Marshall, AC, van der Velde, ME, Tworetzky, W, Gomez, CA, Wilkins-Haug, L, Benson, CB, et al. Creation of an atrial septal defect in utero for fetuses with hypoplastic left heart syndrome and intact or highly restrictive atrial septum. Circulation. 2004; 110: 253–8.Google Scholar
Rychik, J, Rome, JJ, Collins, MH, DeCampli, WM, Spray, TL. The hypoplastic left heart syndrome with intact atrial septum: atrial morphology, pulmonary vascular histopathology and outcome. J Am Coll Cardiol. 1999; 34: 554–60.Google Scholar
Taylor, PV, Scott, JS, Gerlis, LM, Esscher, E, Scott, O. Maternal antibodies against fetal cardiac antigens in congenital complete heart block. N Engl J Med. 1986; 315: 667–72.Google Scholar
Eliasson, H, Sonesson, SE, Sharland, G, Granath, F, Simpson, JM, Carvalho, JS, et al. Isolated atrioventricular block in the fetus: a retrospective, multinational, multicenter study of 175 patients. Circulation. 2011; 124: 1919–26.Google Scholar
Lopes, LM, Tavares, GM, Damiano, AP, Lopes, MA, Aiello, VD, Schultz, R, Zugaib, M. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation. 2008; 118: 1268–75.CrossRefGoogle ScholarPubMed
Jaeggi, ET, Fouron, JC, Silverman, ED, Ryan, G, Smallhorn, J, Hornberger, LK. Transplacental fetal treatment improves the outcome of prenatally diagnosed complete atrioventricular block without structural heart disease. Circulation. 2004; 110: 1542–8.Google Scholar
Carpenter, RJ Jr., Strasburger, JF, Garson, A Jr., Smith, RT, Deter, RL, Engelhardt, HT Jr. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J Am Coll Cardiol. 1986; 8: 1434–6.Google Scholar
Walkinshaw, SA, Welch, CR, McCormack, J, Walsh, K. In utero pacing for fetal congenital heart block. Fetal Diagn Ther. 1994; 9: 183–5.Google Scholar
Assad, RS, Zielinsky, P, Kalil, R, Lima, G, Aramayo, A, Santos, A, et al. New lead for in utero pacing for fetal congenital heart block. J Thorac Cardiovasc Surg. 2003; 126: 300–2.Google Scholar
Bar-Cohen, Y, Loeb, GE, Pruetz, JD, Silka, MJ, Guerra, C, Vest, AN, Zhou, L, Chmait, RH. Preclinical testing and optimization of a novel fetal micropacemaker. Heart Rhythm. 2015; 12: 1683–90.Google Scholar
Co-Vu, J, Lopez-Colon, D, Vyas, HV, Weiner, N, DeGroff, C. Maternal hyperoxygenation: a potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiography. 2017; 34: 1822–33.Google Scholar
Kovacevic, A, Öhman, A, Tulzer, G, Herberg, U, Dangel, J, Carvalho, JS, et al. Fetal hemodynamic response to aortic valvuloplasty and postnatal outcome: a European multicenter study. Ultrasound Obstet Gynecol. 2018; 52: 221–9.Google Scholar
Gardiner, HM, Kovacevic, A, Tulzer, G, Sarkola, T, Herberg, U, Dangel, J, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound Obstet Gynecol. 2016; 48: 373–81.Google Scholar
Di Donato, RM, Jonas, RA, Lang, P, Rome, JJ, Mayer, JE Jr., Castaneda, AR. Neonatal repair of tetralogy of Fallot with and without pulmonary atresia. J Thorac Cardiovasc Surg. 1991; 101: 126–37.Google Scholar
Freud, LR, McElhinney, DB, Marshall, AC, Marx, GR, Friedman, KG, del Nido, PJ, et al. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation. 2014; 130: 638–45.Google Scholar
Axt-Fliedner, R, Kreiselmaier, P, Schwarze, A, Krapp, M, Gembruch, U. Development of hypoplastic left heart syndrome after diagnosis of aortic stenosis in the first trimester by early echocardiography. Ultrasound Obstet Gynecol. 2006; 28: 106–9.Google Scholar
