Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T12:37:06.963Z Has data issue: false hasContentIssue false

Part II - Evolution of Memory Processes

Published online by Cambridge University Press:  26 May 2022

Mark A. Krause
Affiliation:
Southern Oregon University
Karen L. Hollis
Affiliation:
Mount Holyoke College, Massachusetts
Mauricio R. Papini
Affiliation:
Texas Christian University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Baddeley, A. D. (1982) Your memory: A user’s guide. McGraw Hill.Google Scholar
Bier, D. M. (1999). Institute of Medicine (US) Committee on Military Nutrition Research. The Role of Protein and Amino Acids in Sustaining and Enhancing Performance. Washington, D): National Academies Press (US). The Energy Costs of Protein Metabolism: Lean and Mean on Uncle Sam’s Team. www.ncbi.nlm.nih.gov/books/NBK224633/Google Scholar
Blanchard, R. J., & Blanchard, D. C. (1972). Effects of hippocampal lesions on the rat’s reaction to a cat. Journal of Comparative and Physiological Psychology, 78, 7782. https://doi.org/10.1037/h0032176Google Scholar
Blanchard, R. J., Fukunaga, K. K., & Blanchard, D. C. (1976). Environmental control of defensive reactions to a cat. Bulletin of the Psychonomic Society, 8, 179181. https://doi.org/10.3758/BF03335118CrossRefGoogle Scholar
Blanchard, R. J., Mast, M., & Blanchard, D. C. (1975). Stimulus control of defensive reactions in the albino rat. Journal of Comparative and Physiological Psychology, 88, 8188. https://doi.org/10.1037/h0076213CrossRefGoogle ScholarPubMed
Bolles, R. C. (1993). The Story of psychology: A thematic history. Brooks/Cole Publishing.Google Scholar
Bronstein, P. M., & Hirsch, S. M. (1976). Ontogeny of defensive reactions in Norway rats. Journal of Comparative and Physiological Psychology, 90, 620629. http://dx.doi.org/10.1037/h0077224CrossRefGoogle ScholarPubMed
Choi, J.-S., & Kim, J. J. (2010). Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proceedings of the National Academy of Sciences, 107, 2177321777. https://doi.org/10.1073/pnas.1010079108CrossRefGoogle Scholar
Dezfouli, A., & Balleine, B. W. (2012). Habits, action sequences and reinforcement learning. European Journal of Neuroscience, 35, 10361051. https://doi.org/10.1111/j.1460-9568.2012.08050.xCrossRefGoogle ScholarPubMed
Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179206. https://doi.org/10.1146/annurev.psych.55.090902.141409CrossRefGoogle ScholarPubMed
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 11491152. https://doi.org/10.1038/80671CrossRefGoogle ScholarPubMed
Fanselow, M. S. (1980). Conditional and unconditional components of post-shock freezing in rats. Pavlovian Journal of Biological Sciences, 15, 177182. https://doi.org/10.1007/BF03001163Google Scholar
Fanselow, M. S. (1986). Associative vs. topographical accounts of the immediate shock freezing deficit in rats: Implications for the response selection rules governing species specific defensive reactions. Learning & Motivation, 17, 1639. https://doi.org/10.1016/0023-9690(86)90018-4Google Scholar
Fanselow, M. S. (1990). Factors governing one trial contextual conditioning. Animal Learning & Behavior, 18, 264270. https://doi.org/10.3758/BF03205285CrossRefGoogle Scholar
Fanselow, M. S. (2000). Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research, 110, 7381. https://doi.org/10.1016/s0166-4328(99)00186-2CrossRefGoogle ScholarPubMed
Fanselow, M. S. (2018). The role of learning in threat imminence and defensive behaviors. Current Opinion in Behavioral Sciences, 24, 4449. https://doi.org/10.1016/j.cobeha.2018.03.003CrossRefGoogle ScholarPubMed
Fanselow, M. S., Landeira-Fernandez, J., DeCola, J. P., & Kim, J. J. (1994). The immediate shock deficit and postshock analgesia: Implications for the relationship between the analgesic CR and UR. Animal Learning & Behavior, 22, 7276. https://doi.org/10.3758/BF03199957CrossRefGoogle Scholar
Gale, G. D., Anagnostaras, S. G., Godsil, B. P., Mitchell, S., Nozawa, T., Sage, J. R., Wiltgen, B., & Fanselow, M. S. (2004). Role of the basolateral amygdala in the storage of fear memories across the adult lifetime of rats. Journal of Neuroscience, 24, 38103815. https://doi.org/10.1523/JNEUROSCI.4100-03.2004Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4, 123124. https://doi.org/10.3758/BF03342209Google Scholar
Gould, S. J., & Vrba, E. S. (1982). Exaptation – A missing term in the science of form. Paleobiology,8, 415. https://doi.org/10.1017/S0094837300004310CrossRefGoogle Scholar
Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE, 6, e17514. https://doi.org/10.1371/journal.pone.0017514CrossRefGoogle ScholarPubMed
Ingvar, D. H. (1985). Memory of the future: An essay on the temporal organization of conscious awareness. Human Neurobiology, 4, 127136.Google ScholarPubMed
Kiernan, M. J., Westbrook, R. F., & Cranney, J. (1995). Immediate shock, passive avoidance, and potentiated startle: Implications for the unconditioned response to shock. Animal Learning & Behavior, 23, 2230. https://doi.org/10.3758/BF03198012CrossRefGoogle Scholar
Kim, J. J., Choi, J.-S., & Lee, H. J. (2016). Foraging in the face of fear: Novel strategies for evaluating amygdala functions in rats. In Amaral, D. G. & Adolphs, R. (Eds.), Living without an amygdala (pp. 129148). The Guilford Press.Google Scholar
Kim, J. J., & Fanselow, M. S. (1992). Modality-specific retrograde amnesia of fear following hippocampal lesions. Science, 256, 675677. https://doi.org/10.1126/science.1585183Google Scholar
Krasne, F. B., Cushman, J. D., & Fanselow, M. S. (2015). A Bayesian context fear learning algorithm/automaton. Frontiers in Behavioral Neuroscience, 9, 122. https://doi.org/10.3389/fnbeh.2015.00112Google Scholar
Krasne, F. B., Zinn, R., Vissel, B., & Fanselow, M. S. (2021). Extinction and discrimination in a Bayesian model of context fear conditioning (BaconX). Hippocampus, 31, 790814. https://doi.org/10.1002/hipo.23298CrossRefGoogle Scholar
Landeira-Fernandez, J., Decola, J. P., Kim, J. J., & Fanselow, M. S. (2006). Immediate shock deficit in fear conditioning: Effects of shock manipulations. Behavioral Neuroscience, 120, 873879. https://doi.org/10.1037/0735-7044.120.4.873CrossRefGoogle ScholarPubMed
Mery, F., & Kawecki, T. J. (2005). A cost of long-term memory in Drosophila. Science, 308, 1148. https://doi.org/10.1126/science.1111331Google Scholar
Plaçais, P.-Y., & Preat, T. (2013). To favor survival under food shortage, the brain disables costly memory. Science, 339, 440442. https://doi.org/10.1126/science.1226018CrossRefGoogle ScholarPubMed
Plaçais, P.-Y., de Tredern, É., Scheunemann, L., Trannoy, S., Goguel, V., Han, K.-A., Isabel, G., & Prea, T. (2017). Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications, 8, 11510. https://doi.org/10.1038/ncomms15510Google Scholar
Rescorla, R. A. (1988). Pavlovian conditioning: It’s not what you think it is. American Psychologist, 43, 151160. https://doi.org/10.1037/0003-066X.43.3.151Google Scholar
Rudy, J. W., & Teyler, T .J. (2010). Episodic memory and the hippocampus. In Weiner, I. B. & Craighead, W. E. (Eds.), Corsini encyclopedia of psychology. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0316Google Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. https://doi.org/10.1016/j.neuron.2012.11.001Google Scholar
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439454. https://dx.doi.org/10.1037/0033-295X.94.4.439Google Scholar
Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82, 171177. https://doi.org/10.1016/j.nlm.2004.06.005Google Scholar
Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 93, 1351513522. https://doi.org/10.1073/pnas.93.24.13515Google Scholar
Thompson, R. F., & Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience, 162, 732755. https://doi.org/10.1016/j.neuroscience.2009.01.041Google Scholar
Todes, D. P. (2014). Ivan Pavlov: A Russian life in science. Oxford University Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125. https://doi.org/10.1146/annurev.psych.53.100901.135114CrossRefGoogle Scholar
Voet, D., Voet, V. G., & Pratt, C. W. (2016). Fundamentals of biochemistry: Life at the molecular level. John Wiley & Sons.Google Scholar
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20, 158177. https://dx.doi.org/10.1037/h0074428Google Scholar
Williams, G. C. (1966). Adaptation and natural selection. Princeton University Press.Google Scholar
Yokoyama, O. T. (in press). Pavlov on the conditional reflex: Papers, 1903–1936. Oxford University Press.CrossRefGoogle Scholar
Zinn, R., Leake, J., Krasne, F. B., Corbit, L. H., Fanselow, M. F. & Vissel, B. (2020) Maladaptive properties of context-impoverished memories. Current Biology, 30, 112. https://doi.org/10.1016/j.cub.2020.04.040Google Scholar

References

Babb, S. J., & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning & Motivation, 36, 177189. https://doi.org/https://doi.org/10.1016/j.lmot.2005.02.009Google Scholar
