Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T02:07:19.441Z Has data issue: false hasContentIssue false

18 - Evolutionary Origins of Complex Cognition

from Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Cognitive abilities in animals can range from simple learning mechanisms to complex mechanisms including causal reasoning, imagination, foresight, and perspective taking. These complex cognitive abilities are thought to have evolved in primates in response to socio-ecological challenges faced by their ancestors. Corvids, a group of large-brained birds, are thought to have evolved comparable cognitive abilities in response to similar socio-ecological pressures. Cephalopods, including octopus, cuttlefish, and squid, also exhibit a subset of complex cognitive abilities despite having evolved independently. Here, we discuss the evolutionary pressures that might have facilitated the emergence of complex cognition in these diverse animal groups. By identifying the cognitive similarities between diverse taxa and recognizing the likely drivers for their emergence, we can derive a more comprehensive understanding of cognitive evolution.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, N. J., Williamson, R., & Maddock, L. (1995). Cephalopod neurobiology. Oxford University Press.Google Scholar
Agin, V., Chichery, R., Chichery, M. P., Dickel, L., Darmaillacq, A. S., & Bellanger, C. (2006a). Behavioural plasticity and neural correlates in adult cuttlefish. Vie Milieu, 56, 8187.Google Scholar
Agin, V., Chichery, R., Dickel, L., & Chichery, M. P. (2006b). The “prawn-in-the-tube” procedure in the cuttlefish: Habitation or passive avoidance learning? Learning and Memory, 13, 97101. https://doi.org/10.1101/lm.90106CrossRefGoogle ScholarPubMed
Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 14151419. https://doi.org/10.1016/j.cub.2008.08.020CrossRefGoogle ScholarPubMed
Amodio, P., Boeckle, M., Schnell, A. K., Ostojić, L., Fiorito, G., & Clayton, N. S. (2018). Grow smart and die young: Why did cephalopods evolve intelligence? Trends in Ecology and Evolution, 34, 4556. https://doi.org/10.1016/j.tree.2018.10.010CrossRefGoogle ScholarPubMed
Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554, 364367. https://doi.org/10.1038/nature25503CrossRefGoogle ScholarPubMed
Biederman, G. B., & Davey, V. A. (1993). Social learning in invertebrates. Science, 259, 24132419. https://doi.org/10.1126/science.259.5101.1627CrossRefGoogle ScholarPubMed
Billard, P., Clayton, N. S., & Jozet-Alves, C. (2020a). Cuttlefish retrieve whether they smelt or saw a previously encountered item. Scientific Reports, 10, 5413. https://doi.org/10.1038/s41598-020-62335-xCrossRefGoogle ScholarPubMed
Billard, P., Schnell, A. K., Clayton, N. S., & Jozet-Alves, C. (2020b). Cuttlefish show flexible and future-dependent foraging cognition. Biology Letters, 16, 20190743. https://doi.org/10.1098/rsbl.2019.0743Google Scholar
Boal, J. G. (1991). Complex learning in Octopus bimaculoides. American Malacological Bulletin, 9, 7580.Google Scholar
Boal, J. G. (1996). A review of simultaneous visual discrimination as a method of training octopuses. Biological Reviews, 71, 157190. https://doi.org/10.1111/j.1469-185x.1996.tb00746.xCrossRefGoogle ScholarPubMed
Boal, J. G. (2006). Social recognition: A top down view of cephalopod behavior. Vie Millieu, 56, 6979.Google Scholar
Boal, J. G., Wittenberg, K. M., & Hanlon, R. T. (2000). Observational learning does not explain improvement in predation tactics by cuttlefish (Mollusca: Cephalopoda). Behavioural Processes, 52, 141153. https://doi.org/10.1016/S0376-6357(00)00137-6CrossRefGoogle Scholar
Bobrowicz, K., Johansson, M., & Osvath, M. (2020). Great apes selectively retrieve relevant memories to guide action. Scientific Reports, 10, 12603. https://doi.org/10.1038/s41598-020-69607-6Google Scholar
Boeckle, M., Schiestl, M., Frohnwieser, A., Gruber, R., Miller, R., Suddendorf, T., Gray, R. D.,Taylor, A. H., & Clayton, N. S. (2020). New Caledonian crows plan for specific future tool use. Proceedings of the Royal Society B, 287, 20201490. https://doi.org/10.1098/rspb.2020.1490Google Scholar
