Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:49:43.890Z Has data issue: false hasContentIssue false

11 - Archonta summary

from Part IV - Archonta

Published online by Cambridge University Press:  07 September 2010

Christine M. Janis
Affiliation:
Brown University, Rhode Island
Gregg F. Gunnell
Affiliation:
University of Michigan, Ann Arbor
Mark D. Uhen
Affiliation:
University of Alabama, Birmingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, R. M. and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta. Proceedings of the National Academy of Sciences, USA, 88, 10317–21.CrossRefGoogle ScholarPubMed
Aimi, M. and Inagaki, H. (1988). Grooved lower incisors in flying lemurs. Journal of Mammalogy, 69, 138–40.CrossRefGoogle Scholar
Allard, M. W., McNiff, B. E., and Miyamoto, M. M. (1996). Support for interordinal eutherian relationships with an emphasis on primates and their archontan relatives. Molecular Phylogenetics and Evolution, 5, 78–88.CrossRefGoogle ScholarPubMed
Bailey, W. J., Slightom, J. L., and Goodman, M. (1992). Rejection of the flying primate hypothesis by phylogenetic evidence from the 1-globin gene. Science, 256, 86–9.CrossRefGoogle Scholar
Beard, K. C. (1989). Postcranial anatomy, locomotor adaptations, and paleoecology of early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph. D. Thesis. Johns Hopkins University School of Medicine, Baltimore.
Beard, K. C. (1990). Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature, 345, 340–1.CrossRefGoogle Scholar
Beard,, K. C. (1993a). Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In Mammal Phylogeny: Placentals, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C., pp.129–50. New York: Springer-Verlag.Google Scholar
Beard,, K. C. (1993b). Origin and evolution of gliding in early Cenozoic Dermoptera (Mammalia, Primatomorpha). In Primates and Their Relatives in Phylogenetic Perspective, ed. MacPhee, R. D. E., pp. 63–90. New York: Plenum Press.Google Scholar
Bloch, J. I. and Boyer, D. M. (2002). Grasping primate origins. Science, 298, 1606–10.CrossRefGoogle ScholarPubMed
Bloch,, J. I., and Boyer,, D. M. (2007). New skeletons of Paleocene–Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In Primate Origins and Adaptations: A Multidisciplinary Perspective, ed. Ravosa, M. J. and Dagosto, M., pp. 535--81. New York: Plenum Press.Google Scholar
Bloch, J. I. and Silcox, M. T. (2001). New basicrania of Paleocene–Eocene Ignacius: re-evaluation of the plesiadapiform–dermopteran link. American Journal of Physical Anthropology, 116, 184–98.CrossRefGoogle ScholarPubMed
Bloch, J. I., and Silcox, M. T.(2006). Cranial anatomy of Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. Journal of Human Evolution, 50, 1–35.CrossRefGoogle ScholarPubMed
Bloch, J. I., Silcox, M. T., and Sargis, E. J. (2002). Origin and relationships of Archonta (Mammalia, Eutheria): re-evaluation of Eudermoptera and Primatomorpha. Journal of Vertebrate Paleontology, 22(suppl. to no. 3), p. 37A.Google Scholar
Bloch, J. I., Boyer, D. M., and Houde, P. (2003). Skeletons of Paleocene–Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. Journal of Vertebrate Paleontology, 23(suppl. to no. 3), p. 35A.Google Scholar
Bloch, J. I., Silcox, M. T., Boyer, D. M., and Sargis, E. J. (2004). New hypothesis of primate supraordinal relationships and its bearing on competing models of primate origins: a test from the fossil record. American Journal of Physical Anthropology, 123(suppl. 38), p. 64.Google Scholar
