Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T07:42:18.300Z Has data issue: false hasContentIssue false

7 - Interactions of ferns with fungi and animals

Published online by Cambridge University Press:  05 June 2012

Klaus Mehltreter
Affiliation:
Instituto de Ecología
Klaus Mehltreter
Affiliation:
Instituto de Ecologia, A.C., Xalapa, Mexico
Lawrence R. Walker
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Key points

  1. 1. Ferns and lycophytes have developed a wide spectrum of antagonistic and mutualistic relationships with fungi and animals. While some of these interactions, such as endomycorrhizae, are old and may have coexisted with their host plants for a long time, other interactions may have originated more recently, such as some herbivorous insects that have switched from seed plants to ferns.

  2. 2. More than 80% of sporophytes possess endomycorrhizae, while for a few species fern–ericoid mycorrhizae and ectendomycorrhizae have been reported. In the gametophytic stage, mycorrhizae are obligate in older fern and lycophyte lineages but are facultative or can be absent in more modern lineages.

  3. 3. Interactions with parasitic, symbiotic and neutral endophytic fungi that infect aerial parts of the ferns seem to be as common as in seed plants, while the proportion of interactions with insects seems to be 3–7 times lower than in seed plants.

  4. 4. Fern herbivores are most often members of the insect orders Coleoptera, Hemiptera and Lepidoptera and can be either generalists or insect species that have specialized on ferns. Two fern genera have strong mutualistic relationships with ants: Microgramma subgenus Solanopteris in the New World and Lecanopteris in the Old World tropics; a third, more facultative relationship has recently been described for Antrophyum in Costa Rica.

  5. 5. Most ferns have few specific biochemical defense mechanisms in comparison with seed plants, yet ferns and seed plants sustain similar levels of herbivore damage.

Type
Chapter
Information
Fern Ecology , pp. 220 - 254
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboul-Nasr, A. (1998). Effects of inoculation with Glomus intraradices on growth, nutrient uptake and metabolic activities of squash plants under drought stress conditions. Annals of Agricultural Science, 1, 119–33.Google Scholar
Al-Karaki, G. N. (1998). Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorrhiza, 8, 41–5.CrossRefGoogle Scholar
Arcand, N. (2007). Population structure of the Hawaiian tree fern Cibotium chamissoi across intact and degraded forests, O‘ahu, Hawai‘i. Unpublished Master thesis, University of Hawai‘i.
Ash, S. (1997). Evidence of arthropod-plant interactions in the Upper Triassic of the southwestern United States. Lethaia, 29, 237–48.CrossRefGoogle Scholar
Ash, S. (1999). An upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. International Journal of Plant Science, 160, 208–15.CrossRefGoogle Scholar
Ash, S. (2000). Evidence of oribatid mite herbivory in the stem of a late Triassic tree fern from Arizona. Journal of Paleontology, 74, 1065–71.CrossRefGoogle Scholar
Auerbach, M. and Hendrix, S. D. (1980). Insect–fern interactions: Macrolepidopteran utilization and species–area association. Ecological Entomology, 5, 99–104.CrossRefGoogle Scholar
Avila-Nuñez, J. L., Otero, L. D., Silmi, S. and Calcagno-Pisarelli, M. P. (2007). Life history of Anegmeus merida Smith (Hymenoptera: Tenthredinidae) in the Venezuelan Andes. Neotropical Entomology, 36, 22–7.CrossRefGoogle ScholarPubMed
Balick, M. J., Furth, D. G. and Cooper-Driver, G. (1978). Biochemical and evolutionary aspects of arthropod predation on ferns. Oecologia, 35, 55–89.CrossRefGoogle ScholarPubMed
Barker, M. S., Shaw, S. W, Hickey, R. J., Rawlins, J. E. and Fetzner, J. W., Jr. (2005). Lepidopteran soral crypsis on Caribbean ferns. Biotropica, 37, 314–16.CrossRefGoogle Scholar
Beck-Nielsen, D. and Madsen, T. V. (2001). Occurrence of vesicular-arbuscular mycorrhiza in aquatic macrophytes from lakes and rivers. Aquatic Botany, 71, 141–8.CrossRefGoogle Scholar
Begon, M., Harper, J. L. and Townsend, C. R. (2006). Ecology, 4th edn. Malden, MA, USA: Blackwell.Google Scholar
Bennell, A. P. and Henderson, D. M. (1985). Rusts and other fungal parasites as aids to pteridophyte taxonomy. Proceedings of the Royal Society of Edinburgh, 86B, 115–24.Google Scholar
