Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T22:19:25.417Z Has data issue: false hasContentIssue false

12 - White-rot fungi and xenobiotics

from IV - Fungal bioremediation

Published online by Cambridge University Press:  05 October 2013

P. J. Harvey
Affiliation:
University of Greenwich Medway School of Science Central Avenue Chatham Maritime Kent ME4 4TBUK
C. E. Scheer
Affiliation:
BEPHS Business Innovation University of Greenwich at Medway Central Avenue Chatham Maritime Kent ME4 4TBUK
G. D. Robson
Affiliation:
University of Manchester
Pieter van West
Affiliation:
University of Aberdeen
Geoffrey Gadd
Affiliation:
University of Dundee
Get access

Summary

Introduction

The word ‘xenobiotic’ comes from the Greek word ‘xenos’, which means ‘foreign’, and describes foreign compounds that are in direct contact with a living environment. Man-made xenobiotics have been dispersed directly into the environment for many years, dumped as waste products, applied as agrochemicals, or as a result of major accidents, or indirectly, in the form of emissions from incineration processes. Xenobiotic structures are not readily recognized by existing degradative biological systems and have accumulated in the environment, and although substantial progress has been made in reducing chronic industrial derived pollution there is a growing bank of contaminated derelict industrial land – so called ‘brownfield sites’ – in towns and cities all over the country. In order that these sites may be repurposed for housing or for building up new commercial areas, powerful and cost-effective decontamination strategies are needed.

The design of a decontamination strategy for a given site depends on the nature and concentration of contaminants, the site characteristics (especially water movement), and the extent of contamination. Directed bioremediation, an activity in which micro- and phyto-biological processes are used to degrade or transform contaminants into less toxic or non-toxic forms holds considerable potential as a strategy for in situ decontamination. It is generally cost-effective and less disruptive to soil and the natural landscape than ex situ techniques.

Type
Chapter
Information
Exploitation of Fungi , pp. 205 - 235
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadulla, E., Tzanov, T., Costa, S., Robra, K. H., Cavaco-Paulo, A. & Gubitz, G. M. (2000). Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Applied and Environmental Microbiology, 66, 3357–62.CrossRefGoogle ScholarPubMed
Abbondanzi, F., Campisi, T., Gussoni, A., Iacondini, A., Malaspina, F., Mingozzi, L., Raccagni, M. & Visani, M. (2003). Bioremediation of PAHs in soils: bioaugmentation test in pilot plant. In Proceedings of the Second European Bioremediation Conference, ed. Kalogerakis, N.. Crete, Greece: Technical University Chania, pp. 103–6.Google Scholar
Adler, E. (1977). Lignin chemistry – past, present and future. Wood Science and Technology, 11, 169–218.CrossRefGoogle Scholar
Alexander, M. (1995). How toxic are toxic chemicals in soil? Environmental Science and Technology, 29, 2713–17.CrossRefGoogle ScholarPubMed
Amitai, G.Adani, R., Sod-Moriah, G., Rabinovitz, I., Vincze, A., Leader, H., Chefetz, B., Leibovitz-Persky, L., Friesem, D. & Hadar, Y. (1998). Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Letters, 438, 195–200.CrossRefGoogle ScholarPubMed
Andersson, B. E. & Henrysson, T. (1996). Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Applied Microbiology and Biotechnology, 46, 647–52.CrossRefGoogle Scholar
Andersson, B. E., Lundstedt, S., Tornberg, K., Schnurer, Y., Oberg, L. G. & Mattiasson, B. (2003). Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environmental Toxicology and Chemistry, 22, 1238–43.CrossRefGoogle ScholarPubMed
Andersson, B. E., Welinder, L., Olsson, P. A., Olsson, S. & Henrysson, T. (2000). Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource Technology, 73, 29–36.CrossRefGoogle Scholar
Aust, S. D. (1990). Degradation of environmental pollutants by Phanerochaete chrysosporium. Microbial Ecology, 20, 197–209.CrossRefGoogle Scholar
Baldrian, P., in der Wiesche, C. I., Gabriel, J., Nerud, F. & Zadrazil, F. (2000). Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Applied and Environmental Microbiology, 66, 2471–8.CrossRefGoogle ScholarPubMed
Banci, L., Camarero, S., Martinez, A. T., Martinez, M. J., Perez-Boada, M., Pierattelli, R. & Ruiz-Duenas, F. J. (2003). NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. Journal of Biological Inorganic Chemistry, 8, 751–60.CrossRefGoogle ScholarPubMed
Bar-Lev, S. S. & Kirk, T. K. (1981). Effects of molecular oxygen on lignin degradation. Biochemical and Biophysical Research Communications, 99, 373–8.CrossRefGoogle ScholarPubMed
Barr, D. P. & Aust, S. D. (1994). Mechanisms white rot fungi use to degrade pollutants. Environmental Science and Technology, 28, 78–87.CrossRefGoogle ScholarPubMed