Boyer, D. M., Bloch, J. I., and Gingerich, P. D. (2001). New skeletons of Paleocene paromomyids (Mammalia,?Primates): were they mitten gliders?Journal of Vertebrate Paleontology, 21(suppl. to no. 3), p. 35A.Google Scholar
Boyer, D. M., Bloch, J. I., Silcox, M. T., and Gingerich, P. D. (2004).New observations on the anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. Journal of Vertebrate Paleontology, 24(suppl. to no. 3), p. 40A.Google Scholar
Butler,, P. M. (1972). The problem of insectivore classification. In Studies in Vertebrate Evolution, ed. Joysey, K. A. and Kemp, T. S., pp. 253–65. Edinburgh: Oliver and Boyd.Google Scholar
Butler,, P. M. (1980). The tupaiid dentition. In Comparative Biology and Evolutionary Relationships of Tree Shrews, ed. Luckett, W. P., pp. 171–204. New York: Plenum Press.Google Scholar
Carlsson, A. 1922. Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zoologica, 3, 227–70.CrossRefGoogle Scholar
Cartmill,, M. and MacPhee,, R. D. E. (1980). Tupaiid affinities: the evidence of the carotid arteries and cranial skeleton. In Comparative Biology and Evolutionary Relationships of Tree Shrews, ed. Luckett, W. P., pp. 95–132. New York: Plenum Press.Google Scholar
Chopra, S. R. K. and Vasishat, R. N. (1979). Sivalik fossil tree shrew from Haritalyangar, India. Nature, 281, 214–15.CrossRefGoogle Scholar
Chopra, S. R. K., Kaul, S., and Vasishat, R. N. (1979). Miocene tree shrews from the India Sivaliks. Nature, 218, 213–14.CrossRefGoogle Scholar
Clemens, W. A. (2004). Purgatorius (Plesiadapiformes, Primates?, Mammalia), a Paleocene immigrant into Northeastern Montana: stratigraphic occurrences and incisor proportions. Bulletin of the Carnegie Museum of Natural History, 36, 3–13.CrossRefGoogle Scholar
Ducrocq, S., Buffetaut, E., Buffetaut-Tong, H., et al. (1992). First fossil flying lemur: a dermopteran from the Late Eocene of Thailand. Palaeontology, 35, 373–80.Google Scholar
Dutta, A. K. (1975). Micromammals from Siwaliks. Indian Minerals, 29, 76–7.Google Scholar
Fleagle, J. G. (1999). Primate Adaptation and Evolution, 2nd edn. New York: Academic Press.Google Scholar
Gingerich, P. D. (1976). Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). University of Michigan Papers on Paleontology, 15, 1–140.Google Scholar
Gingerich, P. D. (1987). Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clarks Fork Basin, Wyoming. Contributions from the Museum of Paleontology, University of Michigan, 27, 275–320.Google Scholar
Gingerich, P. D. and Gunnell, G. F. (1992). A new skeleton of Plesiadapis cookei. The Display Case, 6, 1–2.Google Scholar
Gingerich, P. D., and Gunnell, G. F. (2005). Brain of Plesiadapis cookei (Mammalia, Proprimates): surface morphology and encephalization compared to those of Primates and Dermoptera. Contributions from the Museum of Paleontology, University of Michigan, 32, 185–95.Google Scholar
Gregory, W. K. (1910). The orders of mammals. Bulletin of the American Museum of Natural History, 27, 1–524.Google Scholar
Gunnell, G. F. and Simmons, N. B. (2005). Fossil evidence and the origin of bats. Journal of Mammalian Evolution, 12, 209–46.CrossRefGoogle Scholar
Hamrick, M. W., Rosenman, B. A., and Brush, J. A. (1999). Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. American Journal of Physical Anthropology, 109, 397–413.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Hill, J. E. and Smith, J. D. (1984). Bats: a Natural History. Austin, TX: University of Texas Press.Google Scholar
Hooker, J. J. (2001). Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zoological Journal of the Linnean Society, 132, 501–29.CrossRefGoogle Scholar