Berndt, R. (2008). The rust fungi (Uredinales) on ferns in South Africa. Mycological Progress, 7, 7–19.CrossRefGoogle Scholar
Bird, H. (1938). The longevity of Osmunda cinnamomea with notes on some fern-feeding larvae. American Fern Journal, 28, 151–7.CrossRefGoogle Scholar
Boullard, B. (1957). La mycotrophie chez les pteridophytes. Sa fréquence, ses caractères, sa signification. Botaniste, 41, 1–185.Google Scholar
Boullard, B. (1979). Considerations sur la symbiose fongique chez les Pteridophytes. Syllogeus, 19, 1–61.Google Scholar
Brown, J. W., Baixeras, J., Solórzano-Filho, J. A. and Kraus, J. E. (2004). Description and life history of an unusual fern-feeding tortricid moth (Lepidoptera: Tortricidae) from Brazil. Annals of the Entomological Society of America, 97, 865–71.CrossRefGoogle Scholar
Brown, V. K. (1984). Secondary succession: insect–plant relationships. BioScience, 34, 710–6.CrossRefGoogle Scholar
Brues, C. T. (1920). The selection of food plants by insects, with special reference to lepidopterous larvae. American Naturalist, 54, 313–32.CrossRefGoogle Scholar
Brundrett, M. C. (1991). Mycorrhizas in natural ecosystems. In Advances in Ecological Research, vol. 21, ed. Macfayden, A., Begon, M. and Fitter, A. H.. London: Academic Press, pp. 171–313.CrossRefGoogle Scholar
Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275–304.CrossRefGoogle Scholar
Carlisle, D. B. and Ellis, P. E. (1968). Bracken and locust ecdysones: their effects on molting in the desert locust. Science, 159, 1472–4.CrossRefGoogle ScholarPubMed
Carroll, G. C. (1986). The biology of endophytism in plants with particular reference to woody perennials. In Microbiology of the Phyllosphere, ed. Fokkema, N. J. and Heuvel, J.. Cambridge, UK: Cambridge University Press, pp. 205–22.Google Scholar
Clay, K. (1989). Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycological Research, 92, 1–12.CrossRefGoogle Scholar
Coe, M. L., Dilcher, D. L., Farlow, J. O., Jarzen, D. M. and Russell, D. A. (1987). Dinosaurs and land plants. In The Origins of Angiosperms and their Biological Consequences, ed. Friis, E. M., Chaloner, W. G. and Crane, P. R.. Cambridge, UK: Cambridge University Press, pp. 225–58.Google Scholar
Coley, P. D. (1983). Herbivory and defense characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53, 209–33.CrossRefGoogle Scholar
Coley, P. D. and Aide, T. M. (1989). Red coloration of tropical young leaves: a possible antifungal defence? Journal of Tropical Ecology, 5, 293–300.CrossRefGoogle Scholar
Coley, P. D. and Aide, T. M. (1991). Comparison of herbivory and plant defenses in temperate and tropical broad-leaved forests. In Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions, ed. Price, P. W., Lewinsohn, T. M., Fernandes, G. W. and Benson, W. W.. New York: John Wiley & Sons, pp. 25–49.Google Scholar
Coley, P. D. and Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305–35.CrossRefGoogle Scholar
Coley, P. D., Bryant, J. P. and Chapin, F. S. (1985). Resource availability and plant antiherbivore defenses. Science, 230, 895–9.CrossRefGoogle Scholar
Cooper, K. M. (1976). A field survey of mycorrhizas in New Zealand ferns. New Zealand Journal of Botany, 14, 169–81.CrossRefGoogle Scholar
Cooper-Driver, G. A. (1985a). The distribution of insects on ferns. American Journal of Botany, 72, 921.Google Scholar
Cooper-Driver, G. A. (1985b). Anti-predation strategies in pteridophytes: a biochemical approach. Proceedings of the Royal Society of Edinburgh, 86B, 397–402.Google Scholar
Cooper-Driver, G. A., Finch, S., Swain, T. and Bernays, E. (1977). Seasonal variation in secondary plant compounds in relation to palatability of Pteridium aquilinum. Biochemical Systematics and Ecology, 5, 177–83.CrossRefGoogle Scholar
Crawley, M. J. (1983). Herbivory: the Dynamics of Animal–Plant Interactions. Oxford, UK: Blackwell Scientific.Google Scholar
Sota, E. R. (1966). Revisión de las especies americanas del grupo “Polypodium squamatum” L. (“Polypodiaceae” s. str.). Revista del Museo de La Plata, Sección Botánica, 10, 69–186.Google Scholar
Dhillion, S. S. (1993). Vesicular-arbuscular mycorrhizae of Equisetum species in Norway and USA: occurrence and mycotrophy. Mycological Research, 97, 656–60.CrossRefGoogle Scholar
Diong, C. H. (1982). Population biology and management of the feral pig (Sus scrofa L.) in Kipahulu Valley, Maui. Unpublished Ph.D. thesis, University of Hawai‘i.