Freud, LR, Moon-Grady, A, Escobar-Diaz, MC, Gotteiner, NL, Young, LT, McElhinney, DB, Tworetzky, W. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound Obstet Gynecol. 2015; 45: 326–32.Google Scholar
Matsui, H, Gardiner, HM. Fetal intervention for cardiac disease: the cutting edge of perinatal care. Semin Fetal Neonatal Med. 2007; 12: 482–9.Google Scholar
Reich, O, Tax, P, Marek, J, Rázek, V, Gilík, J, Tomek, V, et al. Long term results of percutaneous balloon valvuloplasty of congenital aortic stenosis: independent predictors of outcome. Heart. 2004; 90: 7076.Google Scholar
McElhinney, DB, Lock, JE, Keane, JF, Moran, AM, Colan, SD. Left heart growth, function, and reintervention after balloon aortic valvuloplasty for neonatal aortic stenosis. Circulation. 2005; 111: 451–8.Google Scholar
Ashburn, DA, McCrindle, BW, Tchervenkov, CI, Jacobs, ML, Lofland, GK, Bove, EL, et al. Outcomes after the Norwood operation in neonates with critical aortic stenosis or aortic valve atresia. J Thorac Cardiovasc Surg. 2003; 125: 1070–82.Google Scholar
Jacobs, JP, O’Brien, SM, Pasquali, SK, Jacobs, ML, Lacour-Gayet, FG, Tchervenkov, CI, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011; 92: 2184–91; discussion 2191–2.Google Scholar
Rasiah, SV, Ewer, AK, Miller, P, Wright, JG, Barron, DJ, Brawn, WJ, Kilby, MD. Antenatal perspective of hypoplastic left heart syndrome: 5 years on. Arch Dis Child Fetal Neonatal Ed. 2008; 93: F192–7.CrossRefGoogle Scholar
Daubeney, PE, Wang, D, Delany, DJ, Keeton, BR, Anderson, RH, Slavik, Z, Flather, M, Webber, SA, UK and Ireland Collaborative Study of Pulmonary Atresia with Intact Ventricular Septum. UK and Ireland collaborative study of pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg. 2005; 130: 1071.Google Scholar
Baba, K, Kotani, Y, Chetan, D, Chaturvedi, RR, Lee, KJ, Benson, LN, et al. Hybrid versus Norwood strategies for single-ventricle palliation. Circulation. 2012; 126 (Suppl. 1): S123–31.Google Scholar
Kovacevic, A, Roughton, M, Mellander, M, Öhman, A, Tulzer, G, Dangel, J, et al. Fetal aortic valvuloplasty: investigating institutional bias in surgical decision-making. Ultrasound Obstet Gynecol. 2014; 44: 538–44.Google Scholar
Arzt, W, Wertaschnigg, D, Veit, I, Klement, F, Gitter, R, Tulzer, G. Intrauterine aortic valvuloplasty in fetuses with critical aortic stenosis: Experience and results of 24 procedures. Ultrasound Obstet Gynecol. 2011; 37: 689–95.Google Scholar
McElhinney, DB, Marshall, AC, Wilkins-Haug, LE, Brown, DW, Benson, CB, Silva, V, et al. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation. 2009; 120: 1482–90.Google Scholar
Jaeggi, E, Renaud, C, Ryan, G, Chaturvedi, R. Intrauterine therapy for structural congenital heart disease: Contemporary results and Canadian experience. Trends Cardiovasc Med. 2016; 26: 639–46.Google Scholar
Pedra, SR, Peralta, CF, Crema, L, Jatene, IB, da Costa, RN, Pedra, CA. Fetal interventions for congenital heart disease in Brazil. Pediatr Cardiol. 2014; 35: 399405.Google Scholar
Galindo, A, Gómez-Montes, E, Gómez, O, Bennasar, M, Crispi, F, Herraiz, I, et al. Fetal aortic valvuloplasty: experience and results of two tertiary centers in Spain. Fetal Diagn Ther. 2017; 42: 262–70.Google Scholar
Moon-Grady, AJ, Morris, SA, Belfort, M, Chmait, R, Dangel, J, Devlieger, R, et al. International Fetal Cardiac Intervention Registry: A Worldwide Collaborative Description and Preliminary Outcomes. J Am Coll Cardiol. 2015; 66: 388–99.Google Scholar