Belinky, P. A., Flikshtein, N., Lechenko, S., Gepstein, S. & Dosoretz, C. G. (2003). Reactive oxygen species and the induction of lignin peroxidase in Phanerochaete chrysosporium. Applied and Environmental Microbiology, 69, 6500–6.CrossRefGoogle ScholarPubMed
Bencharit, S. & Ward, M. J. (2005). Chemotactic responses to metals and anaerobic electron acceptors in Shewanella oneidensis MR-1. Journal of Bacteriology, 187, 5049–53.CrossRefGoogle ScholarPubMed
Bertrand, T., Jolivalt, C., Caminade, E., Joly, N., Mougin, C. & Briozzo, P. (2002). Purification and preliminary crystallographic study of Trametes versicolor laccase in its native form. Acta Crystallographica Section D-Biological Crystallography, 58, 319–21.CrossRefGoogle ScholarPubMed
Bezalel, L., Hadar, Y. & Cerniglia, C. E. (1997). Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 63, 2495–501.Google ScholarPubMed
Bezalel, L., Hadar, Y., Fu, P. P., Freeman, J. P. & Cerniglia, C. E. (1996a). Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 2547–53.Google Scholar
Bezalel, L., Hadar, Y., Fu, P. P., Freeman, J. P. & Cerniglia, C. E. (1996b). Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 62, 2554–9.Google Scholar
Bhatt, M., Cajthaml, T. & Sasek, V. (2002). Mycoremediation of PAH-contaminated soil. Folia Microbiologica, 47, 255–8.CrossRefGoogle ScholarPubMed
Bietti, M., Baciocchi, E. & Steenken, S. (1998). Lifetime, reduction potential and base-induced fragmentation of the veratryl alcohol radical cation in aqueous solution. Pulse radiolysis studies on a ligninase “mediator”. Journal of Physical Chemistry A, 102, 7337–42.CrossRefGoogle Scholar
Bogan, B. W. & Lamar, R. T. (1995). One-electron oxidation in the degradation of creosote polycyclic aromatic-hydrocarbons by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 61, 2631–5.Google ScholarPubMed
Bogan, B. W. & Lamar, R. T. (1996). Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Applied and Environmental Microbiology, 62, 1597–603.Google ScholarPubMed
Bogan, B. W., Lamar, R. T., Burgos, W. D. & Tien, M. (1999). Extent of humification of anthracene, fluoranthene, and benzo[alpha]pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Letters in Applied Microbiology, 28, 250–4.CrossRefGoogle Scholar
Bogan, B. W., Lamar, R. T. & Hammel, K. E. (1996a). Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Applied and Environmental Microbiology, 62, 1788–92.Google Scholar
Bogan, B. W., Schoenike, B., Lamar, R. T. & Cullen, D. (1996b). Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 62, 2381–6.Google Scholar
Boonchan, S., Britz, M. L. & Stanley, G. A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial co-cultures. Applied and Environmental Microbiology, 66, 1007–19.CrossRefGoogle Scholar
Boyle, C. D. (1995). Development of a practical method for inducing white rot fungi to grow into and degrade organopollutants in soil. Canadian Journal of Microbiology, 41, 345–53.CrossRefGoogle Scholar
Boyle, D., Wiesner, C. & Richardson, A. (1998). Factors affecting the degradation of polyaromatic hydrocarbons in soil by white-rot fungi. Soil Biology and Biochemistry, 30, 873–82.CrossRefGoogle Scholar
Brodkorb, T. S. & Legge, R. L. (1992). Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 3117–21.Google ScholarPubMed
Bumpus, J. A., Tien, M., Wright, D. & Aust, S. D. (1985). Oxidation of persistent environmental pollutants by a white rot fungus. Science, 228, 1434–6.CrossRefGoogle ScholarPubMed
Candeias, L. P. & Harvey, P. J. (1995). Lifetime and reactivity of the veratryl alcohol radical cation. Implications for lignin peroxidase catalysis. Journal of Biological Chemistry, 270, 16745–8.CrossRefGoogle ScholarPubMed
Canet, R., Birnstingl, J. G., Malcolm, D. G., Lopez-Real, J. M. & Beck, A. J. (2001). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresource Technology, 76, 113–17.CrossRefGoogle Scholar
Canet, R., Lopez-Real, J. M. & Beck, A. J. (1999). Overview of polycyclic aromatic hydrocarbon biodegradation by white-rot fungi. Land Contamination and Reclamation, 7, 191–7.Google Scholar
Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology, 19, 324–33.CrossRefGoogle ScholarPubMed
Cerniglia, C. E. & Sutherland, J. B. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 136–87.CrossRefGoogle Scholar
Chavez-Gomez, B., Quintero, R., Esparza-Garcia, F., Mesta-Howard, A. M., Zavala Diaz de la Serna, F. J., Hernandez-Rodriguez, C. H., Gillen, T., Poggi-Varaldo, H. M., Barrera-Cortes, J. & Rodriguez-Vazquez, R. (2003). Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresource Technology, 89, 177–83.CrossRefGoogle ScholarPubMed
Chung, N. & Aust, S. (1995). Degradation of pentachlorophenol in soil by Phanerochaete chrysosporium. Journal of Hazardous Materials, 41, 177–83.CrossRefGoogle Scholar
Chung, N. H., Lee, I. S., Song, H. S. & Bang, W. G. (2000). Mechanisms used by white-rot fungus to degrade lignin and toxic chemicals. Journal of Microbiology and Biotechnology, 10, 737–52.Google Scholar