Docters van Leeuwen, W. (1938). Zoocecidia. In Manual of Pteridology, ed. Verdoorn, F.. The Hague: Nijhoff, pp. 192–5.CrossRefGoogle Scholar
Duckett, J. G. and Ligrone, R. (1992). A light and electron microscope study of the fungal endophytes in the sporophyte and gametophyte of Lycopodium cernuum with observations on the gametophyte–sporophyte junction. Canadian Journal of Botany, 70, 58–72.CrossRefGoogle Scholar
Duponnois, R., Galiana, A. and Prin, Y. (2008). The mycorrhizosphere effect: a multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In Mycorrhizae: Sustainable Agriculture and Forestry, ed. Siddiqui, Z. A., Akhtar, M. S. and Futai, K.. Springer Science & Business Media B.V., pp. 227–40.CrossRefGoogle Scholar
Ehrlich, P. R. and Raven, P. H. (1964). Butterflies and plants: a study in coevolution. Evolution, 18, 586–608.CrossRefGoogle Scholar
Eisner, T., Morgan, R. C., Attygalle, A. B., et al. (1997). Defensive production of quinoline by a phasmid insect (Oreophetes peruana). Journal of Experimental Biology, 200, 2493–500.Google Scholar
Farr, M. L. and Horner, H. T. (1958). Fungi on Selaginella. Nova Hedwigia, 15, 239–83.Google Scholar
Fernández, N., Messuti, M. I. and Fontenla, S. (2008). Arbuscular mycorrhizas and dark septate fungi in Lycopodium paniculatum (Lycopodiaceae) and Equisetum bogotense (Equisetaceae) in a Valdivian temperate forest of Patagonia, Argentina. American Fern Journal, 98, 117–27.CrossRefGoogle Scholar
Gange, A. C., Brown, V. K. and Farmer, L. M. (1990). A test of mycorrhizal benefit in an early successional plant community. New Phytologist, 115, 85–91.CrossRefGoogle Scholar
Gay, H. (1991). Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae): the rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman. Botanical Journal of the Linnean Society, 106, 199–208.CrossRefGoogle Scholar
Gay, H. (1993a). Animal-fed plants: an investigation into the uptake of ant-derived nutrients by the far-eastern epiphytic fern Lecanopteris Reinw. (Polypodiaceae). Biological Journal of the Linnean Society, 50, 221–33.CrossRefGoogle Scholar
Gay, H. (1993b). Rhizome structure and evolution in the ant-associated epiphytic fern Lecanopteris Reinw. (Polypodiaceae). Botanical Journal of the Linnean Society, 113, 135–60.CrossRefGoogle Scholar
Gemma, J. N., Koske, R. E. and Flynn, T. (1992). Mycorrhizae in Hawaiian pteridophytes: occurrence and evolutionary significance. American Journal of Botany, 79, 843–52.CrossRefGoogle Scholar
Gerson, U. (1979). The association between pteridophytes and arthropods. Fern Gazette 12, 29–45.Google Scholar
Golding, Y. (2007). Fern sticks. Pteridologist, 4, 190.Google Scholar
Goltapeh, E. M., Danesh, Y. R., Prasad, R. and Varma, A. (2008). Mycorrhizal fungi: what we know and what should we know? In Mycorrhiza, ed. Varma, A.. Berlin: Springer, pp. 3–27.CrossRefGoogle Scholar
Gómez, L. D. (1974). Biology of the potato-fern Solanopteris brunei. Brenesia, 4, 37–61.Google Scholar
Gómez, L. D. (1977). The Azteca ants of Solanopteris brunei. American Fern Journal, 67, 31.CrossRefGoogle Scholar
Gundale, M. J. (2002). Influence of exotic earthworms on the soil organic horizon and the rare fern Botrychium mormo. Conservation Biology, 16, 1555–61.CrossRefGoogle Scholar
Hammel, B. E., Grayum, M. H., Herrera, C. and Zamora, N. (eds.) (2004). Manual de Plantas de Costa Rica, vol. I. St. Louis, MO, USA: Missouri Botanical Garden Press.