Hunter, LE, Chubb, H, Miller, O, Sharland, G, Simpson, JM. Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention. Prenat Diagn. 2015; 35: 1176–81.Google Scholar
Roman, KS, Fouron, JC, Nii, M, Smallhorn, JF, Chaturvedi, R, Jaeggi, ET. Determinants of outcome in fetal pulmonary valve stenosis or atresia with intact ventricular septum. Am J Cardiol. 2007; 99: 699703.Google Scholar
Gardiner, HM, Belmar, C, Tulzer, G, Barlow, A, Pasquini, L, Carvalho, JS, et al. Morphological and functional predictors of eventual circulation in the fetus with pulmonary atresia or critical pulmonary stenosis with intact septum. J Am Coll Cardiol. 2008; 51: 1299–308.Google Scholar
Tulzer, A, Arzt, W, Gitter, R, Prandstetter, C, Grohmann, E, Mair, R, Tulzer, G. Immediate effects and outcomes after in-utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact septum or critical pulmonary stenosis. Ultrasound Obstet Gynecol. 2018; 52: 230–7.Google Scholar
Tworetzky, W, McElhinney, DB, Marx, GR, Benson, CB, Brusseau, R, Morash, D, et al. In utero valvuloplasty for pulmonary atresia with hypoplastic right ventricle: techniques and outcomes. Pediatrics. 2009; 124: e510–18.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Challman, M, Nguyen, M, Feagin, DK, et al. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016; 48: 365–72.Google Scholar
Wohlmuth, C, Wertaschnigg, D, Wieser, I, Arzt, W, Tulzer, G. Tissue Doppler imaging in fetuses with aortic stenosis and evolving hypoplastic left heart syndrome before and after fetal aortic valvuloplasty. Ultrasound Obstet Gynecol. 2016; 47: 608–15.Google Scholar
Tworetzky, W, Wilkins-Haug, L, Jennings, RW, van der Velde, ME, Marshall, AC, Marx, GR, et al. Balloon dilation of severe aortic stenosis in the fetus: potential for prevention of hypoplastic left heart syndrome: candidate selection, technique, and results of successful intervention. Circulation. 2004; 110: 2125–31.Google Scholar
Donofrio, MT, Moon-Grady, AJ, Hornberger, LK, Copel, JA, Sklansky, MS, Abuhamad, A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014; 129: 2183–242.Google Scholar
Jouannic, JM, Boudjemline, Y, Benifla, JL, Bonnet, D. Transhepatic ultrasound-guided cardiac catheterization in the fetal lamb. Circulation. 2005; 111: 736–41.Google Scholar
Kohl, T, Müller, A, Tchatcheva, K, Achenbach, S, Gembruch, U. Fetal transesophageal echocardiography: clinical introduction as a monitoring tool during cardiac intervention in a human fetus. Ultrasound Obstet Gynecol. 2005; 26: 780–5.Google Scholar

References

Gaynor, JW, Nord, AS, Wernovsky, G, Bernbaum, J, Solot, CB, Burnham, N, Zackai, E, Heagerty, PJ, Clancy, RR, Nicolson, SC, Jarvik, GP, Gerdes, M. Apolipoprotein E genotype modifies the risk of behavior problems after infant cardiac surgery. Pediatrics. 2009; 124: 241250.Google Scholar
Bellinger, DC, Newburger, JW, Wypij, D, Kuban, KC, duPlessis, AJ, Rappaport, LA. Behaviour at eight years in children with surgically corrected transposition: the Boston Circulatory Arrest Trial. Cardiol Young. 2009; 19: 8697.Google Scholar
Bellinger, DC, Wypij, D, duPlessis, AJ, Rappaport, LA, Jonas, RA, Wernovsky, G, Newburger, JW. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg. 2003; 126: 1385–96.Google Scholar