Clemente, A. R., Anazawa, T. A. & Durrant, L. R. (2001). Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Brazilian Journal of Microbiology, 32, 255–61.CrossRefGoogle Scholar
Collins, P. J., Kotterman, M. J. J., Field, J. A. & Dobson, A. D. W. (1996). Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Applied and Environmental Microbiology, 62, 4563–7.Google ScholarPubMed
Cutright, T. J. (1995a). Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinulata var. elegans. International Biodeterioration and Biodegradation, 35, 397–408.CrossRefGoogle Scholar
Cutright, T. J. (1995b). A feasible approach to the bioremediation of contaminated soil – from lab-scale to field-test. Fresenius Environmental Bulletin, 4, 67–73.Google Scholar
Cutright, T. J. & Lee, S. G. (1994a). Quantitative and qualitative-analysis of PAH contaminated soil. Fresenius Environmental Bulletin, 3, 42–8.Google Scholar
Cutright, T. J. & Lee, S. G. (1994b). Bioremediation kinetics for PAH contaminated soils. Fresenius Environmental Bulletin, 3, 597–603.Google Scholar
Cutright, T. J. & Lee, S. G. (1995). In-situ soil remediation – bacteria or fungi. Energy Sources, 17, 413–19.CrossRefGoogle Scholar
Cutright, T. J., Midha, C. & Lee, S. (1996). Preliminary statistical analysis of PAH-contaminated soils. Energy Sources, 18, 51–6.CrossRefGoogle Scholar
Davis, M. W., Glaser, J. A., Evans, J. W. and Lamar, R. T. (1993). Field-evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environmental Science and Technology, 27, 2572–6.CrossRefGoogle Scholar
Dec, J. & Bollag, J.-M. (1990). Detoxification of substituted phenols by oxidoreductive enzymes through polymerisation reactions. Archives of Environmental Contamination and Toxicology, 19, 543–50.CrossRefGoogle Scholar
Dec, J. & Bollag, J.-M. (1994). Use of plant material for the decontamination of water polluted with phenols. Biotechnology and Bioengineering, 44, 1132–9.CrossRefGoogle ScholarPubMed
Dehorter, B. & Blondeau, R. (1992). Extracellular enzyme activities during humic acid degradation by the white rot fungi Phanerochaete chrysosporium and Trametes versicolor. FEMS Microbiology Letters, 94, 209–16.CrossRefGoogle Scholar
Dosoretz, C. G., Chen, H. C. & Grethlein, H. E. (1990a). Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 56, 395–400.Google Scholar
Dosoretz, C. G., Chen, U.-C. & Grethlein, H. E. (1990b). Effect of oxygenation conditions on submerged cultures of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 34, 131–7.CrossRefGoogle Scholar
Eggen, T. (1999). Application of fungal substrate from commercial mushroom production – Pleurotus ostreatus – for bioremediation of creosote contaminated soil. International Biodeterioration and Biodegradation, 44, 117–26.CrossRefGoogle Scholar
Eggen, T. & Majcherczyk, A. (1998). Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Plerotus ostreatus. International Biodeterioration and Biodegradation, 41, 111–17.CrossRefGoogle Scholar
Ermakova, I. T., Safrina, N. S., Starovoitov, I. I., Liubun, E. V., Shcherbakov, A. A., Makarov, O. E., Petrova, A. A. & Shpilkov, P. A. (2004). Microbial degradation of mustard gas reaction masses: isolation and selection of degradative microorganisms, analysis of organic components of reaction masses and their biodegradation. Mikrobiologiia, 73, 358–63.Google ScholarPubMed
Fahraeus, G. & Reinhammar, B. (1967). Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A. Acta Chemica Scandinavica, 21, 2367–78.CrossRefGoogle ScholarPubMed
Fasidi, I. O., Isikhuemhen, O. S. & Zadrazil, F. (1996). Bioreactors for solid state fermentation of lignocellulosics. Journal of Scientific and Industrial Research, 55, 450–6.Google Scholar
Field, J. A., Boelsma, F., Baten, H. & Rulkens, W. H. (1995). Oxidation of anthracene in water/solvent mixtures by the white-rot fungus, Bjerkandera sp. Strain BOS55. Applied Microbiology and Biotechnology, 44, 234–40.CrossRefGoogle Scholar
Field, J. A., Baten, H., Boelsma, F. & Rulkens, W. H. (1996). Biological elimination of polycyclic aromatic hydrocarbons in solvent extracts of polluted soil by the white rot fungus, Bjerkandera sp. Strain BOS55. Environmental Technology, 17, 317–23.CrossRefGoogle Scholar
Gianfreda, L., Xu, F. & Bollag, J. M. (1999). Laccases: a useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–25.CrossRefGoogle Scholar
Gold, M. H. & Alic, M. (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiological Reviews, 57, 605–22.Google ScholarPubMed
Gold, M. H., Glenn, J. K. & Alic, M. (1988). Use of polymeric dyes in lignin biodegradation assays. Methods in Enzymology, 161, 74–8.CrossRefGoogle Scholar
Gramss, G., Voigt, K. D. & Kirsche, B. (1999a). Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation, 10, 51–62.CrossRefGoogle Scholar
Gramss, G., Ziegenhagen, D. & Sorge, S. (1999b). Degradation of soil humic extract by wood- and soil-associated fungi, bacteria and commercial enzymes. Microbial Ecology, 37, 140–51.CrossRefGoogle Scholar