Jacobs,, L. L. (1980). Siwalik fossil tree shrews. In Comparative Biology and Evolutionary Relationships of Tree Shrews, ed. Luckett, W. P., pp. 205–16. New York: Plenum Press.Google Scholar
Johnson,, J. I. and Kirsh,, J. A. W. (1993). Phylogeny through brain traits: interordinal relationships among mammals including Primates and Chiroptera. In Primates and Their Relatives in Phylogenetic Perspective, ed. MacPhee, R. D. E., pp. 293–331. New York: Plenum Press.Google Scholar
Johnston, P. A. and Fox, R. C. (1984). Paleocene and late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica Abteilung A, 186, 163–222.Google Scholar
Jungers, W. L., Godfrey, L. R., Simons, E. L., and Chatrath, P. S. (1997). Phalangeal curvature and positional behavior in extinct sloth lemurs (Primates, Paleopropithecidae). Proceedings of the National Academy of Sciences, USA, 34, 11 998–2001.CrossRefGoogle Scholar
Kay,, R. F. (1984). On the use of anatomical features to infer foraging behavior in extinct primates. In Adaptation for Foraging in Nonhuman Primates: Contributions to an Organismal Biology of Prosimians, Monkeys and Apes, ed. Rodman, P. S. and Cant, J. G. H., pp. 21–53. New York: Columbia University Press.Google Scholar
Kay, R. F., Thewissen, J. G. M., and Yoder, A. D. (1992). Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. American Journal of Physical Anthropology, 89, 477–98.CrossRefGoogle Scholar
Kriegs, J. O., Churakov, G., Kiefmann, M., et al. (2006). Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biology, 34, 537–44.Google Scholar
Le, Gros Clark W. E. (1925). On the skull of Tupaia. Proceedings of the Zoological Society of London, 1925, 559–67.Google Scholar
Le, Gros Clark W. E. (1926). On the anatomy of the pen-tailed tree shrew (Ptilocercus lowii). Proceedings of the Zoological Society of London, 1926, 1179–309.Google Scholar
Liu, F.-G. R. and Miyamoto, M. M. (1999). Phylogenetic assessment of molecular and morphological data for eutherian mammals. Systematic Biology, 48, 54–64.CrossRefGoogle ScholarPubMed
Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., et al. (2001). Molecular and morphological supertrees for eutherian (placental) mammals. Science, 291, 1786–9.CrossRefGoogle ScholarPubMed
Lofgren, D. L. (1995). The Bug Creek problem and the Cretaceous–Tertiary boundary at McGuire Creek, Montana. University of California Publications in Geological Science, 140, 1–185.Google Scholar
MacPhee, R. D. E., Cartmill, M., and Rose, K. D. (1989). Craniodental morphology and relationships of the supposed Eocene dermopteran Plagiomene (Mammalia). Journal of Vertebrate Paleontology, 9, 329–49.CrossRefGoogle Scholar
Madsen, O., Scally, M., Douady, C. J., et al. (2001). Parallel adaptive radiations in two major clades of placental mammals. Nature, 409, 610–14.CrossRefGoogle ScholarPubMed
Marivaux,, L., Bocat,, L., Chaimanee,, Y., et al. (2006). Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar, and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zoologica Scripta, 35, 395–420.
Martin, R. D. (1990). Primate Origins and Evolution: A Phylogenetic Approach. Princeton, NJ: Princeton University Press.Google Scholar
McKenna,, M. C. (1975). Toward a phylogenetic classification of the Mammalia. In Phylogeny of the Primates, ed. Luckett, W. P. and Szalay, F. S., pp. 21–46. New York: Plenum Press.Google Scholar
McKenna, M. C. and Bell, S. K. (1997). Classification of Mammals Above the Species Level. New York: Columbia University Press.Google Scholar