Wernovsky, G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young. 2006; 16 (Suppl. 1): 92104.Google Scholar
Yi, JJ, Tang, SX, McDonald-McGinn, DM, Calkins, ME, Whinaa, DA, Souders, MC, Zackai, EH, Goldmuntz, E, Gaynor, JW, Gur, RC, Emanuel, BS, Gur, RE. Contribution of congenital heart disease to neuropsychiatric outcome in school-age children with 22q11.2 deletion syndrome. Am J Med Genet. 2013; 165: 137–47.Google Scholar
Alsaied, T, Marino, BS, Esbensen, AJ, Anixt, JS, Epstein, JN, Cnota, JF. Does congenital heart disease affect neurodevelopmental outcomes in children with Down syndrome? Congenit Heart Dis. 2016; 11: 2633.Google Scholar
Visootsak, J, Mahle, WT, Kirshbom, PM, Huddleston, L, Caron-Besch, M, Ransom, M, Sherman, SL. Neurodevelopmental outcomes in children with Down syndrome and congenital heart defects. Am J Med Genet. 2011; 155: 2688–91.Google Scholar
Takashima, S, Becker, LE, Armstrong, DL, Chan, F. Abnormal neuronal development in the visual cortex of the human fetus and infant with Down’s syndrome. A quantitative and qualitative Golgi study. Brain Res. 1981; 225: 121.Google Scholar
Robin, NH, Taylor, CJ, McDonald-McGinn, DM, Zackai, EH, Bingham, P, Collins, KJ, et al. Polymicrogyria and deletion 22q11.2 sundrome: window to the etiology of a common cortical malformation. Am J Med Genet. 2006; 140: 2416–25.Google Scholar
Newburger, JW, Jonas, RA, Wernovsky, G, Wypij, D, Hickey, PR, Kuban, K, Farrell, DM, Holmes, GL, Helmers, SL, Constantinou, J, Carrazana, E. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. New Engl J Med. 1993; 329: 1057–64.Google Scholar
Bellinger, DC, Jonas, RA, Rappaport, LA, Wypij, D, Wernovsky, G, Kuban, KC, Barnes, PD, Holmes, GL, Hickey, PR, Strand, RD, Walsh, AZ. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypassNew Engl J Med. 1995; 332: 549–55.Google Scholar
Bellinger, DC, Wypij, D, Rivkin, MJ, DeMaso, DR, Robertson, RL, Dunbar-Masterson, C, Rappaport, LA, Wernovsky, G, Jonas, RA, Newburger, JW. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: neuropsychological assessment and structural brain imaging. Circulation. 2011; 124: 1361–69.Google Scholar
Wypij, D, Jonas, RA, Bellinger, DC, Del Nido, P, Mayer, JE, Bacha, EA, Forbess, JM, Pigula, F, Laussen, PC, Newburger, JW. The effect of hematocrit during hypothermic cardiopulmonary bypass in infant heart surgery: results from the combined Boston hematocrit trials. J Thorac Cardiovasc Surg. 2008; 135: 355–60.Google Scholar
Gaynor, JW, Stopp, C, Wypij, D, Andropoulos, DB, Atallah, J, Atz, AM, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics. 2015; 135: 816–25.Google Scholar
Marino, BS, Lipkin, PH, Newburger, JW, Peacock, G, Gerdes, M, Gaynor, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126: 1143–72.Google Scholar
Glauer, TA, Rorke, LB, Weinberg, PM, Clancy, RR. Acquired neuropathologic lesions associated with the hypoplastic left heart syndrome. Pediatrics. 1990; 85: 9911000.Google Scholar
Kinney, HC, Panigrahy, A, Newburger, JW, Jonas, RA, Sleeper, LA. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol. 2005; 110: 563–78.Google Scholar
Mahle, WT, Tavani, F, Zimmerman, RA, Nicolson, SC, Galli, KK, Gaynor, JW, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation. 2002; 106: I109–14.Google Scholar
Miller, SP, McQuillen, PS, Hamrick, S, Xu, D, Glidden, DV, Charlton, N, Karl, T, Azakie, A, Ferriero, DM, Barkovich, AJ, Vigneron, DB. Abnormal brain development in newborns with congenital heart disease. New Engl J Med. 2007; 357: 1928–38.Google Scholar