Haemmerli, S. D., Leisola, M. S. A., Sangard, D. & Fiechter, A. (1986). Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. Journal of Biological Chemistry, 261, 6900–2.Google ScholarPubMed
Hammel, K. E. (1995). Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environmental Health Perspectives, 103 (Suppl 5), 41–3.CrossRefGoogle ScholarPubMed
Hammel, K. E., Kalyanaraman, B. & Kirk, T. K. (1986). Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. Journal of Biological Chemistry, 261, 16948–52.Google ScholarPubMed
Harvey, P. J., Schoemaker, H. E., Bowen, R. M. & Palmer, J. M. (1985). Single-electron transfer processes and the reaction mechanism of enzymic degradation of lignin. FEBS Letters, 183, 13–16.CrossRefGoogle Scholar
Harvey, P. J. & Thurston, C. F. (2001). The biochemistry of ligninolytic fungi. In Fungi in Bioremediation, ed. Gadd, G. M.. Cambridge: Cambridge University Press, pp. 27–51.CrossRefGoogle Scholar
Hestbjerg, H., Willumsen, P. A., Christensen, M., Andersen, O. & Jacobsen, C. S. (2003). Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environmental Toxicology and Chemistry, 22, 692–8.CrossRefGoogle ScholarPubMed
Hickey, W. J., Fuster, D. J. & Lamar, R. T. (1994). Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biology and Biochemistry, 26, 1665–71.CrossRefGoogle Scholar
Higson, F. K. (1991). Degradation of xenobiotics by white rot fungi. Reviews of Environmental Contamination and Toxicology, 122, 111–52.Google ScholarPubMed
Holroyd, M. L. & Caunt, P. (1997). Field-scale use of white-rot fungi for soil remediation in Finland. In Bioremediation: Principles and Practice, eds. Sikdar, S. K. and Irvine, R. L., Vol. III Bioremediation Technologies. Lancaster: Technomic Publishing Co., pp. 245–57.Google Scholar
Hwang, S. & Cutright, T. J. (2001). Bioavailability of phenanthrene and pyrene aged for 0 and 200-d in a silty-sand soil. Abstracts of Papers of the American Chemical Society, 222, 122-IEC.Google Scholar
Hwang, S. & Cutright, T. J. (2002a). Statistical impact of the extent of desorption, compound aging, and bacteria inoculation on polycyclic aromatic hydrocarbon biodegradation. Polycyclic Aromatic Compounds, 22, 1057–74.CrossRefGoogle Scholar
Hwang, S. & Cutright, T. J. (2002b). Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere, 47, 891–9.CrossRefGoogle Scholar
Hwang, S. & Cutright, T. J. (2003a). Effect of expandable clays and cometabolism on PAH biodegradability. Environmental Science and Pollution Research, 10, 277–80.CrossRefGoogle Scholar
Hwang, S. & Cutright, T. J. (2003b). Statistical implications of pyrene and phenanthrene sorptive phenomena: effects of sorbent and solute properties. Archives of Environmental Contamination and Toxicology, 44, 152–9.CrossRefGoogle Scholar
Hwang, S., Ramirez, N., Cutright, T. J. & Ju, L. K. (2003). The role of soil properties in pyrene sorption and desorption. Water Air and Soil Pollution, 143, 65–80.CrossRefGoogle Scholar
Hwang, S. S. & Song, H. G. (2000). Biodegradation of pyrene by the white rot fungus, Irpex lacteus. Journal of Microbiology and Biotechnology, 10, 344–8.Google Scholar
Ilori, M. O., Fasida, I. O. & Isikhuemhen, O. S. (1997). Mushroom research and commercial cultivation in Nigeria. Food Reviews International, 13, 489–96.CrossRefGoogle Scholar
in der Wiesche, C., Martens, R. & Zadrazil, F. (1996). Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Applied Microbiology and Biotechnology, 46, 653–9.CrossRefGoogle ScholarPubMed
Isikhuemhen, O. S., Anoliefo, G. O. & Oghale, O. I. (2003). Bioremediation of crude oil polluted soil by the white rot fungus, Pleurotus tuberregium (Fr.) Sing. Environmental Science and Pollution Research, 10, 108–12.CrossRefGoogle ScholarPubMed
Isikhuemhen, O. S., Zadrazil, F. & Fasidi, I. O. (1996). Cultivation of white rot fungi in solid state fermentation. Journal of Scientific and Industrial Research, 55, 388–93.Google Scholar
Jaouani, A., Sayadi, S., Vanthournhout, M. & Penninckx, M. J. (2003). Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme and Microbial Technology, 33, 802–9.CrossRefGoogle Scholar
Johannes, C. & Majcherczyk, A. (2000). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Applied and Environmental Microbiology, 66, 524–8.CrossRefGoogle ScholarPubMed
Johannes, C., Majcherczyk, A. & Huttermann, A. (1996). Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Applied Microbiology and Biotechnology, 46, 313–17.CrossRefGoogle ScholarPubMed
Joner, E. J., Hirmann, D., Szolar, O. H. J., Todovoric, D., Leyval, C. & Loibner, A. P. (2003). Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environmental Pollution, 128, 429–35.CrossRefGoogle Scholar
Joshi, D. K. & Gold, M. H. (1993). Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 59, 1779–85.Google ScholarPubMed
Juhasz, A. L. & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45, 57–88.CrossRefGoogle Scholar
Kayshoemake, J. L. & Watwood, M. E. (1996). Limitations of the lignin peroxidase system of the white rot fungus, Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 46, 438–42.CrossRefGoogle Scholar