Mein, P. and Ginsburg, L. (1997). Les mammifères du gisement Miocène inférieur de Li Mae Long, Thaïlande: systématique, biostratigraphie et paléoenvironnement. Geodiversitas, 19, 783–844.Google Scholar
Meng, J. (2004). Phylogeny and divergence of basal Glires. Bulletin of the American Museum of Natural History, 285, 93–109.2.0.CO;2>CrossRefGoogle Scholar
Miyamoto, M. M., Porter, C. A., and Goodman, M. (2000). c-myc gene sequences and the phylogeny of bats and other eutherian mammals. Systematic Biology, 49, 501–14.CrossRefGoogle ScholarPubMed
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001a). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.CrossRefGoogle Scholar
Murphy, W. J., Eizirik, E., O'Brien, S. J., et al. (2001b). Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–51.CrossRefGoogle Scholar
Ni, X. and Qiu, Z. (2002). The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. Journal of Human Evolution, 42, 535–46.Google Scholar
Novacek, M. J. (1980). Phylogenetic analysis of the chiropteran auditory region. Proceedings of the Fifth International Bat Research Conference, ed. Wilson, D.E. and Gardner, A.L., pp. 317–30. Lubbock, TX: Texas Technical Press.Google Scholar
(1992). Mammalian phylogeny: shaking the tree. Nature, 356, 121–5.CrossRef
Novacek, M. J. and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: morphological evidence. Cladistics, 2, 257–87.CrossRefGoogle Scholar
Nowak, R. M. (1999). Walker's Mammals of the World, 6th edn. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Olson, L. E., Sargis, E. J., and Martin, R. D. (2005). Intraordinal phylogenetics of tree shrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Molecular Phylogenetics and Evolution, 35, 656–73.CrossRefGoogle ScholarPubMed
Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., et al. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera, Primates). Philosophical Transactions of the Royal Society of London, B, 325, 489–559.CrossRefGoogle Scholar
Pumo, D. E., Finamore, P. S., Franek, W. R., et al. (1998). Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of relationships of bats to other eutherian mammals. Journal of Molecular Evolution, 47, 709–17.CrossRefGoogle Scholar
Qiu, Z. (1986). Fossil tupaiid from the hominoid locality of Lufeng, Yunnan. Vertebrata PalAsiatica, 24, 308–19.Google Scholar
Rose, K. D. (1975). The Carpolestidae: early Tertiary primates from North America. Bulletin of the Museum of Comparative Zoology, 147, 1–74.Google Scholar
Rose, K. D., Beard, K. C., and Houde, P. (1993). Exceptional new dentitions of the diminutive plesiadapiforms Tinimomys and Niptomomys (Mammalia), with comments on the upper incisors of Plesiadapiformes. Annals of the Carnegie Museum, 62, 351–61.Google Scholar
Russell, D. E. (1959). Le crâne de Plesiadapis. Bulletin Societe Géologique de France, 4, 312–4.Google Scholar
Sargis, E. J. (2001). The phylogenetic relationships of archontan mammals: Postcranial evidence. Journal of Vertebrate Paleontology, 21(suppl. to no. 3), p. 97A.Google Scholar
Sargis, E. J. (2002a). The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): an analysis of Primatomorphan and Volitantian characters. Journal of Mammalian Evolution, 9, 137–60.CrossRefGoogle Scholar
Sargis, E. J. (2002b). Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. Journal of Morphology, 253, 10–42.CrossRefGoogle Scholar
Sargis, E. J. (2004). New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evolutionary Anthropology, 13, 56–66.CrossRefGoogle Scholar
Silcox, M. T. (2001). A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other Archontans. Ph. D. Thesis, Johns Hopkins School of Medicine, Baltimore.