Babb, S. J., & Crystal, J. D. (2006a). Discrimination of what, when, and where is not based on time of day. Learning & Behavior, 34, 124130. https://doi.org/10.3758/bf03193188CrossRefGoogle Scholar
Babb, S. J., & Crystal, J. D. (2006b). Episodic-like memory in the rat. Current Biology, 16, 13171321. https://doi.org/https://doi.org/10.1016/j.cub.2006.05.025Google Scholar
Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25, 10731188. https://doi.org/10.1002/hipo.22488Google Scholar
Carr, M. F., Jadhav, S. P., & Frank, L. M. (2011). Hippocampal replay in the awake state: A potential substrate for memory consolidation and retrieval. Nature Neuroscience, 14, 147153. https://doi.org/https://doi.org/10.1038/nn.2732Google Scholar
Carr, M. F., Karlsson, M. P., & Frank, L. M. (2012). Transient slow gamma synchrony underlies hippocampal memory replay. Neuron, 75, 700713. https://doi.org/https://doi.org/10.1016/j.neuron.2012.06.014Google Scholar
Cheng, S., Werning, M., & Suddendorf, T. (2016). Dissociating memory traces and scenario construction in mental time travel. Neuroscience and Biobehavioral Reviews, 60, 8289. https://doi.org/https://doi.org/10.1016/j.neubiorev.2015.11.011Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272274. https://doi.org/10.1038/26216Google Scholar
Corballis, M. C. (2013a). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 56. http://linkinghub.elsevier.com/retrieve/pii/S1364661312002458Google Scholar
Corballis, M. C. (2013b). The wandering rat: Response to Suddendorf. Trends in Cognitive Sciences, 17, 152. https://doi.org/https://doi.org/10.1016/j.tics.2013.01.012Google Scholar
Crystal, J. D. (2013a). Prospective memory. Current Biology, 23, R750–R51. https://doi.org/https://doi.org/10.1016/j.cub.2013.07.081Google Scholar
Crystal, J. D. (2013b). Remembering the past and planning for the future in rats. Behavioural Processes, 93, 3949. https://doi.org/http://dx.doi.org/10.1016/j.beproc.2012.11.014Google Scholar
Crystal, J. D. (2016a). Animal models of source memory. Journal of the Experimental Analysis of Behavior, 105, 5667. https://doi.org/10.1002/jeab.173Google Scholar
Crystal, J. D. (2016b). Comparative cognition: Action imitation using episodic memory. Current Biology, 26, R1226R1228. https://doi.org/10.1016/j.cub.2016.10.010Google Scholar
Crystal, J. D. (2018). Animal models of episodic memory. Comparative Cognition & Behavior Reviews, 13, 105122. https://doi.org/10.3819/ccbr.2018.130012Google Scholar
Crystal, J. D. (2021). Event memory in rats. In Kaufman, A., Call, J., & Kaufman, J. (Eds.), Cambridge handbook of animal cognition (pp. 190209). Cambridge University Press.Google Scholar
Crystal, J. D., & Alford, W. T. (2014). Validation of a rodent model of source memory. Biology Letters, 10, 20140064. https://doi.org/10.1098/rsbl.2014.0064Google Scholar
Crystal, J. D., Alford, W. T., Zhou, W., & Hohmann, A. G. (2013). Source memory in the rat. Current Biology, 23, 387391. https://doi.org/http://dx.doi.org/10.1016/j.cub.2013.01.023Google Scholar
Crystal, J. D., & Smith, A. E. (2014). Binding of episodic memories in the rat. Current Biology, 24, 29572961. https://doi.org/10.1016/j.cub.2014.10.074Google Scholar
Crystal, J. D., & Suddendorf, T. (2019). Episodic memory in nonhuman animals? Current Biology, 29, R1291R1295. https://doi.org/https://doi.org/10.1016/j.cub.2019.10.045Google Scholar
Dalecki, S. J., Panoz-Brown, D. E., & Crystal, J. D. (2017). A test of the reward-contrast hypothesis. Behavioural Processes, 145, 1517. https://doi.org/https://doi.org/10.1016/j.beproc.2017.09.018CrossRefGoogle ScholarPubMed
Davidson, T. J., Kloosterman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63, 497507. https://doi.org/https://doi.org/10.1016/j.neuron.2009.07.027CrossRefGoogle ScholarPubMed
Dede, A. J. O., Frascino, J. C., Wixted, J. T., & Squire, L. R. (2016). Learning and remembering real-world events after medial temporal lobe damage. Proceedings of the National Academy of Sciences, 113, 1348013485. https://doi.org/10.1073/pnas.1617025113Google Scholar
Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10, 1241. https://doi.org/10.1038/nn1961Google Scholar
Eacott, M. J., Easton, A., & Zinkivskay, A. (2005). Recollection in an episodic-like memory task in the rat. Learning and Memory, 12(3), 221223. https://doi.org/http://www.learnmem.org/cgi/doi/10.1101/lm.92505CrossRefGoogle Scholar
Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple‐associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 110. https://doi.org/10.1002/hipo.20707Google Scholar
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 4150. https://doi.org/10.1038/35036213Google Scholar
Eichenbaum, H. (2007). Comparative cognition, hippocampal function, and recollection. Comparative Cognition & Behavior Reviews, 2, 4766. https://doi.org/doi:10.3819/ccbr.2008.20003Google Scholar
Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience and Biobehavioral Reviews, 36, 15971608. https://doi.org/https://doi.org/10.1016/j.neubiorev.2011.07.006Google Scholar
Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123152. https://doi.org/doi:10.1146/annurev.neuro.30.051606.094328CrossRefGoogle ScholarPubMed
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 19031907. https://doi.org/10.1126/science.1098410CrossRefGoogle ScholarPubMed
Ergorul, C., & Eichenbaum, H. (2004). The hippocampus and memory for “what,” “where,” and “when.” Learning and Memory, 11(4), 397405. https://doi.org/doi.org/10.1101/lm.73304Google Scholar
Fortin, N. J., Wright, S. P., & Eichenbaum, H. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188191. https://doi.org/10.1038/nature02853Google Scholar
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake hippocampal sharp-wave ripples support spatial memory. Science, 336, 14541458. https://doi.org/10.1126/science.1217230Google Scholar
Kurth-Nelson, Z., Economides, M., Dolan, R. J., & Dayan, P. (2016). Fast sequences of non-spatial state representations in humans. Neuron, 91(1), 194204. https://doi.org/https://doi.org/10.1016/j.neuron.2016.05.028Google Scholar
Lancet, D. (1986). Vertebrate olfactory reception. Annual Review of Neuroscience, 9, 329355. https://doi.org/10.1146/annurev.ne.09.030186.001553Google Scholar
Mori, K., Nagao, H., & Yoshihara, Y. (1999). The olfactory bulb: Coding and processing of odor molecule information. Science, 286, 711715. https://doi.org/10.1126/science.286.5440.711CrossRefGoogle ScholarPubMed
Moser, M.-B., Rowland, D. C., & Moser, E. I. (2015). Place cells, grid cells, and memory. Cold Spring Harbor Perspectives in Biology, 7(2), 115. https://doi.org/10.1101/cshperspect.a021808Google Scholar
Naqshbandi, M., Feeney, M. C., McKenzie, T. L. B., & Roberts, W. A. (2007). Testing for episodic-like memory in rats in the absence of time of day cues: Replication of Babb and Crystal. Behavioural Processes, 74, 217225. https://doi.org/10.1016/j.beproc.2006.10.010CrossRefGoogle ScholarPubMed
Ólafsdóttir, H. F., Bush, D., & Barry, C. (2018). The role of hippocampal replay in memory and planning. Current Biology, 28, R37R50. https://doi.org/10.1016/j.cub.2017.10.073CrossRefGoogle ScholarPubMed
Ólafsdóttir, H. F., Carpenter, F., & Barry, C. (2017). Task demands predict a dynamic switch in the content of awake hippocampal replay. Neuron, 96, 925935.e926. https://doi.org/https://doi.org/10.1016/j.neuron.2017.09.035Google Scholar
Panoz-Brown, D., Iyer, V., Carey, L. M., Sluka, C. M., Rajic, G., Kestenman, J., Gentry, M., Brotheridge, S., Somekh, I., Corbin, H. E., Tucker, K. G., Almeida, B., Hex, S. B., Garcia, K. D., Hohmann, A. G., & Crystal, J. D. (2018). Replay of episodic memories in the rat. Current Biology, 28, 16281634.e1627. https://doi.org/https://doi.org/10.1016/j.cub.2018.04.006CrossRefGoogle ScholarPubMed
Panoz-Brown, D. E., Corbin, H. E., Dalecki, S. J., Gentry, M., Brotheridge, S., Sluka, C. M., Wu, J.-E., & Crystal, J. D. (2016). Rats remember items in context using episodic memory. Current Biology, 26, 28212826. https://doi.org/http://dx.doi.org/10.1016/j.cub.2016.08.023Google Scholar
Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9, 29072918. https://doi.org/10.1523/jneurosci.09-08-02907.1989CrossRefGoogle ScholarPubMed
Paz, R., Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., & Fried, I. (2010). A neural substrate in the human hippocampus for linking successive events. Proceedings of the National Academy of Sciences, 107, 60466051. https://doi.org/10.1073/pnas.0910834107CrossRefGoogle ScholarPubMed
Pfeiffer, B. E., & Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths to remembered goals. Nature, 497, 7479. https://doi.org/https://doi.org/10.1038/nature12112Google Scholar
Powell, R., Mikhalevich, I., Logan, C., & Clayton, N. S. (2017). Convergent minds: The evolution of cognitive complexity in nature. Interface Focus, 7(3), 15. https://doi.org/10.1098/rsfs.2017.0029Google Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526. https://doi.org/https://doi.org/10.1017/S0140525X00076512CrossRefGoogle Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320, 113115. https://doi.org/10.1126/science.1152709Google Scholar