Peyvandi, S, Chau, V, Guo, T, Xu, D, Glass, HC, Synnes, A, Poskitt, K, Barkovich, AJ, Miller, SP, McQuillen, PS. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol. 2018; 71: 1986–96.Google Scholar
Licht, DJ, Shera, DM, Clancy, RR, Wernovsky, G, Montenegro, LM, Nicolson, SC, Zimmerman, RA, Spray, TL, Gaynor, JW, Vossough, A. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg. 2009; 137: 529–37.Google Scholar
Limperopoulos, C, Majnemer, A, Shevell, MI, Rosenblatt, B, Rohlicek, C, Tchervenkov, C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999; 103: 402–8.Google Scholar
Birca, A, Vakorin, VA, Porayette, P, Madathil, S, Chau, V, Seed, M, et al. Interplay of brain structure and function in neonatal congenital heart disease. Ann Clin Transl Neurol. 2016; 3: 708–22.Google Scholar
Dimitropoulos, A, McQuillen, PS, Sethi, V, Moosa, A, Chau, V, Xu, D, Brant, R, Azakie, A, Campbell, A, Barkovich, AJ, Poskitt, KJ. Brain injury and development in newborns with critical congenital heart disease. Neurology. 2013; 81: 241–8.Google Scholar
Volpe, JJ. Encephalopathy of congenital heart disease – destructive and developmental effects intertwined. J Pediatr. 2014; 164: 962–5.Google Scholar
Hinton, RB, Andelfinger, G, Sekar, P, Hinton, AC, Gendron, RL, Michelfelder, EC, Robitaille, Y, Benson, DW. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res. 2008; 64: 364.Google Scholar
Limperopoulos, C, Tworetzky, W, McElhinney, DB, Newburger, JW, Brown, DW, Robertson, RL, et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation. 2010; 121: 2633.Google Scholar
Schellen, C, Ernst, S, Gruber, GM, Mlczoch, E, Weber, M, Brugger, PC, Ulm, B, Langs, G, Salzer-Muhar, U, Prayer, D, Kasprian, G. Fetal MRI detects early alterations of brain development in Tetralogy of Fallot. Am J Obstet Gynecol. 2015; 213: 392.e1–7.Google Scholar
Jorgensen, DS, Tabor, A, Rode, L, Dyre, L, Ekelund, CK, Helmuth, SG, et al. Longitudinal brain and body growth in normal fetuses and fetuses with transposition of the great arteries – a quantitative volumetric magnetic resonance imaging study. Circulation. 2018; 138: 1368–70.Google Scholar
Rudolph, AM. Congenital Diseases of the Heart: Clinical-Physiologic Considerations in Diagnosis and Management. Chicago: Year Book Medical Publishers, 1974.Google Scholar
Prsa, M, Sun, L, van Amerom, J, Yoo, SJ, Grosse-Wortmann, L, Jaeggi, E, Macgowan, C, Seed, M. Reference ranges of blood flow in the major vessels of the normal human fetal circulation at term by phase contrast magnetic resonance imaging. Circ Cardiovasc Imaging. 2014; 7: 663–70.Google Scholar
Sun, L, Macgowan, CK, Portnoy, S, Sled, JG, Yoo, SJ, Grosse‐Wortmann, L, Jaeggi, E, Kingdom, J, Seed, M. New advances in fetal cardiovascular magnetic resonance imaging for quantifying the distribution of blood flow and oxygen transport: potential applications in fetal cardiovascular disease diagnosis and therapy. Echocardiography. 2017; 34: 1799–803.Google Scholar
Sun, L, Macgowan, CK, Sled, JG, Yoo, SJ, Manlhiot, C, Porayette, P, Grosse-Wortmann, L, Jaeggi, E, McCrindle, BW, Hickey, E, Miller, S, Seed, M. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015; 131: 1313–23.Google Scholar