Hanson, P. E. and Gómez-Laurito, J. (2005). Diversity of gall-inducing arthropods of Costa Rica. In Biology, Ecology and Evolution of Gall-Inducing Arthropods, vols. 1 and 2, ed. Raman, A., Schaefer, C. W. and Withers, T. M.. Enfield, NH, USA: Science Publishers, pp. 673–692.Google Scholar
Harley, J. L. and Harley, E. L. (1987). A check-list of mycorrhiza in the British flora. New Phytologist, 105, 1–102.CrossRefGoogle Scholar
Haufler, C. H., Grammer, W. A., Hennipman, E., et al. (2003). Systematics of the ant-fern genus Lecanopteris (Polypodiaceae): testing phylogenetic hypotheses with DNA sequences. Systematic Botany, 28, 217–27.Google Scholar
Heads, P. A. (1986). Bracken, ants and extrafloral nectaries. IV. Do wood ants (Formica lugubris) protect the plants against insect herbivores?Journal of Animal Ecology, 55, 795–809.CrossRefGoogle Scholar
Heads, P. A. and Lawton, J. H. (1984). Bracken, ants and extrafloral nectaries. II. The effect of ants on the insect herbivores of bracken. Journal of Animal Ecology, 53, 1015–31.CrossRefGoogle Scholar
Hegnauer, R. (1962). Chemotaxonomie der Pflanzen, Bd. I. Basel, Switzerland: Birkhäuser.CrossRefGoogle Scholar
Hegnauer, R. (1986). Chemotaxonomie der Pflanzen, Bd. VII. Basel, Switzerland: Birkhäuser.CrossRefGoogle Scholar
Hendrix, S. D. (1977). The resistance of Pteridium aquilinum (L.) Kuhn to insect attack by Trichoplusia ni (Hübn.). Oecologia, 26, 347–61.CrossRefGoogle Scholar
Hendrix, S. D. (1980). An evolutionary and ecological perspective of the insect fauna of ferns. American Naturalist, 115, 171–96.CrossRefGoogle Scholar
Hendrix, S. D. and Marquis, R. J. (1983). Herbivore damage to three tropical ferns. Biotropica, 15, 108–11.CrossRefGoogle Scholar
Hennipman, E. (1986). Notes on the ant-ferns of Lecanopteris sensu stricto in Sulawesi, with description of two new species. Kew Bulletin, 41, 781–8.CrossRefGoogle Scholar
Hennipman, E. and Hovenkamp, P. (1998). Lecanopteris. In Flora Malesiana, Series II, vol. 3, Ferns and Fern Allies, ed. Kalkman, C. and Nooteboom, H.. Leiden, The Netherlands: Rijksherbarium/Hortus Botanicus, pp. 59–76.Google Scholar
Hennipman, E. and Verduyn, G. P. (1987). A taxonomic revision of the genus Lecanopteris (Polypodiaceae) in Sulawesi, Indonesia. Blumea, 32, 313–19.Google Scholar
Hikino, H., Okuyama, T., Jin, H. and Takemoto, T. (1973). Screening of Japanese ferns for phytoecdysones. I. Chemical and Pharmaceutical Bulletin, 21, 2292–302.CrossRefGoogle Scholar
Hummel, J., Gee, C. T., Südekum, K.-H., et al. (2008). In vitro digestibility of fern and gymnosperm foliage: implications for sauropod feeding ecology and diet selection. Proceedings of the Royal Society, Series B, 275, 1015–21.CrossRefGoogle ScholarPubMed
Iqbal, S. H., Yousaf, M. and Younus, M. (1981). A field survey of mycorrhizal associations in ferns of Pakistan. New Phytologist, 87, 69–79.CrossRefGoogle Scholar
Janzen, D. H. (1974). Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants. Biotropica, 6, 237–59.CrossRefGoogle Scholar
Jermy, A. C. and Walker, T. G. (1975). Lecanopteris spinosa: a new ant-fern from Indonesia. Fern Gazette, 11, 165–76.Google Scholar
Jolivet, P. (1996). Ants and Plants. Leiden, The Netherlands: Backhuys Publishers.Google Scholar
Jumpponen, A. (2001). Dark septate endophytes: are they mycorrhizal? Mycorrhiza, 11, 207–211.CrossRefGoogle Scholar
Jumpponen, A. and Trappe, J. M. (1998). Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytologist, 140, 295–310.CrossRefGoogle Scholar
Kaplanis, J. N., Thompson, M. J., Robbins, W. E. and Bryce, B. M. (1967). Insect hormones: alfa ecdysone and 20-hydroxyecdysone in bracken fern. Science, 157, 1436–8.CrossRefGoogle Scholar
Kaufmann, E. and Maschwitz, U. (2006). Ant-gardens of tropical Asian rainforests. Naturwissenschaften, 93, 216–27.CrossRefGoogle ScholarPubMed
Kessler, A. and Baldwin, I. T. (2001). Defensive function of herbivore-induced plant volatile emissions in nature. Science, 291, 2141–4.CrossRefGoogle ScholarPubMed