Rubin, B. D., & Katz, L. C. (2001). Spatial coding of enantiomers in the rat olfactory bulb. Nature Neuroscience, 4, 355. https://doi.org/10.1038/85997CrossRefGoogle ScholarPubMed
Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 18701873. https://doi.org/10.1126/science.271.5257.1870Google Scholar
Smith, A. E., Dalecki, S. J., & Crystal, J. D. (2017). A test of the reward-value hypothesis. Animal Cognition, 20, 215220. https://doi.org/10.1007/s10071-016-1040-zCrossRefGoogle ScholarPubMed
Smith, A. E., Slivicki, R. A., Hohmann, A. G., & Crystal, J. D. (2017). The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory. Behavioural Brain Research, 320, 4857. https://doi.org/http://dx.doi.org/10.1016/j.bbr.2016.11.042Google Scholar
Staresina, B. P., Alink, A., Kriegeskorte, N., & Henson, R. N. (2013). Awake reactivation predicts memory in humans. Proceedings of the National Academy of Sciences, 110, 2115921164. https://doi.org/10.1073/pnas.1311989110Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of Memory (pp. 381403). Academic Press.Google Scholar
Tulving, E. (1983). Elements of Episodic Memory. Oxford University Press.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53, 125. https://doi.org/10.1146/annurev.psych.53.100901.135114Google Scholar
Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198204. https://doi.org/10.1002/(SICI)1098-1063(1998)8:3%3C198::AID-HIPO2%3E3.0.CO;2-GGoogle Scholar
Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224. https://dx.doi.org/10.1038/nn1142Google Scholar
Wilson, A. G., & Crystal, J. D. (2012). Prospective memory in the rat. Animal Cognition, 15, 349358. https://doi.org/10.1007/s10071-011-0459-5Google Scholar
Wilson, A. G., Pizzo, M. J., & Crystal, J. D. (2013). Event-based prospective memory in the rat. Current Biology, 23, 10891093. https://doi.org/http://dx.doi.org/10.1016/j.cub.2013.04.067Google Scholar
Wright, A. A. (2018). Episodic memory: Manipulation and replay of episodic memories by rats. Current Biology, 28, R667R669. https://doi.org/https://doi.org/10.1016/j.cub.2018.04.060CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2001). Components of episodic memory: The contribution of recollection and familiarity. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 13631374. https://doi.org/10.1098/rstb.2001.0939Google Scholar
Yonelinas, A. P., & Levy, B. J. (2002). Dissociating familiarity from recollection in human recognition memory: Different rates of forgetting over short retention intervals. Psychonomic Bulletin & Review, 9, 575582. https://doi.org/10.3758/BF03196315Google Scholar
Zhou, W., & Crystal, J. D. (2009). Evidence for remembering when events occurred in a rodent model of episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 95259529. https://doi.org/10.1073/pnas.0904360106Google Scholar
Zhou, W., & Crystal, J. D. (2011). Validation of a rodent model of episodic memory. Animal Cognition, 14(3), 325340. https://doi.org/10.1007/s10071-010-0367-0CrossRefGoogle ScholarPubMed
Zhou, W., Hohmann, A. G., & Crystal, J. D. (2012). Rats answer an unexpected question after incidental encoding. Current Biology, 22, 11491153. https://doi.org/10.1016/j.cub.2012.04.040Google Scholar

References

Abbott, N. J., Williamson, R., & Maddock, L. (1995). Cephalopod neurobiology. Oxford University Press.Google Scholar
Agin, V., Chichery, R., Chichery, M. P., Dickel, L., Darmaillacq, A. S., & Bellanger, C. (2006a). Behavioural plasticity and neural correlates in adult cuttlefish. Vie Milieu, 56, 8187.Google Scholar
Agin, V., Chichery, R., Dickel, L., & Chichery, M. P. (2006b). The “prawn-in-the-tube” procedure in the cuttlefish: Habitation or passive avoidance learning? Learning and Memory, 13, 97101. https://doi.org/10.1101/lm.90106Google Scholar
Amici, F., Aureli, F., & Call, J. (2008). Fission-fusion dynamics, behavioral flexibility, and inhibitory control in primates. Current Biology, 18, 14151419. https://doi.org/10.1016/j.cub.2008.08.020CrossRefGoogle ScholarPubMed
Amodio, P., Boeckle, M., Schnell, A. K., Ostojić, L., Fiorito, G., & Clayton, N. S. (2018). Grow smart and die young: Why did cephalopods evolve intelligence? Trends in Ecology and Evolution, 34, 4556. https://doi.org/10.1016/j.tree.2018.10.010Google Scholar
Ashton, B. J., Ridley, A. R., Edwards, E. K., & Thornton, A. (2018). Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature, 554, 364367. https://doi.org/10.1038/nature25503Google Scholar
Biederman, G. B., & Davey, V. A. (1993). Social learning in invertebrates. Science, 259, 24132419. https://doi.org/10.1126/science.259.5101.1627CrossRefGoogle ScholarPubMed
Billard, P., Clayton, N. S., & Jozet-Alves, C. (2020a). Cuttlefish retrieve whether they smelt or saw a previously encountered item. Scientific Reports, 10, 5413. https://doi.org/10.1038/s41598-020-62335-xGoogle Scholar
Billard, P., Schnell, A. K., Clayton, N. S., & Jozet-Alves, C. (2020b). Cuttlefish show flexible and future-dependent foraging cognition. Biology Letters, 16, 20190743. https://doi.org/10.1098/rsbl.2019.0743CrossRefGoogle ScholarPubMed
Boal, J. G. (1991). Complex learning in Octopus bimaculoides. American Malacological Bulletin, 9, 7580.Google Scholar
Boal, J. G. (1996). A review of simultaneous visual discrimination as a method of training octopuses. Biological Reviews, 71, 157190. https://doi.org/10.1111/j.1469-185x.1996.tb00746.xGoogle Scholar
Boal, J. G. (2006). Social recognition: A top down view of cephalopod behavior. Vie Millieu, 56, 6979.Google Scholar
Boal, J. G., Wittenberg, K. M., & Hanlon, R. T. (2000). Observational learning does not explain improvement in predation tactics by cuttlefish (Mollusca: Cephalopoda). Behavioural Processes, 52, 141153. https://doi.org/10.1016/S0376-6357(00)00137-6Google Scholar
Bobrowicz, K., Johansson, M., & Osvath, M. (2020). Great apes selectively retrieve relevant memories to guide action. Scientific Reports, 10, 12603. https://doi.org/10.1038/s41598-020-69607-6Google Scholar
Boeckle, M., Schiestl, M., Frohnwieser, A., Gruber, R., Miller, R., Suddendorf, T., Gray, R. D.,Taylor, A. H., & Clayton, N. S. (2020). New Caledonian crows plan for specific future tool use. Proceedings of the Royal Society B, 287, 20201490. https://doi.org/10.1098/rspb.2020.1490Google Scholar
Bond, A. B., Kamil, A. C., & Balda, R. P. (2003). Social complexity and transitive inference in corvids. Animal Behaviour, 65, 479487. https://doi.org/10.1006/anbe.2003.2101Google Scholar
Brewer, S. M., & McGrew, W. C. (1990). Chimpanzee use of a tool-set to get honey. Folia Primatology, 54, 100104. https://doi.org/10.1159/000156429Google Scholar
Brown, C., Garwood, M. P., & Williamson, J. E. (2012). It pays to cheat: Tactical deception in a cephalopod social signalling system. Biology Letters, 8, 729732. https://doi.org/10.1098/rsbl.2012.0435Google Scholar
Budelmann, B. U. (1995). The cephalopod nervous system: What evolution has made of the molluscan design. In Breidbach, O., & Kutsch, W. (Eds.), The nervous systems of invertebrates: An evolutionary and comparative approach (pp. 115138). Birkhauser Verlag.Google Scholar
Byrne, R. W. (2004). The manual skills and cognition that lie behind hominid tool use. In Russon, A. E., & Begun, D. R. (Eds.), The evolution of thought: Evolutionary origins of great ape intelligence (pp. 3144). Cambridge University Press.Google Scholar
Byrne, R. W., & Bates, L. A. (2007). Sociality, evolution and cognition. Current Biology, 17, R714R723. https://doi.org/10.1016/j.cub.2007.05.069.Google Scholar
Byrne, R. W., & Whiten, A. (1988). Machiavellian intelligence: Social expertise and the evolution of intellect in monkeys, apes and humans. Oxford University Press.Google Scholar
Call, J., & Tomasello, M. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12, 187192. https://doi.org/10.1016/j.tics.2008.02.010Google Scholar
Cheke, L. C., & Clayton, N. S. (2012). Eurasian jays (Garrulus glandarius) overcome their current desires to anticipate two distinct future needs and plan for them appropriately. Biology Letters, 8, 71175. https://doi.org/10.1098/rsbl.2011.0909Google Scholar
Cheng, M. A., & Caldwell, R. (2000). Sex identification and mating in the blue-ringed octopus, Hapalochlaena lunulata. Animal Behaviour, 60, 2733. https://doi.org/10.1006/anbe.2000.1447Google Scholar
Chettleburgh, M. (1952). Observations on the collection and burial of acorns by jays in Hainault Forest. British Birds, 45, 359364.Google Scholar
Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685691. https://doi.org/10.1038/nrn1180CrossRefGoogle ScholarPubMed
Clayton, N. S., Dally, J. M., & Emery, N. J. (2007). Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philosophical Transactions of the Royal Society B, 362, 507522. https://doi.org/10.1098/rstb.2006.1992Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272274. https://doi.org/10.1038/26216Google Scholar