Bond, A. B., Kamil, A. C., & Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behaviour, 65, 479487. https://doi.org/10.1006/anbe.2003.2101Google Scholar
Brewer, S. M., & McGrew, W. C. (1990). Chimpanzee use of a tool-set to get honey. Folia Primatology, 54, 100104. https://doi.org/10.1159/000156429CrossRefGoogle ScholarPubMed
Brown, C., Garwood, M. P., & Williamson, J. E. (2012). It pays to cheat: Tactical deception in a cephalopod social signalling system. Biology Letters, 8, 729732. https://doi.org/10.1098/rsbl.2012.0435Google Scholar
Budelmann, B. U. (1995). The cephalopod nervous system: What evolution has made of the molluscan design. In Breidbach, O., & Kutsch, W. (Eds.), The nervous systems of invertebrates: An evolutionary and comparative approach (pp. 115138). Birkhauser Verlag.CrossRefGoogle Scholar
Byrne, R. W. (2004). The manual skills and cognition that lie behind hominid tool use. In Russon, A. E., & Begun, D. R. (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 3144). Cambridge University Press.Google Scholar
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17, R714R723. https://doi.org/10.1016/j.cub.2007.05.069.Google Scholar
Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford University Press.Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12, 187192. https://doi.org/10.1016/j.tics.2008.02.010Google Scholar
Cheke, L. C., & Clayton, N. S. (2012). Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biology Letters, 8, 71175. https://doi.org/10.1098/rsbl.2011.0909CrossRefGoogle ScholarPubMed
Cheng, M. A., & Caldwell, R. (2000). Sex identification and mating in the blue-ringed octopus, Hapalochlaena lunulata. Animal Behaviour, 60, 2733. https://doi.org/10.1006/anbe.2000.1447CrossRefGoogle ScholarPubMed
Chettleburgh, M. (1952). Observations on the collection and burial of acorns by jays in Hainault Forest. British Birds, 45, 359364.Google Scholar
Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685691. https://doi.org/10.1038/nrn1180Google Scholar
Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society B, 362, 507522. https://doi.org/10.1098/rstb.2006.1992Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272274. https://doi.org/10.1038/26216CrossRefGoogle ScholarPubMed
Clayton, N. S., & Dickinson, A. (1999b). Memory for the content of caches by scrub jays. Journal of Experimental Psychology: Animal Behavior Processes, 25, 8291. http://dx.doi.org/10.1037//0097-7403.25.1.82Google Scholar
Clayton, N. S., & Dickinson, A. (1999a). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403416. https://doi.org/10.1037/0735-7036.113.4.403Google Scholar
Clayton, N. S., & Emery, N. J. (2015). Avian models of human cognitive neuroscience: A proposal. Neuron, 86, 13301342. https://doi.org/10.1016/j.neuron.2015.04.024Google Scholar
Clayton, N. S., Yu, K. S., Dickinson, A. (2001). Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. Journal of Experimental Psychology Animal Behavior Processes, 27, 1729.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brain and ecology. Journal of Zoology, 190, 309323. https://doi.org/10.1111/j.1469-7998.1980.tb01430.xCrossRefGoogle Scholar
Cole, P. D., & Adamo, S. A. (2005). Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Animal Cognition, 8, 2730. https://doi.org/10.1007/s10071-004-0228-9CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 56. https://doi.org/10.1016/j.tics.2012.10.009Google Scholar
Correia, S. P. C., Dickinson, A., & Clayton, N. S. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Current Biology, 17, 856861. https://doi.org/10.1016/j.cub.2007.03.063Google Scholar
Cristol, D. A., Reynolds, E. B., Leclerc, J. E., Donner, A. H., Farabaugh, C. S., & Ziegenfus, C. W. S. (2003). Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics. Animal Behaviour, 66, 317328. https://doi.org/10.1006/anbe.2003.2194CrossRefGoogle Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312, 16621665. https://doi.org/10.1126/science.1126539Google Scholar
Darmaillacq, A. S., Dickel, L., & Mather, J. A. (2014). Cephalopod cognition. Cambridge University Press.Google Scholar