Kennes, C. & Lema, J. M. (1994). Degradation of major compounds of creosotes (PAH and phenols) by Phanerochaete chrysosporium. Biotechnology Letters, 16, 759–64.CrossRefGoogle Scholar
Kersten, P. J., Kalyanaraman, B., Hammel, K. E., Reinhammar, B. & Kirk, T. K. (1990). Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochemical Journal, 268, 475–80.CrossRefGoogle ScholarPubMed
Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F. & Zeikus, J. G. (1978). Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology, 117, 277–85.CrossRefGoogle Scholar
Kotterman, M. J. J., Rietberg, H. J., Hage, A. & Field, J. A. (1998a). Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. Strain BOS55 in the presence of nonionic surfactants. Biotechnology and Bioengineering, 57, 220–7.3.0.CO;2-K>CrossRefGoogle Scholar
Kotterman, M. J. J., Vis, E. H. & Field, J. A. (1998b). Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. Strain BOS55 and indigenous microflora. Applied and Environmental Microbiology, 64, 2853–8.Google Scholar
Lamar, R. T. & Dietrich, D. M. (1990). In situ depletion of pentachlorophenol from contaminated soil by Phanerochaete spp. Applied and Environmental Microbiology, 56, 3093–100.Google ScholarPubMed
Lamar, R. T., Evans, J. W. & Glaser, J. A. (1993). Solid-phase treatment of a pentachlorophenol-contaminated soil using lignin-degrading fungi. Environmental Science and Technology, 27, 2566–71.CrossRefGoogle Scholar
Lamar, R. T., Larsen, M. J. & Kirk, T. K. (1990a). Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Applied and Environmental Microbiology, 56, 3519–26.Google Scholar
Lamar, T., Glaser, J. A. & Kirk, T. K. (1990b). Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biology and Biochemistry, 22, 433–40.CrossRefGoogle Scholar
Lang, E., Kleeberg, I. & Zadrazil, F. (2000). Extractable organic carbon and counts of bacteria near the lignocellulose-soil interface during the interaction of soil microbiota and white rot fungi. Bioresource Technology, 75, 57–65.CrossRefGoogle Scholar
Lau, K. L., Tsang, Y. Y. & Chiu, S. W. (2003). Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere, 52, 1539–46.CrossRefGoogle ScholarPubMed
Lee, K. & Moon, S. H. (2003). Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. Journal of Biotechnology, 102, 261–8.CrossRefGoogle ScholarPubMed
Leisola, M. S. A., Thanei-Wyss, U. & Fiechter, A. (1985). Strategies for production of high ligninase activities by Phanerochaete chrysosporium. Journal of Biotechnology, 3, 97–107.CrossRefGoogle Scholar
Lestan, D. & Lamar, R. T. (1996). Development of fungal inocula for bioaugmentation of contaminated soils. Applied and Environmental Microbiology, 62, 2045–52.Google ScholarPubMed
Levin, L., Viale, A. & Forchiassin, A. (2003). Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. International Biodeterioration and Biodegradation, 52, 1–5.CrossRefGoogle Scholar
Lewis, T. A., Newcombe, D. A. & Crawford, R. L. (2004). Bioremediation of soils contaminated with explosives. Journal of Environmental Management, 70, 291–307.CrossRefGoogle ScholarPubMed
Li, K., Xu, F. & Eriksson, K. E. (1999). Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Applied and Environmental Microbiology, 65, 2654–60.Google ScholarPubMed
Liao, W. L. & Tseng, D. H. (1996). Biotreatment of naphthalene by PAH-acclimated pure culture with white-rot fungus Phanerochaete chrysosporium. Water Science and Technology, 34, 73–9.Google Scholar
Liao, W. L., Tseng, D. H., Tsai, Y. C. & Chang, S. C. (1997). Microbial removal of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Water Science and Technology, 35, 255–64.CrossRefGoogle Scholar
Liebeg, E. W. & Cutright, T. J. (1999). The investigation of enhanced bioremediation through the addition of macro and micro nutrients in a PAH contaminated soil. International Biodeterioration and Biodegradation, 44, 55–64.CrossRefGoogle Scholar
Lisov, A. V., Leontievsky, A. A. & Golovleva, L. A. (2003). Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochemistry – Moscow, 68, 1027–35.CrossRefGoogle ScholarPubMed
Majcherczyk, A., Johannes, C. & Huttermann, A. (1998). Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microbial Technology, 22, 335–41.CrossRefGoogle Scholar
Martens, R., Wolter, M., Bahadir, M. & Zadrazil, F. (1999). Mineralization of 14C-labelled highly-condensed polycyclic aromatic hydrocarbons in soils by Pleurotus sp. Florida. Soil Biology & Biochemistry, 31, 1893–9.CrossRefGoogle Scholar
Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D., Huang, K., Chapman, J., Helfenbein, K. G., Ramaiya, P., Detter, J. C., Larimer, F., Coutinho, P. M., Henrissat, B., Berka, R., Cullen, D. & Rokhsar, D. (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Natur Biotechnology, 22, 695–700.CrossRefGoogle ScholarPubMed
Márquez-Rocha, F. J., Hernandez-Rodriguez, V. Z. & Vazquez-Duhalt, R. (2000). Biodegradation of soil-adsorbed polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Biotechnology Letters, 22, 469–72.CrossRefGoogle Scholar