Clayton, N. S., & Dickinson, A. (1999b). Memory for the content of caches by scrub jays. Journal of Experimental Psychology: Animal Behavior Processes, 25, 8291. http://dx.doi.org/10.1037//0097-7403.25.1.82Google Scholar
Clayton, N. S., & Dickinson, A. (1999a). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113, 403416. https://doi.org/10.1037/0735-7036.113.4.403Google Scholar
Clayton, N. S., & Emery, N. J. (2015). Avian models of human cognitive neuroscience: A proposal. Neuron, 86, 13301342. https://doi.org/10.1016/j.neuron.2015.04.024Google Scholar
Clayton, N. S., Yu, K. S., Dickinson, A. (2001). Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. Journal of Experimental Psychology Animal Behavior Processes, 27, 1729.Google Scholar
Clutton-Brock, T. H., & Harvey, P. H. (1980). Primates, brain and ecology. Journal of Zoology, 190, 309323. https://doi.org/10.1111/j.1469-7998.1980.tb01430.xCrossRefGoogle Scholar
Cole, P. D., & Adamo, S. A. (2005). Cuttlefish (Sepia officinalis: Cephalopoda) hunting behavior and associative learning. Animal Cognition, 8, 2730. https://doi.org/10.1007/s10071-004-0228-9CrossRefGoogle ScholarPubMed
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 56. https://doi.org/10.1016/j.tics.2012.10.009Google Scholar
Correia, S. P. C., Dickinson, A., & Clayton, N. S. (2007). Western scrub-jays anticipate future needs independently of their current motivational state. Current Biology, 17, 856861. https://doi.org/10.1016/j.cub.2007.03.063Google Scholar
Cristol, D. A., Reynolds, E. B., Leclerc, J. E., Donner, A. H., Farabaugh, C. S., & Ziegenfus, C. W. S. (2003). Migratory dark-eyed juncos, Junco hyemalis, have better spatial memory and denser hippocampal neurons than nonmigratory conspecifics. Animal Behaviour, 66, 317328. https://doi.org/10.1006/anbe.2003.2194Google Scholar
Dally, J. M., Emery, N. J., & Clayton, N. S. (2006). Food-caching western scrub-jays keep track of who was watching when. Science, 312, 16621665. https://doi.org/10.1126/science.1126539Google Scholar
Darmaillacq, A. S., Dickel, L., & Mather, J. A. (2014). Cephalopod cognition. Cambridge University Press.Google Scholar
DeMartini, D. G., Ghoshal, A., Pandolfi, E., Weaver, A. T., Baum, M., & Morse, D. E. (2013). Dynamic biophotonics: Female squid exhibit sexually dimorphic tunable leucophores and iridocytes. Journal of Experimental Biology, 216, 37333741. https://doi.org/10.1242/jeb.090415Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 9, 178190. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8Google Scholar
Emery, N. J. (2006). Cognitive ornithology: The evolution of avian intelligence. Philosophical Transactions of the Royal Society B, 361, 2343. https://doi.org/10.1098/rstb.2005.1736Google Scholar
Emery, N. J., & Clayton, N. S. (2001). Effects of experience and social context on prospective caching strategies by scrub jays. Nature, 414, 443–-446. https://doi.org/10.1038/35106560Google Scholar
Emery, N. J., & Clayton, N. S. (2004). The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science, 306, 19031907. https://doi.org/10.1126/science.1098410Google Scholar
Emery, N. J., & Clayton, N. S. (2005). Evolution of avian brain and intelligence. Current Biology, 15, R946R950. https://doi.org/10.1016/j.cub.2005.11.029Google Scholar
Emery, N. J., Seed, A. M., von Bayern, A. M. P., & Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society B, 362, 489505. https://doi.org/10.1098/rstb.2006.1991Google Scholar
Finn, J. K., Tregenza, T., & Norman, M.D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19, R1069R1070. https://doi.org/10.1016/j.cub.2009.10.052Google Scholar
Fiorito, G., & Gherardi, F. (1999). Prey-handling behaviour of Octopus vulgaris (Mollusca, Cephalopoda) on bivalve preys. Behavioural Processes, 46, 7588. https://doi.org/10.1016/S0376-6357(99)00020-0Google Scholar
Fiorito, G., & Scotto, P. (1992). Observational learning in Octopus vulgaris. Science, 256, 545547. https://doi.org/10.1126/science.256.5056.545Google Scholar
Goodall, J. (1964). Tool-using and aimed throwing in a community of free-living chimpanzees. Nature, 201, 12641266. https://doi.org/10.1038/2011264a0Google Scholar
Grodzinski, U., & Clayton, N. S. (2010). Problems faced by food-caching corvids and the evolution of cognitive solutions. Philosophical Transactions of the Royal Society B, 365, 977987. https://doi.org/10.1098/rstb.2009.0210Google Scholar
Gruber, R., Schiestl, M., Boeckle, M., Frohnwieser, A., Miller, R., Gray, R. D., Clayton, N. S., & Taylor, A. H. (2019). New Caledonian crows use mental representations to solve metatool problems. Current Biology, 29, 686692. https://doi.org/10.1016/j.cub.2019.01.008Google Scholar
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291303. https://doi.org/10.1016/j.tics.2016.02.001Google Scholar
Hall, K. C., & Hanlon, R. T. (2002). Principal features of the mating system of a large spawning aggregation of the giant Australian cuttlefish Sepia apama (Mollusca: Cephalopoda). Marine Biology, 140, 533545. https://doi.org/10.1007/s00227-001-0718-0Google Scholar
Hanlon, R. T., Conroy, L. A., & Forsythe, J. W. (2008). Mimicry and foraging behaviour of two tropical sand-flat octopus species off North Sulawesi, Indonesia. Biological Journal of Linnean Society, 93, 2338. https://doi.org/10.1111/j.1095-8312.2007.00948.xGoogle Scholar
Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour, 2nd ed. Cambridge University Press. https://doi.org/10.1017/9780511843600Google Scholar
Hanlon, R. T., Naud, M. J., Shaw, P. W., & Havenhand, J. N. (2005). Transient sexual mimicry leads to fertilization. Nature, 433, 212. https://doi.org/10.1038/433212aGoogle Scholar
Hanlon, R. T., Watson, A. C., & Barbosa, A. (2010). A “mimic octopus,” in the Atlantic: Flatfish mimicry and camouflage by Macrotritopus defilippi. Biological Bulletin, 218, 1524. https://doi.org/10.1086/BBLv218n1p15Google Scholar
Hanus, D., & Call, J. (2008). Chimpanzees infer the location of a reward on the basis of the effect of its weight. Current Biology, 18, R370R372. https://doi.org/10.1016/j.cub.2008.02.039Google Scholar
Hare, B., Call, J., Agnetta, B., & Tomasello, M. (2000). Chimpanzees know what conspecifics do and do not see. Animal Behaviour, 59, 771785.Google Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know? Animal Behaviour, 61, 139151.Google Scholar
Heyes, C. (2012). What’s social about social learning? Journal of Comparative Psychology, 126, 193202. https://doi.org/10.1037/a0025180Google Scholar
Heyes, C. (2014). Submentalizing: I am not really reading your mind. Perspectives on Psychological Sciences, 9, 131143. https://doi.org/10.1177/1745691613518076Google Scholar
Heyes, C. (2015). Animal mindreading: What’s the problem? Psychonomic Bulletin Review, 22, 313327. https://doi.org/10.3758/s13423-014-0704-4Google Scholar
Hopper, L. M., van de Waal, E., & Caldwell, C. A. (2018). Celebrating the continued importance of “Machiavellian Intelligence” 30 years on. Journal of Comparative Psychology, 132, 427431. https://doi.org/10.1037/com0000157Google Scholar
Huang, K. L., & Chiao, C. C. (2013). Can cuttlefish learn by observing others? Animal Cognition, 16, 313320. https://doi.org/10.1007/s10071-012-0573-zGoogle Scholar
Huffard, C. L. (2006). Locomotion by Abdopus aculeatus (Cephalopod: Octopodidae): Walking the line between primary and secondary defenses. Journal of Experimental Biology, 209, 36973707. https://doi.org/10.1242/jeb.02435CrossRefGoogle ScholarPubMed
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge University Press.Google Scholar
Hunt, G. R. (2000). Tool use by the New Caledonian crow Corvus moneduloides to obtain cerambycidae from dead wood. Emu, 100, 109114. https://doi.org/10.1071/MU9852Google Scholar
Hunt, G. R., & Gray, R. D. (2002). Species-wide manufacture of stick-type tools by New Caledonian crows. Emu, 102, 349353. https://doi.org/10.1071/MU01056Google Scholar
Hunt, G. R., & Gray, R. D. (2004a). Direct observations of pandanus-tool manufacture and use by a New Caledonian crow (Corvus moneduloides). Animal Cognition, 7, 114120. https://doi.org/10.1007/s10071-003-0200-0Google Scholar
Hunt, G. R., & Gray, R. D. (2004b). The crafting of hook tools by wild New Caledonian crows. Biology Letters, 271, 8890. https://doi.org/10.1098/rsbl.2003.0085Google Scholar
Jaakola, K., Guarino, E., Donegan, K., & King, S. L. (2018). Bottlenose dolphins can understand their partner’s role in a cooperative task. Proceedings of the Royal Society B, 285, 20180948. https://doi.org/10.1098/rspb.2018.0948Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23, R1033R1035. https://doi.org/10.1016/j.cub.2013.10.021Google Scholar
Kabadayi, C., & Osvath, M. (2017). Ravens parallel great apes in flexible planning for tool-use and bartering. Science, 375, 202204. https://doi.org/10.1126/science.aam8138Google Scholar