DeMartini, D. G., Ghoshal, A., Pandolfi, E., Weaver, A. T., Baum, M., & Morse, D. E. (2013). Dynamic biophotonics: Female squid exhibit sexually dimorphic tunable leucophores and iridocytes. Journal of Experimental Biology, 216, 37333741. https://doi.org/10.1242/jeb.090415CrossRefGoogle ScholarPubMed
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 9, 178190. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8Google Scholar
Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society B, 361, 2343. https://doi.org/10.1098/rstb.2005.1736CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443–-446. https://doi.org/10.1038/35106560CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 19031907. https://doi.org/10.1126/science.1098410Google Scholar
Emery, N. J., & Clayton, N. S. (2005). Evolution of avian brain and intelligence. Current Biology, 15, R946R950. https://doi.org/10.1016/j.cub.2005.11.029Google Scholar
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society B, 362, 489505. https://doi.org/10.1098/rstb.2006.1991CrossRefGoogle ScholarPubMed
Finn, J. K., Tregenza, T., & Norman, M.D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19, R1069R1070. https://doi.org/10.1016/j.cub.2009.10.052CrossRefGoogle Scholar
Fiorito, G., & Gherardi, F. (1999). Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behavioural Processes, 46, 7588. https://doi.org/10.1016/S0376-6357(99)00020-0CrossRefGoogle ScholarPubMed
Fiorito, G., & Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256, 545547. https://doi.org/10.1126/science.256.5056.545CrossRefGoogle ScholarPubMed
Goodall, J. (1964). Tool-using and aimed throwing in a community of free-living chimpanzees. Nature, 201, 12641266. https://doi.org/10.1038/2011264a0CrossRefGoogle Scholar
Grodzinski, U., & Clayton, N. S. (2010). Problems faced by food-caching corvids and the evolution of cognitive solutions. Philosophical Transactions of the Royal Society B, 365, 977987. https://doi.org/10.1098/rstb.2009.0210CrossRefGoogle ScholarPubMed
Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton, N. S., & Taylor, A. H. (2019). New Caledonian crows use mental representations to solve metatool problems. Current Biology, 29, 686692. https://doi.org/10.1016/j.cub.2019.01.008Google Scholar
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291303. https://doi.org/10.1016/j.tics.2016.02.001Google Scholar
Hall, K. C., & Hanlon, R. T. (2002). Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Marine Biology, 140, 533545. https://doi.org/10.1007/s00227-001-0718-0Google Scholar
Hanlon, R. T., Conroy, L. A., & Forsythe, J. W. (2008). Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. Biological Journal of Linnean Society, 93, 2338. https://doi.org/10.1111/j.1095-8312.2007.00948.xCrossRefGoogle Scholar
Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour, 2nd ed. Cambridge University Press. https://doi.org/10.1017/9780511843600CrossRefGoogle Scholar
Hanlon, R. T., Naud, M. J., Shaw, P. W., & Havenhand, J. N. (2005). Transient sexual mimicry leads to fertilization. Nature, 433, 212. https://doi.org/10.1038/433212aGoogle Scholar
Hanlon, R. T., Watson, A. C., & Barbosa, A. (2010). A “mimic octopus,” in the Atlantic: Flatfish mimicry and camouflage by Macrotritopus defilippi. Biological Bulletin, 218, 1524. https://doi.org/10.1086/BBLv218n1p15Google Scholar
Hanus, D., & Call, J. (2008). Chimpanzees infer the location of a reward on the basis of the effect of its weight. Current Biology, 18, R370R372. https://doi.org/10.1016/j.cub.2008.02.039Google Scholar
Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59, 771785.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139151.Google Scholar
Heyes, C. (2012). What’s social about social learning? Journal of Comparative Psychology, 126, 193202. https://doi.org/10.1037/a0025180CrossRefGoogle ScholarPubMed
Heyes, C. (2014). Submentalizing: I am not really reading your mind. Perspectives on Psychological Sciences, 9, 131143. https://doi.org/10.1177/1745691613518076CrossRefGoogle Scholar
Heyes, C. (2015). Animal mindreading: What’s the problem? Psychonomic Bulletin Review, 22, 313327. https://doi.org/10.3758/s13423-014-0704-4Google Scholar