Koptur, S., Smith, A. R. and Baker, I. (1982). Nectaries in some neotropical species of Polypodium (Polypodiaceae): preliminary observations and analyses. Biotropica, 14, 108–13.CrossRefGoogle Scholar
Koptur, S., Rico-Gray, V. and Palacios-Rios, M. (1998). Ant protection of the nectaried fern Polypodium plebeium in central Mexico. American Journal of Botany, 85, 736–9.CrossRefGoogle ScholarPubMed
Koske, R. E., Gemma, J. N. and Flynn, T. (1992). Mycorrhizae in Hawaiian angiosperms: a survey with implications for the origin of the native flora. American Journal of Botany, 79, 853–62.CrossRefGoogle Scholar
Kramer, K. U., Schneller, J. J. and Wollenweber, E. (1995). Farne und Farnverwandte. Stuttgart, Germany: Georg Thieme Verlag.Google Scholar
Lawton, J. H. (1976). The structure of the arthropod community on bracken (Pteridium aquilinum (L.) Kuhn). Botanical Journal of the Linnean Society, 73, 187–216.CrossRefGoogle Scholar
Lawton, J. H. and Heads, P. A. (1984). Bracken, ants and extrafloral nectaries. I. The components of the system. Journal of Animal Ecology, 53, 995–1014.CrossRefGoogle Scholar
Leahy, R., Schubert, T., Strandberg, J., Stamps, B. and Norman, D. (1995). Anthracnose of leatherleaf fern. Florida Department of Agriculture and Customer Services, Plant Pathology Circular, 372, 4 pp.Google Scholar
Lehnert, M., Kottke, I., Setaro, S. and Kessler, M. (2007). New insights on the mycorrhizal infections in ferns: an example from southern Ecuador. In ‘Diversity and evolution of Pteridophytes, with emphasis on the neotropics’, ed. Lehnert, M.. Unpublished Ph.D. thesis, University of Göttingen, Germany, pp. 437–49.Google Scholar
Lellinger, D. B. (1977). Nomenclatural notes on some ferns of Costa Rica, Panama and Colombia. American Fern Journal, 67, 58–60.CrossRefGoogle Scholar
Lellinger, D. B. (1984). New combinations and some new names in ferns. American Fern Journal, 74, 56–60.CrossRefGoogle Scholar
León, B. and Beltrán, H. (2002). A new Microgramma subgenus Solanopteris (Polypodiaceae) from Peru and a new combination in the subgenus. Novon, 12, 481–5.CrossRefGoogle Scholar
Lowman, M. D. (1984). An assessment of techniques for measuring herbivory: is rain forest defoliation more intense than we thought? Biotropica, 16, 264–8.CrossRefGoogle Scholar
Lowman, M. D. (1985). Insect herbivory in Australian rain forests: is it higher than in the Neotropics? Proceedings of the Ecological Society of Australia, 14, 109–19.Google Scholar
Markham, K., Chalk, T. and Stewart, C. N.. (2006). Evaluation of fern and moss protein-based defenses against phytophagous insects. International Journal of Plant Sciences, 167, 111–17.CrossRefGoogle Scholar
Maxon, W. R. (1943). New tropical American ferns. XIV. American Fern Journal, 33, 133–7.CrossRefGoogle Scholar
Medel, R. and Lorea-Hernández, F. (2008). Hyaloscyphaceae (Ascomyota) growing on tree ferns in Mexico. Mycotaxon, 106, 209–18.Google Scholar
Mehltreter, K. (1995). Species richness and geographical distribution of montane pteridophytes of Costa Rica, Central America. Feddes Repertorium, 106, 563–84.CrossRefGoogle Scholar
Mehltreter, K. and García-Franco, J. G. (2008). Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) D. S. Conant in a lower montane Mexican forest. American Fern Journal, 98, 1–13.CrossRefGoogle Scholar
Mehltreter, K. and Palacios-Rios, M. (2003). Phenological studies of Acrostichum danaeifolium (Pteridaceae, Pteridophyta) at a mangrove site on the Gulf of Mexico. Journal of Tropical Ecology, 19, 155–62.CrossRefGoogle Scholar
Mehltreter, K. and Tolome, J. (2003). Herbivory on three tropical fern species of a Mexican cloud forest. In Pteridology in the New Millennium, ed. Chandra, S. and Srivastava, M.. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 375–81.CrossRefGoogle Scholar
Mehltreter, K., Rojas, P. and Palacios-Rios, M. (2003). Moth-larvae damaged giant leather-fern Acrostichum danaeifolium as host for secondary colonization by ants. American Fern Journal, 93, 48–54.CrossRefGoogle Scholar