Maspahy, S., Lamb, D. C. & Kelly, S. L. (1999). Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochemical and Biophysical Research Communications, 266, 326–9.CrossRefGoogle ScholarPubMed
May, R., Schröder, P. & Sandermann, H. Jr (1997). Ex situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environmental Science and Technology, 31, 2626–33.CrossRefGoogle Scholar
Mench, M., Bussiere, S., Boisson, J., Castaing, E., Vangronsveld, J., Ruttens, A., Koe, T., Bleeker, P., Assuncao, A. & Manceau, A. (2003). Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant and Soil, 249, 187–202.CrossRefGoogle Scholar
Mendez-Sanchez, N., Cutright, T. J. & Qiao, P. Z. (2003). Simultaneous evaluation of composite biodeterioration and changes in the physicochemical and biological water characteristics. International Biodeterioration and Biodegradation, 52, 187–96.CrossRefGoogle Scholar
Meulenberg, R., Rijnaarts, H. H. M., Doddema, H. J. & Field, J. A. (1997). Partially oxidised polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiology Letters, 152, 45–9.CrossRefGoogle Scholar
Morgan, P., Lee, S. A., Lewis, S. T., Sheppard, A. N. & Watkinson, R. J. (1993). Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biology and Biochemistry, 25, 279–87.CrossRefGoogle Scholar
Mori, T. K. R. (2002). Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiology Letters, 216, 223–7.CrossRefGoogle ScholarPubMed
Mougin, C. (2002). Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycyclic Aromatic Compounds, 22, 1011–43.CrossRefGoogle Scholar
Mougin, C., Jolivalt, C., Malosse, C. & Chaplain, V. (2002a). Interference of soil contaminants with laccase activity during the transformation of complex mixtures of polycyclic aromatic hydrocarbons in liquid media. Polycyclic Aromatic Compounds, 22, 673–88.CrossRefGoogle Scholar
Mougin, C., Kollmann, A. & Jolivalt, C. (2002b). Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnology Letters, 24, 139–42.CrossRefGoogle Scholar
Novotný, C., Erbanová, P., Sasek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J. & Zadrazil, F. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 156–68.CrossRefGoogle ScholarPubMed
Novotný, C., Erbanova, P., Cajthaml, T., Rothschild, N., Dosoretz, C. & Sasek, V. (2000). Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Applied Microbiology and Biotechnology, 54, 850–3.Google ScholarPubMed
Pickard, M. A., Roman, R., Tinoco, R. & Vazquez-Duhalt, R. (1999). Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Applied and Environmental Microbiology, 65, 3805–9.Google ScholarPubMed
Popp, J. L. & Kirk, T. K. (1991). Oxidation of methoxybenzenes by manganese peroxidase and by Mn3 +. Archives of Biochemistry and Biophysics, 288, 145–8.CrossRefGoogle ScholarPubMed
Radtke, C., Cook, W. S. & Anderson, A. (1994). Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soil. Applied Microbiology and Biotechnology, 41, 274–80.CrossRefGoogle Scholar
Rama, R., Mougin, C., Boyer, F. D., Kollmann, A., Malosse, C. & Sigoillot, J. C. (1998). Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnology Letters, 20, 1101–4.CrossRefGoogle Scholar
Ramirez, N. & Cutright, T. J. (2000). Sequestration of pyrene by clay minerals in a natural soil. Abstracts of Papers of the American Chemical Society, 220, 51–ENVR.Google Scholar
Rathbone, K., Fuchs, J., Anderson, K., Karthikeyan, R. & Nurhidayat, N. (1998). Effects of PAHs on microbial activity and diversity in freshly contaminated and weathered soils. In Proceedings of the 1998 Conference on Hazardous Waste Research. Manhattan, KA: Great Plains/Rocky Mountain Hazardous Substance Research Center, pp. 383–402.Google Scholar
Reddy, C. A. (1995). The potential for white-rot fungi in the treatment of pollutants. Current Opinion in Biotechnology, 6, 320–8.CrossRefGoogle Scholar
Reddy, G. V., Gelpke, M. D. & Gold, M. H. (1998). Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium: involvement of reductive dechlorination. Journal of Bacteriology, 180, 5159–64.Google ScholarPubMed
Reddy, G. V. & Gold, M. H. (2000). Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology, 146, 405–13.CrossRefGoogle ScholarPubMed
Reddy, G. V. & Gold, M. H. (2001). Purification and characterization of glutathione conjugate reductase: a component of the tetrachlorohydroquinone reductive dehalogenase system from Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 391, 271–7.CrossRefGoogle ScholarPubMed
Reinhammer, B. (1972). Oxidation-reduction potentials of the electron acceptors I laccases and stellacyanin. Biochimica et Biophysica Acta, 275, 245–59.CrossRefGoogle Scholar
Rieble, S., Joshi, D. K. & Gold, M. H. (1994). Purification and characterization of a 1,2,4-trihydroxybenzene 1,2-dioxygenase from the basidiomycete Phanerochaete chrysosporium. Journal of Bacteriology, 176, 4838–44.CrossRefGoogle ScholarPubMed
Rothschild, N., Levkowitz, A., Hadar, Y. & Dosoretz, C. G. (1999). Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Applied and Environmental Microbiology, 65, 483–8.Google ScholarPubMed