Hopper, L. M., van de Waal, E., & Caldwell, C. A. (2018). Celebrating the continued importance of “Machiavellian Intelligence” 30 years on. Journal of Comparative Psychology, 132, 427431. https://doi.org/10.1037/com0000157CrossRefGoogle Scholar
Huang, K. L., & Chiao, C. C. (2013). Can cuttlefish learn by observing others? Animal Cognition, 16, 313320. https://doi.org/10.1007/s10071-012-0573-zCrossRefGoogle ScholarPubMed
Huffard, C. L. (2006). Locomotion by Abdopus aculeatus (Cephalopod: Octopodidae): Walking the line between primary and secondary defenses. Journal of Experimental Biology, 209, 36973707. https://doi.org/10.1242/jeb.02435Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge University Press.Google Scholar
Hunt, G. R. (2000). Tool use by the New Caledonian crow Corvus moneduloides to obtain cerambycidae from dead wood. Emu, 100, 109114. https://doi.org/10.1071/MU9852CrossRefGoogle Scholar
Hunt, G. R., & Gray, R. D. (2002). Species-wide manufacture of stick-type tools by New Caledonian crows. Emu, 102, 349353. https://doi.org/10.1071/MU01056CrossRefGoogle Scholar
Hunt, G. R., & Gray, R. D. (2004a). Direct observations of pandanus-tool manufacture and use by a New Caledonian crow (Corvus moneduloides). Animal Cognition, 7, 114120. https://doi.org/10.1007/s10071-003-0200-0Google Scholar
Hunt, G. R., & Gray, R. D. (2004b). The crafting of hook tools by wild New Caledonian crows. Biology Letters, 271, 8890. https://doi.org/10.1098/rsbl.2003.0085Google Scholar
Jaakola, K., Guarino, E., Donegan, K., & King, S. L. (2018). Bottlenose dolphins can understand their partner’s role in a cooperative task. Proceedings of the Royal Society B, 285, 20180948. https://doi.org/10.1098/rspb.2018.0948Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23, R1033R1035. https://doi.org/10.1016/j.cub.2013.10.021Google Scholar
Kabadayi, C., & Osvath, M. (2017). Ravens parallel great apes in flexible planning for tool-use and bartering. Science, 375, 202204. https://doi.org/10.1126/science.aam8138Google Scholar
Kirkpatrick, C. (2011). Tactical deception and the great apes: Insight into the question of Theory of Mind. Totem: The University of Western Ontario Journal of Anthropology, 1, 3137.Google Scholar
de Kort, S. R., & Clayton, N. S. (2006). An evolutional perspective on caching by corvids. Proceedings of the Royal Society B, 273, 417423. https://doi.org/10.1098/rspb.2005.3350Google Scholar
Kotrschal, A., Deacon, A. E., Magurran, A. E., & Kolm, N. (2017). Predation pressure shapes brain anatomy in the wild. Evolutionary Ecology, 31, 619633. https://doi.org/10.1007/s10682-017-9901-8Google Scholar
Krebs, J. R., & Dawkins, R. (1984). Animal signals: Mind-reading and manipulation. In Krebs, J. & Davies, N. (Eds.), Behavioural ecology: An evolutionary approach (pp. 380402). Blackwell Scientific Publications.Google Scholar
Krupenye, C., & Call, J. (2019). Theory of Mind in animals: Current and future directions. WIREs Cognitive Sciences, e1503. https://doi.org/10.1002/wcs.1503Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110114. https://doi.org/10.1126/science.aaf8110Google Scholar
Lefebvre, L., & Bouchard, J. (2003), Social learning about food in birds. In Fragaszy, D. M. & Perry, S. (Eds.), The biology of traditions: Models and evidence (pp. 94126). Cambridge University Press.Google Scholar
Lefebvre, L., & Giraldeau, L.-A. (1996 ). Is social learning an adaptive specialization? In Heyes, C. M. & Galef, B. G., Jr. (Eds.), Social learning in animals: The roots of culture (pp. 107128). Academic Press.Google Scholar
Lefebvre, L., Nicolakakis, N., & Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939973. https://doi.org/10.1163/156853902320387918Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233246. https://doi.org/10.1159/000076784Google Scholar
Mann, J., & Patterson, E. M. (2013). Tool use by aquatic animals. Proceedings of the Royal Society B, 368, 20120424. https://doi.org/10.1098/rstb.2012.0424Google ScholarPubMed
Marino, L. (2002). Convergence of complex cognitive abilities in cetaceans and primates. Brain, Behavior and Evolution, 59, 2132. https://doi.org/10.1159/000063731Google Scholar