Mehltreter, K., Flores-Palacios, A. and García-Franco, J. (2005). Host preferences of vascular trunk epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology, 21, 651–660.CrossRefGoogle Scholar
Mehltreter, K., Hülber, K. and Hietz, P. (2006). Herbivory on epiphytic ferns of a Mexican cloud forest. Fern Gazette, 17, 303–9.Google Scholar
Mickel, J. T. and Smith, A. R. (2004). The Pteridophytes of Mexico. New York: The New York Botanical Garden.Google Scholar
Midgley, J. J., Midgley, G. and Bond, W. J. (2002). Why were dinosaurs so large? A food quality hypothesis. Evolutionary and Ecological Research. 4, 1093–5.Google Scholar
Miller, J. C., Janzen, D. H. and Hallwachs, W. (2006). 100 Caterpillars: Portraits from the Tropical Forests of Costa Rica. Cambridge, MA, USA: Harvard University Press.Google Scholar
Miller, J. C., Janzen, D. H. and Hallwachs, W. (2007). 100 Butterflies and Moths: Portraits from the Tropical Forests of Costa Rica. Cambridge, MA, USA: Harvard University Press.Google Scholar
Moran, R. C., Klimas, S. and Carlsen, M. (2003). Low-trunk epiphytic ferns on tree ferns versus angiosperms in Costa Rica. Biotropica, 35, 48–56.Google Scholar
Moteetee, A., Duckett, J. G. and Russell, A. J. (1996). Mycorrhizas in the ferns of Lesotho. In Pteridology in Perspective. ed. Camus, J. M., Gibby, M. and Johns, R. J.. Kew: Royal Botanic Gardens, pp. 621–31.Google Scholar
Müller, E. and Schneller, J. J. (1977). A new record of Synchytrium athyrii on Athyrium filix-femina. Fern Gazette, 11, 313–4.Google Scholar
Newman, E. I. and Reddell, P. (1987). The distribution of mycorrhizas among families of vascular plants. New Phytologist, 106, 745–51.CrossRefGoogle Scholar
Ottosson, J. G. and Anderson, J. M. (1983). Number, seasonality and feeding habits of insects attacking ferns in Britain: an ecological consideration. Journal of Animal Ecology, 52, 385–406.CrossRefGoogle Scholar
Palmieri, M. and Swatzell, L. J. (2004). Mycorrhizal fungi associated with the fern Cheilanthes lanosa. Northeastern Naturalist, 11, 57–66.CrossRefGoogle Scholar
Petrini, O. (1991). Fungal endophytes of tree leaves. In Microbial Ecology of Leaves, ed. Andrews, J. A. and Hirano, S. S.. New York: Springer-Verlag, pp. 179–97.CrossRefGoogle Scholar
Petrini, O. (1992). Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins, 1, 185–96.CrossRefGoogle ScholarPubMed
Petrini, O. (1993). Fungal endophytes of bracken (Pteridium aquilinum) with some reflections on their use in biological control. Sydowia, 44, 282–93.Google Scholar
Radhika, K. P. and Rodrigues, B. F. (2007). Arbuscular mycorrhizae in association with aquatic and marshy plant species in Goa, India. Aquatic Botany, 86, 291–4.CrossRefGoogle Scholar
Ramos, J. A. (1994). Fern frond feeding by the Azores bullfinch. Journal of Avian Biology, 25, 344–7.CrossRefGoogle Scholar
Ramos, J. A. (1995). The diet of the Azores bullfinch Pyrrhula murina and floristic variation within its range. Biological Conservation, 71, 237–49.CrossRefGoogle Scholar
Rashbrook, V. K., Compton, S. G. and Lawton, J. H. (1992). Ant–herbivore interactions: reasons for the absence of benefits to a fern with foliar nectaries. Ecology, 73, 2167–74.Google Scholar
Rauh, W. (1973). Solanopteris bismarckii Rauh. Abhandlungen der Akademie der Wissenschaften und der Literatur Mainz, Mathematisch-Naturwissenschaftliche Klasse, 5, 223–56.Google Scholar
Raupp, M. J. and Denno, R. F. (1983). Leaf age as a predictor of herbivore distribution and abundance. In Variable Plants and Herbivores in Natural and Managed Systems, ed. Denno, R. F. and McClure, M. S.. New York: Academic Press, pp. 91–124.CrossRefGoogle Scholar
Redhead, S. A. (1984). Two fern-associated mushrooms, Mycena lohwagii and M. pterigena in Canada. Le Naturaliste Canadien, 111, 439–42.Google Scholar