Kirkpatrick, C. (2011). Tactical deception and the great apes: Insight into the question of Theory of Mind. Totem: The University of Western Ontario Journal of Anthropology, 1, 3137.Google Scholar
de Kort, S. R., & Clayton, N. S. (2006). An evolutional perspective on caching by corvids. Proceedings of the Royal Society B, 273, 417423. https://doi.org/10.1098/rspb.2005.3350Google Scholar
Kotrschal, A., Deacon, A. E., Magurran, A. E., & Kolm, N. (2017). Predation pressure shapes brain anatomy in the wild. Evolutionary Ecology, 31, 619633. https://doi.org/10.1007/s10682-017-9901-8Google Scholar
Krebs, J. R., & Dawkins, R. (1984). Animal signals: Mind-reading and manipulation. In Krebs, J. & Davies, N. (Eds.), Behavioural ecology: An evolutionary approach (pp. 380402). Blackwell Scientific Publications.Google Scholar
Krupenye, C., & Call, J. (2019). Theory of Mind in animals: Current and future directions. WIREs Cognitive Sciences, e1503. https://doi.org/10.1002/wcs.1503Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110114. https://doi.org/10.1126/science.aaf8110Google Scholar
Lefebvre, L., & Bouchard, J. (2003), Social learning about food in birds. In Fragaszy, D. M. & Perry, S. (Eds.), The biology of traditions: Models and evidence (pp. 94126). Cambridge University Press.Google Scholar
Lefebvre, L., & Giraldeau, L.-A. (1996 ). Is social learning an adaptive specialization? In Heyes, C. M. & Galef, B. G., Jr. (Eds.), Social learning in animals: The roots of culture (pp. 107128). Academic Press.Google Scholar
Lefebvre, L., Nicolakakis, N., & Boire, D. (2002). Tools and brains in birds. Behaviour, 139, 939973. https://doi.org/10.1163/156853902320387918Google Scholar
Lefebvre, L., Reader, S. M., & Sol, D. (2004). Brains, innovations and evolution in birds and primates. Brain, Behavior and Evolution, 63, 233246. https://doi.org/10.1159/000076784Google Scholar
Mann, J., & Patterson, E. M. (2013). Tool use by aquatic animals. Proceedings of the Royal Society B, 368, 20120424. https://doi.org/10.1098/rstb.2012.0424Google Scholar
Marino, L. (2002). Convergence of complex cognitive abilities in cetaceans and primates. Brain, Behavior and Evolution, 59, 2132. https://doi.org/10.1159/000063731Google Scholar
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331340. https://doi.org/10.1007/s10071-009-0282-4Google Scholar
Mather, J. A. (1991). Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A, 168, 491497. https://doi.org/10.1007/BF00199609Google Scholar
Mather, J. A. (1994). “Home” choice and modification by juvenile Octopus vulgaris (Mollusca: Cephalopoda): Specialized intelligence and tool use? Journal of Zoology, 233, 359368. https://doi.org/10.1111/j.1469-7998.1994.tb05270.xGoogle Scholar
Mather, J. A. (1995). Cognition in cephalopods. Advances in the Study of Behavior, 24, 317353.Google Scholar
Mather, J. A., & Dickel, L. (2017). Cephalopod complex cognition. Current Opinion in Behavioral Sciences, 16, 131137. https://doi.org/10.1016/j.cobeha.2017.06.008Google Scholar
Matsuzawa, T. (1994). Field experiments on use of stone tools by chimpanzees in the wild. In Wrangham, R. W., McGrew, W. C., de Waal FBM, F. B. M., & Heltone, P. G. (Eds.), Chimpanzee cultures (pp. 351370). Harvard University Press.Google Scholar
Matsuzawa, T., Humle, T., & Sugiyama, Y. (2011). The chimpanzees of Bossou and Nimba. Springer.Google Scholar
Midford, P. E., Hailman, J. P., & Woolfenden, G. E. (2000). Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Animal Behaviour, 59, 11991207. https://doi.org/10.1006/anbe.1999.1419Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 543548. https://doi.org/10.1525/aa.1981.83.3.02a00020Google Scholar
Mock, D. W., & Fujioka, M. (1990). Monogamy and long-term pair bonding in vertebrates. Trends in Ecology and Evolution, 5, 3943. https://doi.org/10.1016/0169-5347(90)90045-FGoogle Scholar
Morse, P., & Huffrard, C. L. (2019). Tactical tentacles: New insights on the proves of sexual selection among the Cephalopoda. Frontiers in Physiology, 10, 1035. https://doi.org/10.3389/fphys.2019.01035Google Scholar
Moynihan, M. H., & Rodaniche, A. F. (1982). The behavior and natural history of the Caribbean reef squid Sepioteuthis sepioidea with a consideration of social, signal, and defensive patterns for difficult and dangerous environments. Fortschritte der Verhaltensforschung, 25, 9150 [Advanced Ethology, 125, 1–150].Google Scholar
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312, 10381040. https://doi.org/10.1126/science.1125456Google Scholar
Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R., & Sanz, C. (2016). Tool transfers are a form of teaching among chimpanzees. Scientific Reports, 6, 34783. https://doi.org/10.1038/srep34783Google Scholar
Nixon, M., & Young, J. Z. (2003). The brains and lives of cephalopods. Oxford University Press.Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (1999). Female impersonation as an alternative reproductive strategy in giant cuttlefish. Proceedings of the Royal Society B, 266, 13471349. https://doi.org/10.1098/rspb.1999.0786Google Scholar
Norman, M. D., Finn, J., & Tregenza, T. (2001). Dynamic mimicry in an indo-Malayan octopus. Proceedings of the Royal Society B, 268, 17551758. https://doi.org/10.1098/rspb.2001.1708Google Scholar
Okamoto, K., Yasumuro, H., Mori, A., & Ikeda, Y. (2017). Unique arm-flapping behavior of the pharaoh cuttlefish, Sepia pharaonis: Putative mimicry of a hermit crab. Journal of Ethology, 35, 307311. https://doi.org/10.1007/s10164-017-0519-7Google Scholar
Olkowicz, S., Kocourek, M., Lučan, R. K., Porteš, M., Fitch, W. T., Herculano-Houzel, S., & Nêmec, P. (2016). Birds have primate-like numbers of neurons in the forebrain. Proceedings of the National Academy of the United States of America, 113, 72557260. https://doi.org/10.1073/pnas.1517131113Google Scholar
Osvath, M., Kabadayi, C., & Jacobs, I. (2014). Independent evolution of similar complex cognitive skills: The importance of embodied degrees of freedom. Animal Behaviour and Cognition, 1, 249264. https://doi.org/10.12966/abc.08.03.2014Google Scholar
Osvath, M., & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Animal Cognition, 11, 661674. https://doi.org/10.1007/s10071-008-0157-0Google Scholar
Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biological Reviews, 47, 241301. https://doi.org/10.1111/j.1469-185X.1972.tb00975.xGoogle Scholar
Panetta, D., Buresch, K., & Hanlon, R. T. (2017). Dynamic masquerade with morphing three-dimensional skin in cuttlefish. Biology Letters, 13, 20170070. https://doi.org/10.1098/rsbl.2017.0070Google Scholar
Parker, S. T., & Gibson, B. M. (1977). Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. Journal of Human Evolution, 6, 623641. https://doi.org/10.1016/S0047-2484(77)80135-8Google Scholar
Penn, D. C., & Povinelli, D. J. (2007). On the lack of evidence that non-human animals possess anything remotely resembling a “Theory of Mind”. Philosophical Transactions of the Royal Society B, 362, 731744. https://doi.org/10.1098/rstb.2006.2023Google Scholar
Pepperberg, I. M., Koepke, A., Livingston, P., Girard, M., & Hartsfield, L. A. (2013). Reasoning by inference: Further studies on exclusion in grey parrots (Psittacus erithacus). Journal of Comparative Psychology, 127, 272281. https://doi.org/10.1037/a0031641Google Scholar
Plotnik, J. M., Lair, R., Suphachoksahakun, W., & de Waal, F. B. M. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences of the United States of America, 108, 51165121. https://doi.org/10.1073/pnas.1101765108Google Scholar
Plotnik, J. M., de Waal, F. B. M., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences of the United States of America, 103, 1705317057. https://doi.org/10.1073/pnas.0608062103Google Scholar
Potts, R. (2004). Paleo-environmental basis of cognitive evolution in great apes. American Journal of Primatology, 62, 209228. https://doi.org/10.1002/ajp.20016Google Scholar
Povinelli, D. J., & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cognitive Sciences, 7, 157160. https://doi.org/10.1016/S1364-6613(03)00053-6Google Scholar
Pravosudov, V. V., Kitaysky, A. S., Wingfield, J. C., & Clayton, N. S. (2001). Long-term unpredictable foraging conditions and physiological stress response in mountain chickadees (Poecile gambeli). General and Comparative Endocrinology, 123, 324331. https://doi.org/10.1006/gcen.2001.7684Google Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526.Google Scholar
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919921. https://doi.org/10.1038/nature05575Google Scholar
Reader, S. M., & Laland, K. N. (2002). Social intelligence, innovation and enhanced brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 99, 44364441. https://doi.org/10.1073/pnas.062041299Google Scholar
Redshaw, J. & Suddendorf, T. (2016). Children’s and Apes’ preparatory responses to two mutally exclusive possibilities. Current Biology, 26, 17581762.Google Scholar