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331340. https://doi.org/10.1007/s10071-009-0282-4Google Scholar
Mather, J. A. (1991). Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168, 491497. https://doi.org/10.1007/BF00199609Google Scholar
Mather, J. A. (1994). “Home” choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? Journal of Zoology, 233, 359368. https://doi.org/10.1111/j.1469-7998.1994.tb05270.xGoogle Scholar
Mather, J. A. (1995). Cognition in cephalopods. Advances in the Study of Behavior, 24, 317353.Google Scholar
Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in Behavioral Sciences, 16, 131137. https://doi.org/10.1016/j.cobeha.2017.06.008CrossRefGoogle Scholar
Matsuzawa, T. (1994). Field experiments on use of stone tools by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., de Waal FBM, F. B. M., & Heltone, P. G. (Eds.), Chimpanzee cultures (pp. 351370). Harvard University Press.Google Scholar
Matsuzawa, T., Humle, T., & Sugiyama, Y. (2011). The chimpanzees of Bossou and Nimba. Springer.CrossRefGoogle Scholar
Midford, P. E., Hailman, J. P., & Woolfenden, G. E. (2000). Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Animal Behaviour, 59, 11991207. https://doi.org/10.1006/anbe.1999.1419Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 543548. https://doi.org/10.1525/aa.1981.83.3.02a00020Google Scholar
Mock, D. W., & Fujioka, M. (1990). Monogamy and long-term pair bonding in vertebrates. Trends in Ecology and Evolution, 5, 3943. https://doi.org/10.1016/0169-5347(90)90045-FGoogle Scholar
Morse, P., & Huffrard, C. L. (2019). Tactical tentacles: New insights on the proves of sexual selection among the Cephalopoda. Frontiers in Physiology, 10, 1035. https://doi.org/10.3389/fphys.2019.01035Google Scholar
Moynihan, M. H., & Rodaniche, A. F. (1982). The behavior and natural history of the Caribbean reef squid Sepioteuthis sepioidea with a consideration of social, signal, and defensive patterns for difficult and dangerous environments. Fortschritte der Verhaltensforschung, 25, 9150 [Advanced Ethology, 125, 1–150].Google Scholar
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312, 10381040. https://doi.org/10.1126/science.1125456Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783Google Scholar
Nixon, M., & Young, J. Z. (2003). The brains and lives of cephalopods. Oxford University Press.Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (1999). Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B, 266, 13471349. https://doi.org/10.1098/rspb.1999.0786Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (2001). Dynamic mimicry in an indo-Malayan octopus. Proceedings of the Royal Society B, 268, 17551758. https://doi.org/10.1098/rspb.2001.1708Google Scholar
Okamoto, K., Yasumuro, H., Mori, A., & Ikeda, Y. (2017). Unique arm-flapping behavior of the pharaoh cuttlefish, Sepia pharaonis: Putative mimicry of a hermit crab. Journal of Ethology, 35, 307311. https://doi.org/10.1007/s10164-017-0519-7Google Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Nêmec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of the United States of America, 113, 72557260. https://doi.org/10.1073/pnas.1517131113CrossRefGoogle ScholarPubMed
Osvath, M., Kabadayi, C., & Jacobs, I. (2014). Independent evolution of similar complex cognitive skills: The importance of embodied degrees of freedom. Animal Behaviour and Cognition, 1, 249264. https://doi.org/10.12966/abc.08.03.2014Google Scholar
Osvath, M., & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Animal Cognition, 11, 661674. https://doi.org/10.1007/s10071-008-0157-0Google Scholar
Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biological Reviews, 47, 241301. https://doi.org/10.1111/j.1469-185X.1972.tb00975.xGoogle Scholar
Panetta, D., Buresch, K., & Hanlon, R. T. (2017). Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biology Letters, 13, 20170070. https://doi.org/10.1098/rsbl.2017.0070Google Scholar
Parker, S. T., & Gibson, B. M. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6, 623641. https://doi.org/10.1016/S0047-2484(77)80135-8Google Scholar