Ruttimannjohnson, C., Cullen, D. & Lamar, R. T. (1994). Manganese peroxidases of the white-rot fungus Phanerochaete sordida. Applied and Environmental Microbiology, 60, 599–605.Google Scholar
Ruttimannjohnson, C. & Lamar, R. T. (1996). Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Applied and Environmental Microbiology, 62, 3890–3.Google Scholar
Ruttimannjohnson, C. & Lamar, R. T. (1997). Binding of pentachlorophenol to humic substances in soil by the action of white rot fungi. Soil Biology and Biochemistry, 29, 1143–8.CrossRefGoogle Scholar
Sack, U. & Fritsche, W. (1997). Enhancement of pyrene mineralization in soil by wood-decaying fungi. FEMS Microbiology Ecology, 22, 77–83.CrossRefGoogle Scholar
Sack, U. & Gunther, T. (1993). Metabolism of PAH by fungi and correlation with extracellular enzymatic-activities. Journal of Basic Microbiology, 33, 269–77.CrossRefGoogle ScholarPubMed
Sack, U., Heinze, T. M., Deck, J., Cerniglia, C. E., Martens, R., Zadrazil, F. & Fritsche, W. (1997a). Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Applied and Environmental Microbiology, 63, 3919–25.Google Scholar
Sack, U., Hofrichter, M. & Fritsche, W. (1997b). Degradation of phenanthrene and pyrene by Nematoloma frowardii. Journal of Basic Microbiology, 37, 287–93.CrossRefGoogle Scholar
Sack, U., Hofrichter, M. & Fritsche, W. (1997c). Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiology Letters, 152, 227–34.CrossRefGoogle Scholar
Sayadi, S. & Ellouz, R. (1995). Roles of lignin peroxidase and manganese peroxidase from Phanerochaete chrysosporium in the decolorization of olive mill wastewaters. Applied and Environmental Microbiology, 61, 1098–103.Google ScholarPubMed
Schmidt, K. R., Chand, S., Gostomski, P. A., Boyd-Wilson, K. S., Ford, C. & Walter, M. (2005). Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnology Progress, 21, 377–85.CrossRefGoogle ScholarPubMed
Schoemaker, H. E., Harvey, P. J., Bowen, R. M. & Palmer, J. M. (1985). On the mechanism of enzymatic lignin breakdown. FEBS Letters, 183, 7–12.CrossRefGoogle Scholar
Schützendübel, A., Majcherczyck, A., Johannes, C. & Hüttermann, A. (1999). Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. International Biodeterioration and Biodegradation, 43, 93–100.CrossRefGoogle Scholar
Segura, F., Durany, G., Lozano, R. & Huguet, V. (1993). Detoxification pre-treatment of black liquor derived from non-wood feedstock with white-rot fungi. Environmental Technology, 14, 681–7.CrossRefGoogle Scholar
Shah, M. M., Grover, T. A. & Aust, S. D. (1991). Metabolism of cyanide by Phanerochaete chrysosporium. Archives of Biochemistry and Biophysics, 290, 173–8.CrossRefGoogle ScholarPubMed
Shen, Y. (1998). In vitro cytotoxicity of BTEX metabolites in HeLa cells. Archives of Environmental Contamination and Toxicology, 34, 229–34.CrossRefGoogle ScholarPubMed
Song, H. G. (1997). Biodegradation of aromatic hydrocarbons by several white-rot fungi. Journal of Microbiology, 35, 66–71.Google Scholar
Song, H. G. (1999). Comparison of pyrene biodegradation by white rot fungi. World Journal of Microbiology and Biotechnology, 15, 669–72.CrossRefGoogle Scholar
Stevenson, F. (1994). Humus Chemistry, 2nd edn. New York: John Wiley and Sons.Google Scholar
Sutherland, J. B. (1992). Detoxification of polycyclic aromatic hydrocarbons by fungi. Journal of Industrial Microbiology, 9, 53–62.CrossRefGoogle ScholarPubMed
Tai, D., Terazawa, M., Chen, C.-L. & Chang, H. (1990). Lignin biodegradation products from birch wood decayed by Phanerochaete chrysosporium. Part 2. The constituents of ether-soluble low-molecular-weight fraction. Holzforschung, 44, 257–62.CrossRefGoogle Scholar
ten Have, R., Thouars, R. G., Swarts, H. J. & Field, J. A. (1999). Veratryl alcohol-mediated oxidation of isoeugenyl acetate by lignin peroxidase. European Journal of Biochemistry, 265, 1008–14.CrossRefGoogle ScholarPubMed
Tien, M. & Kirk, T. K. (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium. Science, 221, 661–3.CrossRefGoogle ScholarPubMed
Torres, E., Bustos-Jaimes, I. & Borgne, S. (2003). Potential use of oxidative enzymes for the detoxification of organic pollutants. Applied Catalysis B – Environmental, 46, 1–15.CrossRefGoogle Scholar
Tucker, B., Radtke, C., Kwon, S. I. & Anderson, A. J. (1995). Suppression of bioremediation by Phanerochaete chrysosporium by soil factors. Journal of Hazardous Materials, 41, 251–65.CrossRefGoogle Scholar
Tuor, U., Wariishi, H., Schoemaker, H. & Gold, M. H. (1992). Oxidation of phenolic arylglycerol -aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of and -carbonyl model compound. Biochemistry, 31, 4986–95.CrossRefGoogle ScholarPubMed
Valderrama, B., Oliver, P., Medrano-Soto, A. & Vazquez-Duhalt, R. (2003). Evolutionary and structural diversity of fungal laccases. Antonie Van Leeuwenhoek, 84, 289–99.CrossRefGoogle ScholarPubMed