Redshaw, J., Taylor, A. H., & Suddendorf, T. (2017). Flexible planning in ravens? Trends on Cognitive Sciences, 21, 821822.Google Scholar
Rosati, A. G. (2017). Foraging cognition: Reviving the ecological intelligence hypothesis. Trends in Cognitive Sciences, 21, 691702. https://doi.org/10.1016/j.tics.2017.05.011Google Scholar
Sanders, F. K., & Young, J. Z. (1940). Learning and other functions of the higher nervous centers of Sepia. Journal of Neurophysiology, 3, 501526.Google Scholar
Sanz, C., Morgan, D., & Gulick, S. (2004). New insights into chimpanzees, tools, and termites from the Congo Basin. American Naturalist, 164, 567581. https://doi.org/10.1086/424803Google Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: Remembering, imagining, and the brain. Neuron, 76, 677694. https://doi.org/10.1016/j.neuron.2012.11.001Google Scholar
Scheel, D., Godfrey-Smith, P., & Lawrence, M. (2014). Octopus tetricus (Mollusca: Cephalopoda) as an ecosystem engineer. Scientia Marina, 78, 521528. https://doi.org/10.1080/19420889.2017.1395994Google Scholar
Schnell, A. K., Amodio, P., Boeckle, M., & Clayton, N. S. (2021a). How intelligent is a cephalopod? Lessons from comparative cognition. Biological Reviews, 96(1), 162178. https://doi.org/doi:10.1111/brv.12651Google Scholar
Schnell, A. K., Boeckle, M., Rivera, M., Clayton, N. S., & Hanlon, R. T. (2021b). Cuttlefish exert self-control in a delay of gratification task. Proceedings of the Royal Society B, 288, 20203161. https://doi.org/10.6084/m9.figshare.c.5309888Google Scholar
Schnell, A. K., Clayton, N. S., Hanlon, R. R. T., & Jozet-Alves, C. (2021c). Episodic-like memory is preserved with age in cuttlefish. Proceedings of the Royal Society B, 288, 20211052. https://doi.org/10.1098/rspb.2021.1052Google Scholar
Schnell, A. K., & Clayton, N. S. (2019). Cephalopod cognition. Current Biology, 29, R726R732. https://doi.org/10.1016/j.cub.2019.06.049Google Scholar
Schnell, A. K., Smith, C. L., Hanlon, R. T., & Harcourt, R. (2015). Giant Australian cuttlefish use mutual assessment to resolve male-male contests. Animal Behaviour, 107, 3140.Google Scholar
Seed, A. M., Emery, N. J., & Clayton, N. S. (2009). Intelligence in corvids and apes: A case of convergent evolution? Ethology, 115, 401420. https://doi.org/10.1111/j.1439-0310.2009.01644.xGoogle Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behaviour, 28, 10701094. https://doi.org/10.1016/S0003-3472(80)80097-2Google Scholar
Shultz, S., & Dunbar, R. I. (2006). Both social and ecological factors predict ungulate brain size. Proceedings of the Royal Society B, 273, 207215. https://doi.org/10.1098/rspb.2005.3283Google Scholar
Silk, J. B. (2007). Social components of fitness in primate groups. Science, 317, 13471351. https://doi.org/10.1126/science.1140734Google Scholar
Skelhorn, J., & Rowe, C. (2016). Cognition and the evolution of camouflage. Proceedings of the Royal Society B, 283, 20152890. https://doi.org/10.1098/rspb.2015.2890Google Scholar
Smith, C. D. (2003). Diet of Octopus vulgaris in False Bay, South Africa. Marine Biology, 143, 11271133.Google Scholar
Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., & Lefebvre, L. (2005). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America, 102, 54605465. https://doi.org/10.1073/pnas.0408145102Google Scholar
Street, S. E., Navarrette, A. F., Reader, S. M., & Laland, K. N. (2017). Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates. Proceedings of the National Academy of Sciences of the United States of America, 114, 79087914. https://doi.org/10.1073/pnas.1620734114Google Scholar
Stulp, G., Emery, N. J., Verhulst, S., & Clayton, N. S. (2009). Western scrub-jays conceal auditory information when competitors can hear but cannot see. Biology Letters, 5, 20090330. https://doi.org/10.1098/rsbl.2009.0330Google Scholar
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133167.Google Scholar
Suddendorf, T., & Corballis, M. C. (2010). Behavioural evidence for mental time travel in nonhuman animals. Behavioural Brain Research, 215, 292298.CrossRefGoogle ScholarPubMed
Suddendorf, T., Crimston, J., & Redshaw, J. (2017). Preparatory responses to socially determined, mutually exclusive possibilities in chimpanzees and children. Biology Letters, 13, 20170170.Google Scholar
Taylor, A. H., Hunt, G. R., Medina, F. S., & Gray, R. D. (2009). Do new Caledonian crows solve physical problems through causal reasoning? Proceedings of the Royal Society B, 276, 247254. https://doi.org/10.1098/rspb.2008.1107Google Scholar
Tecwyn, E. C., Thorpe, S. K. S., & Chappell, J. (2013). A novel test of planning ability: Great apes can pla step-by-step, but not in advance of action. Behavioural Processes, 100, 174184.Google Scholar
Teufel, C. R., Clayton, N. S., & Russell, J. R. (2013). Two-year-old children’s understanding of visual perception and knowledge formation in others. Journal of Cognition and Development, 14, 203228. https://doi.org/10.1080/15248372.2012.664591CrossRefGoogle Scholar
Tomasello, M., & Call, J. (1994). Social cognition of monkeys and apes. American Journal of Physical Anthropology, 37, 273305. https://doi.org/10.1002/ajpa.1330370610Google Scholar
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. and Donaldson, W. (Eds.), Organization of memory (pp. 381402). Academic Press.Google Scholar
Tulving, E. (1985). Memory and consciousness. Canadian Psychology, 26, 112.Google Scholar
de Waal, F. B. M. (1986) Conflict resolution in monkeys and apes. In Benirschke, K. (Ed.), Primates. Proceedings in life sciences (pp. 341350). Springer. https://doi.org/10.1007/978-1-4612-4918-4_26Google Scholar
de Waal, F. B. M., & van Roosmalen, A. (1979). Reconciliation and consolation among chimpanzees. Behavioral Ecology and Sociobiology, 5, 5566. https://doi.org/10.1007/BF00302695Google Scholar
Wells, M. J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. Chapman & Hall.Google Scholar
Whiten, A., & Byrne, R. W. (1988). Tactical deception in primates. Behavioral and Brain Sciences, 11, 233273. https://doi.org/10.1017/S0140525X00049682Google Scholar
Whiten, A., & Byrne, R. W. (1997). Machiavellian intelligence II: Extension and evaluations. Cambridge University Press.Google Scholar
van Woerden, J. T. Willems, E. P., van Schaik, C. P., & Isler, K. (2012). Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution, 66, 191199. https://doi.org/10.1111/j.1558-5646.2011.01434.xGoogle Scholar
Zepeda, E. A., Veline, R. J., & Crook, R. J. (2017). Rapid associative learning and stable long-term memory in the squid Euprymna scolopes. Biological Bulletin, 232, 212218. https://doi.org/10.1086/693461Google Scholar
Zuberbühler, K. (2000). Referential labelling in Diana monkeys. Animal Behaviour, 59, 917927. https://doi.org/10.1006/anbe.1999.1317Google Scholar
Zuberbühler, K. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. Behavioral Ecology and Sociobiology, 50, 414422. https://doi.org/10.1007/s002650100383Google Scholar
Zuberbühler, K., & Jenny, D. (2002). Leopard predation and primate evolution. Journal of Human Evolution, 43, 873886. https://doi.org/10.1006/jhev.2002.0605Google Scholar

References

Babb, S. J., & Crystal, J. D. (2006). Episodic-like memory in the rat. Current Biology, 16(13), 13171321. https://doi.org/10.1016/j.cub.2006.05.025Google Scholar
Baddeley, A. (2001). The concept of episodic memory. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 356(1413), 13451350. https://doi.org/10.1098/rstb.2001.0957Google Scholar
Barham, W., Visser, J., Schoonbee, H., & Evans, L. (1985). Some observations on the influence of stress on ECG patterns in Oreochromis mossambicus and Cyprinus carpio. Comparative Biochemistry and Physiology. A, Comparative Physiology, 82(3), 549552. https://doi.org/10.1016/0300-9629(85)90431-1Google Scholar
Bevins, R. A. (1992). Selective associations: A methodological critique. The Psychological Record, 42(1), 5773. https://doi.org/10.1007/BF03399587Google Scholar
Bischof, H. J. (1994). Sexual imprinting as a two-stage process. In Hogan, J. A. and Bolhuis, J. J. (Eds.), Causal mechanisms of behavioural development (pp. 8297). Cambridge University Press.Google Scholar
Bolhuis, J. J., Beckers, G. J., Huybregts, M. A., Berwick, R. C., & Everaert, M. B. (2018). Meaningful syntactic structure in songbird vocalizations? PLoS Biology, 16(6), e2005157. https://doi.org/10.1371/journal.pbio.2005157Google Scholar
Bossema, I. (1979). Jays and oaks: an eco-ethological study of a symbiosis. Behaviour, 70, 1116. https://doi.org/10.1163/156853979X00016Google Scholar
Bouton, M. E. (2016). Learning and behavior: A contemporary synthesis, 2nd ed. Sinauer.Google Scholar
Burdyn, L. E., Noble, L. M., Shreves, L. E., & Thomas, R. K. (1984). Long-term memory for concepts by squirrel monkeys. Physiological Psychology, 12(2), 97102. https://doi.org/10.3758/BF03332174Google Scholar
Byrne, R. W. (2002). Imitation of novel complex actions: What does the evidence from animals mean? Advances in the Study of Behavior, 31, 77105. https://doi.org/10.1016/S0065-3454(02)80006-7Google Scholar