Penn, D. C., & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “Theory of Mind”. Philosophical Transactions of the Royal Society B, 362, 731744. https://doi.org/10.1098/rstb.2006.2023Google Scholar
Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, L. A. (2013). Reasoning by inference: Further studies on exclusion in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272281. https://doi.org/10.1037/a0031641Google Scholar
Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. M. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences of the United States of America, 108, 51165121. https://doi.org/10.1073/pnas.1101765108Google Scholar
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences of the United States of America, 103, 1705317057. https://doi.org/10.1073/pnas.0608062103Google Scholar
Potts, R. (2004). Paleo-environmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209228. https://doi.org/10.1002/ajp.20016Google Scholar
Povinelli, D. J., & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences, 7, 157160. https://doi.org/10.1016/S1364-6613(03)00053-6Google Scholar
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. C., & Clayton, N. S. (2001). Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). General and Comparative Endocrinology, 123, 324331. https://doi.org/10.1006/gcen.2001.7684Google Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526.Google Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919921. https://doi.org/10.1038/nature05575Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 44364441. https://doi.org/10.1073/pnas.062041299CrossRefGoogle ScholarPubMed
Redshaw, J. & Suddendorf, T. (2016). Children’s and Apes’ preparatory responses to two mutally exclusive possibilities. Current Biology, 26, 17581762.Google Scholar
Redshaw, J., Taylor, A. H., & Suddendorf, T. (2017). Flexible planning in ravens? Trends on Cognitive Sciences, 21, 821822.CrossRefGoogle ScholarPubMed
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21, 691702. https://doi.org/10.1016/j.tics.2017.05.011Google Scholar
Sanders, F. K., & Young, J. Z. (1940). Learning and other functions of the higher nervous centers of Sepia. Journal of Neurophysiology, 3, 501526.Google Scholar
Sanz, C., Morgan, D., & Gulick, S. (2004). New insights into chimpanzees, tools, and termites from the Congo Basin. American Naturalist, 164, 567581. https://doi.org/10.1086/424803CrossRefGoogle ScholarPubMed
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. https://doi.org/10.1016/j.neuron.2012.11.001Google Scholar
Scheel, D., Godfrey-Smith, P., & Lawrence, M. (2014). Octopus tetricus (Mollusca: Cephalopoda) as an ecosystem engineer. Scientia Marina, 78, 521528. https://doi.org/10.1080/19420889.2017.1395994Google Scholar
Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021a). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162178. https://doi.org/doi:10.1111/brv.12651Google Scholar
Schnell, A. K., Boeckle, M., Rivera, M., Clayton, N. S., & Hanlon, R. T. (2021b). Cuttlefish exert self-control in a delay of gratification task. Proceedings of the Royal Society B, 288, 20203161. https://doi.org/10.6084/m9.figshare.c.5309888Google Scholar
Schnell, A. K., Clayton, N. S., Hanlon, R. R. T., & Jozet-Alves, C. (2021c). Episodic-like memory is preserved with age in cuttlefish. Proceedings of the Royal Society B, 288, 20211052. https://doi.org/10.1098/rspb.2021.1052CrossRefGoogle ScholarPubMed
Schnell, A. K., & Clayton, N. S. (2019). Cephalopod cognition. Current Biology, 29, R726R732. https://doi.org/10.1016/j.cub.2019.06.049Google Scholar
Schnell, A. K., Smith, C. L., Hanlon, R. T., & Harcourt, R. (2015). Giant Australian cuttlefish use mutual assessment to resolve male-male contests. Animal Behaviour, 107, 3140.Google Scholar
Seed, A. M., Emery, N. J., & Clayton, N. S. (2009). Intelligence in corvids and apes: A case of convergent evolution? Ethology, 115, 401420. https://doi.org/10.1111/j.1439-0310.2009.01644.xGoogle Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094. https://doi.org/10.1016/S0003-3472(80)80097-2Google Scholar
Shultz, S., & Dunbar, R. I. (2006). Both social and ecological factors predict ungulate brain size. Proceedings of the Royal Society B, 273, 207215. https://doi.org/10.1098/rspb.2005.3283Google Scholar