Jones, HN, Olbrych, SK, Smith, KL, Cnota, JF, Habli, M, Ramos-Gonzales, O, Owens, KJ, Hinton, AC, Polzin, WJ, Muglia, LJ, Hinton, RB. Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta. 2015; 36: 1078–86.Google Scholar
Donofrio, MT, Bremer, YA, Schieken, RM, Gennings, C, Morton, LD, Eidem, BW, Cetta, F, Falkensammer, CB, Huhta, JC, Kleinman, CS. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatr Cardiol. 2003; 24: 436–43.CrossRefGoogle ScholarPubMed
Cohn, HE, Sacks, EJ, Heymann, MA, Rudolph, AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974; 120: 817–24.Google Scholar
Wladimiroff, JW, Tonge, HM, Stewart, PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. BJOG. 1986; 93: 471–5.CrossRefGoogle ScholarPubMed
Pearce, W. Hypoxic regulation of the fetal cerebral circulation. J App Physiol. 2006; 100: 731–8.Google Scholar
Wheaton, WW, Chandel, NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol-Cell Physiol. 2010; 300: C385–93.Google Scholar
Yuen, TJ, Silbereis, JC, Griveau, A, Chang, SM, Daneman, R, Fancy, SP, Zahed, H, Maltepe, E, Rowitch, DH. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell. 2014; 158: 383–96.Google Scholar
Tolcos, M, Bateman, E, O’Dowd, R, Markwick, R, Vrijsen, K, Rehn, A, Rees, S. Intrauterine growth restriction affects the maturation of myelin. Exp Neurol. 2011; 232: 5365.Google Scholar
Morton, PD, Korotcova, L, Lewis, BK, Bhuvanendran, S, Ramachandra, SD, Zurakowski, D, Zhang, J, Mori, S, Frank, JA, Jonas, RA, Gallo, V, Ishibashi, N. Abnormal neurogenesis and cortical growth in congenital heart disease. Sci Transl Med. 2017; 9: 7029.Google Scholar
Fowden, AL, Giussani, DA, Forhead, AJ. Endocrine and metabolic programming during intrauterine development. Early Hum Dev. 2005; 81: 723–34.Google Scholar
Rees, S, Harding, R, Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 2011; 29: 551–63.Google Scholar
Rollins, CK, Asaro, LA, Akhondi-Asl, A, Kussman, BD, Rivkin, MJ, Bellinger, DC, Warfield, SK, Wypij, D, Newburger, JW, Soul, JS. White matter volume predicts language development in congenital heart disease. J Pediatr. 2017; 181: 42–8.Google Scholar
von Rhein, M, Buchmann, A, Hagmann, C, Huber, R, Klaver, P, Knirsch, W, Latal, B. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain. 2013; 137: 268–76.Google Scholar
Rivkin, MJ, Watson, CG, Scoppettuolo, LA, Wypij, D, Vajapeyam, S, Bellinger, DC, DeMaso, DR, Robertson, RL Jr., Newburger, JW. Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. J Thorac Cardiovasc Surg. 2013; 146: 543–9.Google Scholar
Panigrahy, A, Schmithorst, VJ, Wisnowski, JL, Watson, CG, Bellinger, DC, Newburger, JW, Rivkin, MJ. Relationship of white matter network topology and cognitive outcome in adolescents with d-transposition of the great arteries. NeuroImage: Clinical. 2015; 7: 438–48.Google Scholar
Ibuki, K, Watanabe, K, Yoshimura, N, Kakimoto, T, Matsui, M, Yoshida, T, Origasa, H, Ichida, F. The improvement of hypoxia correlates with neuroanatomic and developmental outcomes: comparison of midterm outcomes in infants with transposition of the great arteries or single-ventricle physiology. J Thorac Cardiovasc Surg. 2012; 143: 1077–85.Google Scholar
Homsy, J, Zaidi, S, Shen, Y, Ware, JS, Samocha, KE, Karczewski, KJ, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015; 350: 1262–6.Google Scholar
Forbess, JM, Visconti, KJ, Hancock-Friesen, C, Howe, RC, Bellinger, DC, Jonas, RA. Neurodevelopmental outcome after congenital heart surgery: results from an institutional registry. Circulation. 2002; 106: I95102.Google Scholar