Valli, K. & Gold, M. H. (1991). Degradation of 2,4-dichlorophenol by the lignin-degrading fungus Phanerochaete chrysosporium. Journal of Bacteriology, 173, 345–52.CrossRefGoogle ScholarPubMed
Valli, K., Brock, B. J., Joshi, D. K. & Gold, M. H. (1992a). Degradation of 2,4-dinitrotoluene by the lignin-degrading fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58, 221–8.Google Scholar
Valli, K., Wariishi, H. & Gold, M. H. (1992b). Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Journal of Bacteriology, 174, 2131–7.CrossRefGoogle Scholar
Aken, B., Hofrichter, M., Scheibner, K., Hatakka, A. I., Naveau, H. & Agathos, S. N. (1999). Transformation and mineralization of 2,4,6-trinitrotoluene (TNT) by manganese peroxidase from the white-rot basidiomycete Phlebia radiata. Biodegradation, 10, 83–91.CrossRefGoogle ScholarPubMed
Vyas, B. R. M., Bakowski, S., Sasek, V. & Matucha, M. (1994). Degradation of anthracene by selected white-rot fungi. FEMS Microbiology Ecology, 14, 65–70.CrossRefGoogle Scholar
Wariishi, H., Valli, K. & Gold, M. H. (1989). Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium. Biochemistry, 28, 6017–23.CrossRefGoogle Scholar
Wilson, S. C. & Jones, K. (1993). Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environmental Pollution, 81, 229–49.CrossRefGoogle ScholarPubMed
Wischmann, H. & Steinhart, H. (1997). The formation of PAH oxidation products in soils and soil/compost mixtures. Chemosphere, 35, 1681–98.CrossRefGoogle Scholar
Wolter, M., Zadrazil, F., Martens, R. & Bahadir, M. (1997). Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Applied Microbiology and Biotechnology, 48, 398–404.CrossRefGoogle Scholar
Wunch, K. G., Alworth, W. L. & Bennett, J. W. (1999). Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiological Research, 154, 75–9.CrossRefGoogle ScholarPubMed
Xu, F. (1996). Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry, 35, 7608–14.CrossRefGoogle ScholarPubMed
Yadav, J. S. & Reddy, C. A. (1993). Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 59, 756–62.Google ScholarPubMed
Yateem, A., Balba, M. T., Al-Awadhi, N. & El-Nawawy, A. S. (1998). White rot fungi and their role in remediating oil-contaminated soil. Environment International, 24, 181–7.CrossRefGoogle Scholar
Zacchi, L., Burla, G., Zuolong, D. & Harvey, P. J. (2000a). Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. Journal of Biotechnology, 78, 185–92.CrossRefGoogle Scholar
Zacchi, L., Morris, I. & Harvey, P. J. (2000b). Disordered ultrastructure in lignin-peroxidase-secreting hyphae of the white-rot fungus Phanerochaete chrysosporium. Microbiology, 146, 759–65.CrossRefGoogle Scholar
Zacchi, L., Palmer, J. M. & Harvey, P. J. (2000c). Respiratory pathways and oxygen toxicity in Phanerochaete chrysosporium. FEMS Microbiology Letters, 183, 153–7.CrossRefGoogle Scholar
Zadrazil, F., Kamra, D. N., Isikhuemhen, O. S., Schuchardt, F. & Flachowsky, G. (1996). Bioconversion of lignocellulose into ruminant feed with white rot fungi – review of work done at the FAL, Braunschweig. Journal of Applied Animal Research, 10, 105–24.CrossRefGoogle Scholar
Zapanta, L. S. & Tien, M. (1997). The roles of veratryl alcohol and oxalate in fungal lignin degradation. Journal of Biotechnology, 53, 93–102.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • White-rot fungi and xenobiotics
    • By P. J. Harvey, University of Greenwich Medway School of Science Central Avenue Chatham Maritime Kent ME4 4TBUK, C. E. Scheer, BEPHS Business Innovation University of Greenwich at Medway Central Avenue Chatham Maritime Kent ME4 4TBUK
  • Edited by G. D. Robson, University of Manchester, Pieter van West, University of Aberdeen, Geoffrey Gadd, University of Dundee
  • Book: Exploitation of Fungi
  • Online publication: 05 October 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902451.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • White-rot fungi and xenobiotics
    • By P. J. Harvey, University of Greenwich Medway School of Science Central Avenue Chatham Maritime Kent ME4 4TBUK, C. E. Scheer, BEPHS Business Innovation University of Greenwich at Medway Central Avenue Chatham Maritime Kent ME4 4TBUK
  • Edited by G. D. Robson, University of Manchester, Pieter van West, University of Aberdeen, Geoffrey Gadd, University of Dundee
  • Book: Exploitation of Fungi
  • Online publication: 05 October 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902451.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • White-rot fungi and xenobiotics
    • By P. J. Harvey, University of Greenwich Medway School of Science Central Avenue Chatham Maritime Kent ME4 4TBUK, C. E. Scheer, BEPHS Business Innovation University of Greenwich at Medway Central Avenue Chatham Maritime Kent ME4 4TBUK
  • Edited by G. D. Robson, University of Manchester, Pieter van West, University of Aberdeen, Geoffrey Gadd, University of Dundee
  • Book: Exploitation of Fungi
  • Online publication: 05 October 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9780511902451.013
Available formats
×