Chen, J., Van Rossum, D., & Ten Cate, C. (2015). Artificial grammar learning in zebra finches and human adults: XYX versus XXY. Animal Cognition, 18(1), 151164. https://doi.org/10.1007/s10071-014-0786-4Google Scholar
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395(6699), 272274. https://doi.org/10.1038/26216Google Scholar
Clayton, N. S., & Dickinson, A. (1999). Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. Journal of Comparative Psychology, 113(4), 403416. https://doi.org/10.1037/0735-7036.113.4.403Google Scholar
Cole, S., Hainsworth, F. R., Kamil, A. C., Mercier, T., & Wolf, L. L. (1982). Spatial learning as an adaptation in hummingbirds. Science, 217(4560), 655657. https://doi.org/10.1126/science.217.4560.655Google Scholar
Cook, R. G., Levison, D. G., Gillett, S. R., & Blaisdell, A. P. (2005). Capacity and limits of associative memory in pigeons. Psychonomic Bulletin & Review, 12(2), 350358. https://doi.org/10.3758/BF03196384Google Scholar
Crystal, J. D. (2010). Episodic-like memory in animals. Behavioural Brain Research, 215(2), 235243. https://doi.org/10.1016/j.bbr.2010.03.005Google Scholar
Domjan, M. (1993). Biological constraints on instrumental and classical conditioning: Implications for general process theory. In Bower, G. H. (Ed.), The psychology of learning and motivation (vol. 17, pp. 215277). Academic Press. https://doi.org/10.1016/S0079-7421(08)60100-0Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: from biological constraints to ecological perspectives. In Menzel, R. (Ed.), Learning theory and behavior, Vol. 1, Learning and memory: A comprehensive reference (2nd ed., pp. 189201). Academic Press. https://doi.org/10.1016/B978-0-12-809324-5.21012-2Google Scholar
Emlen, S. T. (1970). Celestial rotation: Its importance in the development of migratory orientation. Science, 170(3963), 11981201. https://doi.org/10.1126/science.170.3963.1198Google Scholar
Enquist, M., Lind, J., & Ghirlanda, S. (2016). The power of associative learning and the ontogeny of optimal behaviour. Royal Society Open Science, 3(11), 160734. https://doi.org/10.1098/rsos.160734Google Scholar
Fagot, J., & Cook, R. G. (2006). Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences, 103(46), 1756417567. https://doi.org/10.1073/pnas.0605184103Google Scholar
Gallistel, C. R. (1990). The organization of learning. MIT Press.Google Scholar
Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 12041207. https://doi.org/10.1038/nature04675Google Scholar
Ghirlanda, S. (2017). Can squirrel monkeys learn an ABnA grammar? A re-evaluation of Ravignani et al. (2013). PeerJ, 5, e3806. https://doi.org/10.7717/peerj.3806Google Scholar
Ghirlanda, S., Lind, J., & Enquist, M. (2017). Memory for stimulus sequences: A divide between humans and other animals? Royal Society Open Science, 4(6), 161011. https://doi.org/10.1098/rsos.161011Google Scholar
Ghirlanda, S., Lind, J., & Enquist, M. (2020). A-learning: A new formulation of associative learning theory. Psychonomic Bulletin & Review, 27, 11661194. https://doi.org/10.3758/s13423-020-01749-0Google Scholar
Gleitman, H. (1971). Forgetting of long-term memories in animals. In Honig, W. K. & James, P. H. R. (Eds.), Animal memory (pp. 144). Academic Press.Google Scholar
Gould, J. L., & Marler, P. (1984). Ethology and the natural history of learning. In Marler, P. & Terrrace, H. S. (Eds.), The biology of learning (pp. 4774). Springer. https://doi.org/10.1007/978-3-642-70094-1_3Google Scholar
Griffiths, D., Dickinson, A., & Clayton, N. (1999). Episodic memory: What can animals remember about their past? Trends in Cognitive Sciences, 3(2), 7480. https://doi.org/10.1016/S1364-6613(98)01272-8Google Scholar
Gross, C. T., & Canteras, N. S. (2012). The many paths to fear. Nature Reviews Neuroscience, 13(9), 651. https://doi.org/10.1038/nrn3301Google Scholar
Guthrie, E. R. (1935). The psychology of learning. Harper.Google Scholar
Hall, G. (2002). Associative structures in Pavlovian and instrumental conditioning. In Gallistel, R. (Ed.), Stevens’ handbook of experimental psychology (3rd ed., pp. 145). Wiley Online Library. https://doi.org/10.1002/0471214426.pas0301Google Scholar
Hanggi, E. B., & Ingersoll, J. F. (2009). Long-term memory for categories and concepts in horses (Equus caballus). Animal Cognition, 12(3), 451462. https://doi.org/10.1007/s10071-008-0205-9Google Scholar
Healy, S. D., & Hurly, T. A. (2003). Cognitive ecology: Foraging in hummingbirds as a model system. Advances in the Study of Behavior, 32, 325359. https://doi.org/10.1016/S0065-3454(03)01007-6Google Scholar
Helfman, G. S., & Schultz, E. T. (1984). Social transmission of behavioural traditions in a coral reef fish. Animal Behaviour, 32, 379384. https://doi.org/10.1016/S0003-3472(84)80272-9Google Scholar
Herbranson, W. T., & Shimp, C. P. (2008). Artificial grammar learning in pigeons. Learning & Behavior, 36(2), 116137. https://doi.org/10.3758/LB.36.2.116Google Scholar
Hogan, J. A. (1997). Energy models of motivation: A reconsideration. Applied Animal Behaviour Science, 53, 89105. https://doi.org/10.1016/S0168-1591(96)01153-7Google Scholar
Hogan, J. A. (2017). The study of behavior: Organization, methods, and principles. Cambridge University Press. https://doi.org/10.1017/9781108123792Google Scholar
Holland, P. C. (2008). Cognitive versus stimulus-response theories of learning. Learning & Behavior, 36(3), 227241. https://doi.org/10.3758/LB.36.3.227Google Scholar
Holmes, P. A., & Bitterman, M. (1966). Spatial and visual habit reversal in the turtle. Journal of Comparative and Physiological Psychology, 62(2), 328331. https://doi.org/10.1037/h0023675Google Scholar
Hull, C. L. (1943). Principles of behaviour. Appleton-Century-Crofts.Google Scholar
Hultsch, H., & Todt, D. (1989). Memorization and reproduction of songs in nightingales (Luscinia megarhynchos): Evidence for package formation. Journal of Comparative Physiology A, 165(2), 197203. https://doi.org/10.1007/BF00619194Google Scholar
Immelmann, K. (1972). The influence of early experience upon the development of social behaviour in estrildine finches. Proceedings XVth Ornithological Congress, Den Haag 1970, pp. 316–338.Google Scholar
Janik, V. M., & Slater, P. J. (1997). Vocal learning in mammals. Advances in the Study of Behaviour, 26, 59100. https://doi.org/10.1016/S0065-3454(08)60377-0Google Scholar
Jensen, R. (2006). Behaviorism, latent learning, and cognitive maps: Needed revisions in introductory psychology textbooks. The Behavior Analyst, 29(2), 187209. https://doi.org/10.1007/BF03392130Google Scholar
Johnson, C. K., & Davis, R. T. (1973). Seven-year retention of oddity learning set in monkeys. Perceptual and Motor Skills, 37(3), 920922. https://doi.org/10.2466/pms.1973.37.3.920Google Scholar
Jozet-Alves, C., Bertin, M., & Clayton, N. S. (2013). Evidence of episodic-like memory in cuttlefish. Current Biology, 23(23), R1033R1035. https://doi.org/10.1016/j.cub.2013.10.021Google Scholar
van Kampen, H. S., & de Vos, G. J. (1995). A study of blocking and overshadowing in filial imprinting. Quarterly Journal of Experimental Psychology, 49B, 346356. https://doi.org/10.1080/14640749508401457Google Scholar
Kastak, C. R., & Schusterman, R. J. (2002). Long-term memory for concepts in a California sea lion (Zalophus californianus). Animal Cognition, 5(4), 225232. https://doi.org/10.1007/s10071-002-0153-8Google Scholar
Kristo, G., Janssen, S. M., & Murre, J. M. (2009). Retention of autobiographical memories: An internet-based diary study. Memory, 17(8), 816829. https://doi.org/10.1080/09658210903143841Google Scholar
Kullberg, C., & Lind, J. (2002). An experimental study of predator recognition in great tit fledglings. Ethology, 108, 429441. https://doi.org/10.1046/j.1439-0310.2002.00786.xGoogle Scholar
Lieberman, D. A. (2011). Human learning and memory. Cambridge University Press.Google Scholar
Lind, J. (2018). What can associative learning do for planning? Royal Society Open Science, 5(11), 180778. https://doi.org/10.1098/rsos.180778Google Scholar
Lind, J., Enquist, M., & Ghirlanda, S. (2015). Animal memory: A review of delayed matching-to-sample data. Behavioural Processes, 117, 5258. https://doi.org/10.1016/j.beproc.2014.11.019Google Scholar
Lind, J., Ghirlanda, S., & Enquist, M. (2019). Social learning through associative processes: A computational theory. Royal Society Open Science, 6, 181777. https://doi.org/10.1098/rsos.181777Google Scholar
Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogel. Journal of Ornithology, 83, 137413. https://doi.org/10.1007/BF01905355Google Scholar
MacDonald, S. E. (1993). Delayed matching-to-successive-samples in pigeons: Short-term memory for item and order information. Animal Learning & Behavior, 21(1), 5967. https://doi.org/10.3758/BF03197977Google Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford University Press. https://doi.org/10.2307/1422540Google Scholar