Rhoades, D. F. (1979). Evolution of plant chemical defences against herbivores. In Herbivores: Their Interaction with Secondary Plant Metabolites, ed. Rosenthal, G. A. and Janzen, D. H.. New York: Academic Press, pp. 3–54.Google Scholar
Rothwell, G. W. (1996). Phylogenetic relationships of ferns: a paleobotanic perspective. In Pteridology in Perspective. ed. Camus, J. M., Gibby, M. and Johns, R. J.. Kew, UK: Royal Botanic Gardens, pp. 395–404.Google Scholar
Rothwell, G. W. and Stockey, R. A. (2008). Phylogeny and evolution of ferns: a paleontological perspective. In Biology and Evolution of Ferns and Lycophytes, ed. Ranker, T. A. and Haufler, C. H.. Cambridge, UK: Cambridge University Press, pp. 332–66.CrossRefGoogle Scholar
Rowell, C. H. F., Rowell-Rahier, M., Braker, H. E., Cooper-Driver, G. and Gómez, P. L. D. (1983). The palatability of ferns and the ecology of two tropical forest grasshoppers. Biotropica, 15, 207–16.CrossRefGoogle Scholar
Ruehlmann, T. E., Matthews, R. W. and Matthews, J. R. (1988). Roles for structural and temporal shelter-changing by fern-feeding lepidopteran larvae. Oecologia, 75, 228–32.CrossRefGoogle ScholarPubMed
Russell, G. B. and Fenemore, P. G. (1971). Insect moulting hormone activity in some New Zealand ferns. New Zealand Journal of Science, 14, 31–5.Google Scholar
Samuels, G. J. and Rogerson, C. T. (1990). Some ascomycetes (fungi) occurring on tropical ferns. Brittonia, 42, 105–15.CrossRefGoogle Scholar
Schmid, E. and Oberwinkler, F. (1993). Mycorrhiza-like interaction between the achlorophyllous gametophyte of Lycopodium clavatum L. and its fungal endophyte studied by light and electron microscopy. New Phytologist, 124, 69–81.CrossRefGoogle Scholar
Schmid, E. and Oberwinkler, F. (1995). A light- and electron-microscopic study on a vesicular-arbuscular host–fungus interaction in gametophytes and young sporophytes of the Gleicheniaceae (Filicales). New Phytologist, 129, 317–24.CrossRefGoogle Scholar
Schmid, E., Oberwinkler, F. and Gómez, L. D. (1995). Light and electron microscopy of a host endophyte interaction in the roots of some epiphytic ferns from Costa Rica. Canadian Journal of Botany, 73, 991–6.CrossRefGoogle Scholar
Schneider, H., Schuettpelz, E., Pryer, K. M., et al. (2004). Ferns diversified in the shadow of angiosperms. Nature, 428, 553–7.CrossRefGoogle ScholarPubMed
Schreiner, I., Nafus, D. and Pimentel, D. (1984). Frequency of cyanogenesis in bracken in relation to shading and winter severity. American Fern Journal, 74, 51–5.CrossRefGoogle Scholar
Schüßler, A. (2004). Das fünfte Pilz-Phylum: die Glomeromycota. Biospektrum, 10, 741–2.Google Scholar
Schüßler, A., Schwarzott, D. and Walker, C. (2001). A new phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105, 1413–21.CrossRefGoogle Scholar
Schuettpelz, E. and Pryer, K. M. (2008). Fern phylogeny. In Biology and Evolution of Ferns and Lycophytes. ed. Ranker, T. A. and Haufler, C. H.. Cambridge, UK: Cambridge University Press, pp. 395–416.CrossRefGoogle Scholar
Sessions, L. and Kelly, D. (2002). Predator-mediated apparent competition between an introduced grass, Agrostis capillaris, and a native fern, Botrychium australe (Ophioglossaceae), in New Zealand. Oikos, 96, 102–9.CrossRefGoogle Scholar
Shuter, E. and Westoby, A. (1992). Herbivorous arthropods on bracken Pteridium aquilinum (L.) Kuhn in Australia compared with elsewhere. Australian Journal of Ecology, 17, 329–39.CrossRefGoogle Scholar
Siddiqui, Z. A. and Pichtel, J. (2008). Mycorrhizae: an overview. In Mycorrhizae: Sustainable Agriculture and Forestry, ed. Siddiqui, Z. A., Akhtar, M. S. and Futai, K.. Springer Science & Business Media B.V., pp. 1–35.CrossRefGoogle Scholar
Sjamsuridzal, W., Nishida, H., Ogawa, H., Kakishima, M. and Sugiyama, J. (1999). Phylogenetic positions of rust fungi parasitic on ferns: evidence from 18S rDNA sequence analysis. Mycoscience, 40, 21–7.CrossRefGoogle Scholar