Silcox, M. T. (2003). New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. Journal of Human Evolution, 44, 73–86.CrossRefGoogle ScholarPubMed
Silcox, M. T. and Bloch, J. I. (2006). Upper incisor evolution in plesiadapiform primates. American Journal of Physical Anthropology, supple. 42, p. 165.Google Scholar
Silcox,, M. T., Bloch,, J. I., Sargis,, E. J., and Boyer,, D. M. (2005). Euarchonta (Dermoptera, Scandentia, Primates). In The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades, ed. Rose, K. D. and Archibald, J. D., pp. 127–44. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Simmons, N. B. (1994). The case for chiropteran monophyly. American Museum Novitates, 3103, 1–54.Google Scholar
Simmons,, N. B. (1995). Bat relationships and the origin of flight. In Ecology, Evolution, and Behavior of Bats, ed. Racey, P. A. and Swift, S. M., pp. 27–43. Oxford: Oxford University Press.Google Scholar
Simmons, N. B. and Geisler, G. H. (1998). Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bulletin of the American Museum of Natural History, 235, 1–182.Google Scholar
Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 1–350.Google Scholar
Smith,, J. D. and Madkour,, G. (1980). Penial morphology and the question of chiropteran phylogeny. In Proceedings of the Fifth International Bat Research Conference, ed. Wilson, D. E. and Gardner, A. L., pp. 347–65. Lubbock, TX: Texas Technical Press.Google Scholar
Springer, M. S., Murphy, W. J., Eizirik, E., and O'Brien, S. J. (2003). Placental mammal diversification and the Cretaceous–Tertiary boundary. Proceedings of the National Academy of Sciences, USA, 100, 1056–61.CrossRefGoogle ScholarPubMed
Springer, M. S., Stanhope, M. J., Madsen, O., and Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution, 19, 430–48.CrossRefGoogle ScholarPubMed
Stafford, B. J. and Szalay, F. S. (2000). Craniodental functional morphology and taxonomy of dermopterans. Journal of Mammalogy, 81, 360–85.2.0.CO;2>CrossRefGoogle Scholar
Szalay,, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. In Major Patterns in Vertebrate Evolution, ed. Hecht, M. K., Goody, P. C. and Hecht, B. M., pp. 315–74. New York: Plenum Press.Google Scholar
Szalay,, F. S. and Drawhorn,, G. (1980). Evolution and diversification of the Archonta in an arboreal milieu. In Comparative Biology and Evolutionary Relationships of Tree Shrews, ed. Luckett, W. P., pp. 133–69. New York: Plenum Press.Google Scholar
Szalay,, F. S. and Lucas,, S. G. (1993). Cranioskeletal morphology of Archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In Primates and their Relatives in Phylogenetic Perspective, ed. MacPhee, R. D. E., pp. 187–226. New York: Plenum Press.Google Scholar
Szalay, F. S., and Lucas, S. G. (1996). The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bulletin of the New Mexico Museum of Natural History and Science, 7, 1–47.Google Scholar
Szalay,, F. S., Tattersall,, I., and Decker,, R. L. (1975). Phylogenetic relationships of Plesiadapis: postcranial evidence. In Approaches to Primate Paleobiology, ed. Szalay, F. S., pp. 136–66. Basel: Karger.Google Scholar
Szalay, F. S., Rosenberger, A. L., and Dagosto, M. (1987). Diagnosis and differentiation of the order Primates. Yearbook of Physical Anthropology, 30, 75–105.CrossRefGoogle Scholar
Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien, S. J., and Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307, 580–4.CrossRefGoogle ScholarPubMed
Tong, Y. (1988). Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vertebrata PalAsiatica, 26, 214–20.Google Scholar
Van, Bussche R. A. and Hoofer, S. R. (2004). Phylogenetic relationships among recent chiropteran families and the importance of choosing appropriate out-group taxa. Journal of Mammalogy, 85, 321–30.Google Scholar
Waddell, P. J., Okada, N., and Hasegawa, M. (1999). Towards resolving the interordinal relationships of placental mammals. Systematic Biology, 48, 1–5.CrossRefGoogle ScholarPubMed
Walker,, A. C. (1974). Locomotor adaptations in past and present prosimian primates. In Primate Locomotion, ed. Jenkins, F. A. Jr., pp. 349–82. London: Academic Press.Google Scholar
Wible, J. R. and Covert, H. H. (1987). Primates: cladistic diagnosis and relationships. Journal of Human Evolution, 16, 1–22.CrossRefGoogle Scholar
Wible, J. R. and Martin,, J. R. (1993). Ontogeny of the tympanic floor and roof in archontans. In Primates and their Relatives in Phylogenetic Perspective, ed. MacPhee, R. D. E., pp. 111–46. New York: Plenum Press.Google Scholar
Wischusen, E. W. and Richmond, M. E. (1998). Foraging ecology of the Philippine flying lemur (Cynocephalus volans). Journal of Mammalogy, 79, 1288–95.CrossRefGoogle Scholar
Youlatos, D. and Godinot, M. (2004). Locomotor adaptations of Plesiadapis tricuspidens and Plesiadapis n. sp. (Mammalia, Plesiadapiformes) as reflected on selected parts of the postcranium. Journal of Anthropological Science, 82, 103–18.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×