Silk, J. B. (2007). Social components of fitness in primate groups. Science, 317, 13471351. https://doi.org/10.1126/science.1140734Google Scholar
Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. Proceedings of the Royal Society B, 283, 20152890. https://doi.org/10.1098/rspb.2015.2890Google Scholar
Smith, C. D. (2003). Diet of Octopus vulgaris in False Bay, South Africa. Marine Biology, 143, 11271133.Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 54605465. https://doi.org/10.1073/pnas.0408145102CrossRefGoogle ScholarPubMed
Street, S. E., Navarrette, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 114, 79087914. https://doi.org/10.1073/pnas.1620734114Google Scholar
Stulp, G., Emery, N. J., Verhulst, S., & Clayton, N. S. (2009). Western scrub-jays conceal auditory information when competitors can hear but cannot see. Biology Letters, 5, 20090330. https://doi.org/10.1098/rsbl.2009.0330Google Scholar
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133167.Google Scholar
Suddendorf, T., & Corballis, M. C. (2010). Behavioural evidence for mental time travel in nonhuman animals. Behavioural Brain Research, 215, 292298.Google Scholar
Suddendorf, T., Crimston, J., & Redshaw, J. (2017). Preparatory responses to socially determined, mutually exclusive possibilities in chimpanzees and children. Biology Letters, 13, 20170170.Google Scholar
Taylor, A. H., Hunt, G. R., Medina, F. S., & Gray, R. D. (2009). Do new Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society B, 276, 247254. https://doi.org/10.1098/rspb.2008.1107Google Scholar
Tecwyn, E. C., Thorpe, S. K. S., & Chappell, J. (2013). A novel test of planning ability: Great apes can pla step-by-step, but not in advance of action. Behavioural Processes, 100, 174184.Google Scholar
Teufel, C. R., Clayton, N. S., & Russell, J. R. (2013). Two-year-old children’s understanding of visual perception and knowledge formation in others. Journal of Cognition and Development, 14, 203228. https://doi.org/10.1080/15248372.2012.664591Google Scholar
Tomasello, M., & Call, J. (1994). Social cognition of monkeys and apes. American Journal of Physical Anthropology, 37, 273305. https://doi.org/10.1002/ajpa.1330370610Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. and Donaldson, W. (Eds.), Organization of memory (pp. 381402). Academic Press.Google Scholar
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26, 112.Google Scholar
de Waal, F. B. M. (1986) Conflict resolution in monkeys and apes. In Benirschke, K. (Ed.), Primates. Proceedings in life sciences (pp. 341350). Springer. https://doi.org/10.1007/978-1-4612-4918-4_26Google Scholar
de Waal, F. B. M., & van Roosmalen, A. (1979). Reconciliation and consolation among chimpanzees. Behavioral Ecology and Sociobiology, 5, 5566. https://doi.org/10.1007/BF00302695Google Scholar
Wells, M. J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Chapman & Hall.Google Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233273. https://doi.org/10.1017/S0140525X00049682Google Scholar
Whiten, A., & Byrne, R. W. (1997). Machiavellian intelligence II: Extension and evaluations. Cambridge University Press.Google Scholar
van Woerden, J. T. Willems, E. P., van Schaik, C. P., & Isler, K. (2012). Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66, 191199. https://doi.org/10.1111/j.1558-5646.2011.01434.xGoogle Scholar
Zepeda, E. A., Veline, R. J., & Crook, R. J. (2017). Rapid associative learning and stable long-term memory in the squid Euprymna scolopes. Biological Bulletin, 232, 212218. https://doi.org/10.1086/693461Google Scholar
Zuberbühler, K. (2000). Referential labelling in Diana monkeys. Animal Behaviour, 59, 917927. https://doi.org/10.1006/anbe.1999.1317Google Scholar
Zuberbühler, K. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behavioral Ecology and Sociobiology, 50, 414422. https://doi.org/10.1007/s002650100383Google Scholar
Zuberbühler, K., & Jenny, D. (2002). Leopard predation and primate evolution. Journal of Human Evolution, 43, 873886. https://doi.org/10.1006/jhev.2002.0605Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×