Smart, J. and Hughes, N. (1973). The insect and the plant: progressive palaeoecological integration. In Insect Plant Relationships, no. 6, ed. Emden, H.. London: Royal Entomological Society, pp. 143–55.Google Scholar
Smith, D. R. (2005). Two new fern-feeding sawflies of the genus Anegmeus Hartig (Hymenoptera: Tenthredinidae) from South America. Proceedings of the Entomological Society of Washington, 107, 273–8.Google Scholar
Smith, S. E. and Read, D. J. (1997). Mycorrhizal Symbiosis, 2nd edn. London: Academic Press.Google Scholar
Solis, M. A., Yen, S.-H. and Goolsby, J. (2004). Description and life history of Lygomusotima new genus, and Neomusotima conspurcatalis (Lepidoptera: Crambidae) from Australia and Southeastern Asia feeding on Lygodium microphyllum (Schizaeaceae). Annals of the Entomological Society of America, 97, 64–76.CrossRefGoogle Scholar
Somvanshi, R., Lauren, D. R., Smith, B. L., et al. (2006). Estimation of the fern toxin, ptaquiloside, in certain Indian ferns other than bracken. Current Science, 91, 1547–52.Google Scholar
Soo Hoo, C. and Fraenkel, G. (1964). The resistance of ferns to the feeding of Prodenia eridania larvae. Annals of the Entomological Society of America, 57, 788–90.CrossRefGoogle Scholar
Southwood, T. (1973). The insect plant relationship: an evolutionary perspective. In Insect Plant Relationships, no. 6, ed. Emden, H.. London: Royal Entomological Society, pp. 3–30.Google Scholar
Taylor, T. N., Remy, W., Hass, H. and Kerp, H. (1995). Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia, 87, 560–73.CrossRefGoogle Scholar
Tempel, A. S. (1983). Bracken fern (Pteridium aquilinum) and nectar-feeding ants: a nonmutualistic interaction. Ecology, 64, 1411–22.CrossRefGoogle Scholar
Tryon, A. F. (1985). Spores of myrmecophytic ferns. Proceedings of the Royal Society of Edinburgh, 86B, 105–10.Google Scholar
Wagner, W. H. (1972). Solanopteris brunei, a little-known fern epiphyte with dimorphic stems. American Fern Journal, 62, 33–43.CrossRefGoogle Scholar
Walker, T. G. (1986). The ant-fern Lecanopteris mirabilis. Kew Bulletin, 41, 533–45.CrossRefGoogle Scholar
Watkins, J. E.., Cardelús, C. and Mack, M. (2008). Ants mediate nitrogen relations of an epiphytic fern. New Phytologist, 180, 5–8.CrossRefGoogle ScholarPubMed
Weiczorek, H. (1973). Zur Kenntnis der Adlerfarninsekten: Ein Beitrag zum Problem der biologischen Bekämpfung von Pteridium aquilinum (L.) Kuhn in Mitteleuropa. Annalen für Angewandte Entomology, 72, 337–58.CrossRefGoogle Scholar
Weintraub, J. D., Lawton, J. H. and Scoble, M. J. (1995). Lithinine moths on ferns: a phylogenetic study of insect-plant interactions. Biological Journal of the Linnean Society, 55, 239–50.CrossRefGoogle Scholar
Wikström, N., Kenrick, P. and Chase, M. (1999). Epiphytism and terrestrialization of tropical Huperzia (Lycopodiaceae). Plant Systematics and Evolution, 218, 221–43.CrossRefGoogle Scholar
Williams-Linera, G. and Baltazar, A. (2001). Herbivory on young and mature leaves of one temperate deciduous and two tropical evergreen trees in the understory and canopy of a Mexican cloud forest. Selbyana, 22, 213–18.Google Scholar
Winkler, M., Hülber, K., Mehltreter, K., García-Franco, J. and Hietz, P. (2005). Herbivory in epiphytic bromeliads, orchids and ferns in a Mexican montane forest. Journal of Tropical Ecology, 21, 147–54.CrossRefGoogle Scholar
Yen, S.-H., Solis, M. A. and Goolsby, J. (2004). Austromusotima, a new musotimine genus (Lepidoptera: Crambidae) feeding on old world climbing fern, Lygodium microphyllum (Schizaeaceae). Annals of the Entomological Society of America, 97, 397–410.CrossRefGoogle Scholar
Zangerl, A. R. and Bazzaz, F. A. (1992). Theory and pattern in plant defense allocation. In Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics, ed. Fritz, R. S., and Simms, E. L.. Chicago, IL, USA: The University of Chicago Press, pp. 363–91.Google Scholar
Zimmerman, E. C. (1970). Adaptive radiation in Hawaii with special reference to insects. Biotropica, 2, 32–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×