Laraja, K, Sadhwani, A, Tworetzky, W, Marshall, AC, Gauvreau, K, Freud, L, Hass, C, Dunbar-Masterson, C, Ware, J, Lafranchi, T, Wilkins-Haug, L. Neurodevelopmental outcome in children after fetal cardiac intervention for aortic stenosis with evolving hypoplastic left heart syndrome. J Pediatr. 2017; 184: 130–6.Google Scholar
Porayette, P, Madathil, S, Sun, L, Jaeggi, E, Grosse‐Wortmann, L, Yoo, SJ, Hickey, E, Miller, SP, Macgowan, CK, Seed, M. MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenat Diag. 2016 ; 36: 274–81.Google Scholar
Kohl, T. Chronic intermittent materno-fetal hyperoxygenation in late gestation may improve on hypoplastic cardiovascular structures associated with cardiac malformations in human fetuses. Ped Cardiol. 2010; 31: 250–63.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Challman, M, Nguyen, M, Feagin, DK, Schoppe, L, Zhang, J, Bhatt, A, Sexson‐Tejtel, SK, Lopez, KN. Pilot study of chronic maternal hyperoxygenation and effect on aortic and mitral valve annular dimensions in fetuses with left heart hypoplasia. Ultrasound Obstet Gynecol. 2016; 48: 365–72.Google Scholar
Zeng, S, Zhou, J, Peng, Q, Deng, W, Zhang, M, Zhao, Y, Wang, T, Zhou, Q. Sustained maternal hyperoxygenation improves aortic arch dimensions in fetuses with coarctation. Sci Rep. 2016; 6: 39304.Google Scholar
Lara, DA, Morris, SA, Maskatia, SA, Karlsten, M, Nguyen, MJ, Schoppe, L, et al. The effect of maternal hyperoxygenation on cerebral and placental vasoregulation in the fetus with left heart hypoplasia. J Am Soc Echo. 2015; 28: B92.Google Scholar
Accurso, FJ, Alpert, B, Wilkening, RB, Petersen, RG, Meshia, G. Time-dependent response of fetal pulmonary blood flow to an increase in fetal oxygen tension. Resp Physiol. 1986; 63: 4352.Google Scholar
Szwast, A, Putt, M, Gaynor, JW, Licht, D, Rychik, J. Cerebrovascular response to maternal hyperoxygenation (MH) in fetuses with hypoplastic left heart syndrome (HLHS) depends upon gestational age (GA) and baseline cerebrovascular resistance. Ultrasound Obstet Gynecol. 2017; 52: 473–8.Google Scholar
da Fonseca, EB, Bittar, RE, Carvalho, MH, Zugaib, M. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study. Am J Obstet Gynecol. 2003; 188: 419–24.Google Scholar
Stein, DG, Wright, DW, Kellermann, AL. Does progesterone have neuroprotective properties? Ann Emerg Med. 2008; 51: 164–72.Google Scholar
Partridge, EA, Davey, MG, Hornick, MA, McGovern, PE, Mejaddam, AY, Vrecenak, JD, et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat Comm. 2017; 8: 15112.Google Scholar
Usuda, H, Watanabe, S, Miura, Y, Saito, M, Musk, GC, Rittenschober-Böhm, J, Ikeda, H, Sato, S, Hanita, T, Matsuda, T, Jobe, AH. Successful maintenance of key physiological parameters in preterm lambs treated with ex vivo uterine environment therapy for a period of 1 week. Am J Obstet Gynecol. 2017; 217: 457–e1.Google Scholar
Jenkins, KJ, Gauvreau, K, Newburger, JW, Spray, TL, Moller, JH, Iezzoni, LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thoracic Cardiovasc Surg. 2002; 123: 110–18.Google Scholar
Peyvandi, S, De Santiago, V, Chakkarapani, E, Chau, V, Campbell, A, Poskitt, KJ, Xu, D, Barkovich, AJ, Miller, S, McQuillen, P. Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury. JAMA Pediatr. 2016; 170: e154450.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×