Macphail, E. M., & Bolhuis, J. J. (2001). The evolution of intelligence: Adaptive specializations versus general process. Biological Reviews, 76(3), 341364. https://doi.org/10.1017/s146479310100570xGoogle Scholar
McFarland, D. (1985). Animal behaviour, vol. 1. Pitman.Google Scholar
McFarland, D. J. (1971). Feedback mechanisms in animal behaviour. Academic Press.Google Scholar
McLaren, I. P. L., & Mackintosh, N. J. (2000). An elemental model of associative learning: I. Latent inhibition and perceptual learning. Animal Learning & Behavior, 28(3), 211246. https://doi.org/10.3758/BF03200258Google Scholar
McLaren, I. P. L., & Mackintosh, N. J. (2002). Associative learning and elemental representation: II. Generalization and discrimination. Animal Learning & Behavior, 30, 177200. https://doi.org/10.3758/BF03192828Google Scholar
Mets, D. G., & Brainard, M. S. (2019). Learning is enhanced by tailoring instruction to individual genetic differences. eLife, 8, e47216 https://doi.org/10.7554/eLife.47216Google Scholar
Murphy, R. A., Mondragón, E., & Murphy, V. A. (2008). Rule learning by rats. Science, 319(5871), 18491851. https://doi.org/10.1126/science.1151564Google Scholar
Ormerod, B. K., & Beninger, R. J. (2002). Water maze versus radial maze: Differential performance of rats in a spatial delayed match-to-position task and response to scopolamine. Behavioural Brain Research, 128(2), 139152. https://doi.org/10.1016/S0166-4328(01)00316-3Google Scholar
Overman, W. Jr., & Doty, R. (1980). Prolonged visual memory in macaques and man. Neuroscience, 5(11), 18251831. https://doi.org/10.1016/0306-4522(80)90032-9Google Scholar
Pahl, M., Zhu, H., Pix, W., Tautz, J., & Zhang, S. (2007). Circadian timed episodic-like memory – A bee knows what to do when, and also where. The Journal of Experimental Biology, 210(20), 35593567. https://doi.org/10.1242/jeb.005488Google Scholar
Patterson, T. L., & Tzeng, O. J. (1979). Long-term memory for abstract concepts in the lowland gorilla (Gorilla g. gorilla). Bulletin of the Psychonomic Society, 13(5), 279282. https://doi.org/10.3758/BF03336870Google Scholar
Pavlov, I. P. (1927). Conditioned reflexes. Oxford University Press.Google Scholar
Pearce, J. M. (2008). Animal learning and cognition, 3rd ed. Psychology Press. https://doi.org/10.4324/9781315782911Google Scholar
Perry, S. E., & Manson, J. H. (2003). Traditions in monkeys. Evolutionary Anthropology, 12, 7181. https://doi.org/10.1002/evan.10105Google Scholar
Pierce, W. D., & Cheney, Carl D. (2008). Behavior analysis and learning. Psychology Press. https://doi.org/10.4324/9780203441817Google Scholar
Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86(2), 184195. https://doi.org/10.1016/j.beproc.2010.11.007Google Scholar
Pinel, J. P., & Treit, D. (1978). Burying as a defensive response in rats. Journal of Comparative and Physiological Psychology, 92(4), 708712. https://doi.org/10.1037/h0077494Google Scholar
Roberts, W. A., Feeney, M. C., MacPherson, K., Petter, M., McMillan, N., & Musolino, E. (2008). Episodic-like memory in rats: Is it based on when or how long ago? Science, 320(5872), 113115. https://doi.org/10.1126/science.1152709Google Scholar
Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28(9), 10591074. https://doi.org/10.1068/p281059Google Scholar
Skinner, B. (1936). Conditioning and extinction and their relation to drive. The Journal of General Psychology, 14(2), 296317. https://doi.org/10.1080/00221309.1936.9713156Google Scholar
Soha, J. (2016). The auditory template hypothesis: A review and comparative perspective. Animal Behaviour, 124, 247254. https://doi.org/10.1016/j.anbehav.2016.09.016Google Scholar
Staddon, J. E. R. (2001). The new behaviorism: Mind, mechanism and society. Taylor & Francis.Google Scholar
Stephens, D. W. (1987). On economically tracking a variable environment. Theoretical Population Biology, 32(1), 1525. https://doi.org/10.1016/0040-5809(87)90036-0Google Scholar
Suzuki, T. N., Wheatcroft, D., & Griesser, M. (2016). Experimental evidence for compositional syntax in bird calls. Nature Communications, 7, 10986. https://doi.org/10.1038/ncomms10986Google Scholar
Tennie, C., Völter, C. J., Vonau, V., Hanus, D., Call, J., & Tomasello, M. (2019). Chimpanzees use observed temporal directionality to learn novel causal relations. Primates, 60(6), 517524. https://doi.org/10.1007/s10329-019-00754-9Google Scholar
Thistlethwaite, D. (1951). A critical review of latent learning and related experiments. Psychological Bulletin, 48(2), 97129. https://doi.org/10.1037/h0055171Google Scholar
Thorndike, E. L. (1898). Animal intelligence, an experimental study of the associative processes in animals. Macmillan. https://doi.org/10.1037/h0092987Google Scholar
Thorndike, E. L. (1911). Animal intelligence. Experimental studies. Macmillan. https://doi.org/10.5962/bhl.title.55072Google Scholar
Tolman, E. C. (1932). Purposive behavior in animals and men. University of California Press.Google Scholar
Tolman, E. C., & Honzik, C. H. (1930). Introduction and removal of reward, and maze performance in rats. University of California Publications in Psychology, 4, 257275.Google Scholar
Vaughan, W., & Greene, S. L. (1984). Pigeon visual memory capacity. Journal of Experimental Psychology: Animal Behavior Processes, 10(2), 256271. https://doi.org/10.1037/0097-7403.10.2.256Google Scholar
Völter, C. J., & Call, J. (2014). Great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo abelii) follow visual trails to locate hidden food. Journal of Comparative Psychology, 128(2), 199208. https://doi.org/10.1037/a0035434Google Scholar
van de Waal, E., Borgeaud, C., & Whiten, A. (2013). Potent social learning and conformity shape a wild primate’s foraging decisions. Science, 340(6131), 483485. https://doi.org/10.1126/science.1232769Google Scholar
Wehner, R. (2003). Desert ant navigation: How miniature brains solve complex tasks. Journal of Comparative Physiology A, 189(8), 579588. https://doi.org/10.1007/s00359-003-0431-1Google Scholar
Weisman, R. G., Duder, C., & von Konigslow, R. (1985). Representation and retention of three-event sequences in pigeons. Learning and Motivation, 16(3), 239258. https://doi.org/10.1016/0023-9690(85)90014-1Google Scholar
Weisman, R. G., Wasserman, E., Dodd, P., & Larew, M. B. (1980). Representation and retention of two-event sequences in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 6(4), 312325. https://doi.org/10.1037/0097-7403.6.4.312Google Scholar
Yerkes, R. M., & Yerkes, D. N. (1928). Concerning memory in the chimpanzee. Journal of Comparative Psychology, 8(3), 237271. https://doi.org/10.1037/h0073804Google Scholar
Zeldin, R. K., & Olton, D. S. (1986). Rats acquire spatial learning sets. Journal of Experimental Psychology: Animal Behavior Processes, 12(4), 412419. https://doi.org/10.1037/0097-7403.12.4.412Google Scholar
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin & Review, 8(4), 685690. https://doi.org/10.3758/BF03196204Google Scholar

References

Amici, F., Cacchione, T., & Bueno-Guerra, N. (2017). Understanding of object properties by sloth bears. melursus ursinusursinus. Animal Behaviour, 134, 217222. http://dx.doi.org/10.1016/j.anbehav.2017.10.028Google Scholar
Amici, F., Holland, R., & Cacchione, T. (2019). Sloth bears (Melursus ursinus) fail to spontaneously solve a novel problem even if social cues and relevant experience are provided. Journal of Comparative Psychology, 133, 373379. http://dx.doi.org/10.1037/com0000167Google Scholar
Arden, R., Bensky, M. K., & Adams, M. J. (2016). A review of cognitive abilities in dogs, 1911 through 2016: More individual differences, please! Current Directions in Psychological Science, 25, 307312. http://dx.doi.org/10.1177/0963721416667718Google Scholar
Bacon, E. S., & Burghardt, G. M. (1976). Learning and color discrimination in the American black bear. Ursus, 3, 2736.Google Scholar
Bacon, E. S., & Burghardt, G. M. (1983). Food preferences in the American black bear: An experimental approach. Ursus, 5, 102105. https://doi.org/10.2307/3872525Google Scholar
Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M., & Holekamp, K. E. (2016). Brain size predicts problem-solving ability in mammalian carnivores. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113, 25322537. http://dx.doi.org/10.1073/pnas.1505913113Google Scholar
Beran, M. J., & Highfill, L. E. (2011). Paying more attention to what (some) nonhuman animals and (some) humans can do: An introduction to the special issue on individual differences in comparative psychology. International Journal of Comparative Psychology, 24, 13.Google Scholar
Boesch, C. (2020). Listening to the appeal from the wild. Animal Behavior and Cognition, 7, 257263. https://doi.org/10.26451/abc.07.02.15.2020Google Scholar
Borrego, N. (2017). Big cats as a model system for the study of the evolution of intelligence. Behavioural Processes, 141, 261266. http://dx.doi.org/10.1016/j.beproc.2017.03.010Google Scholar
Byrne, R. (1997). The technical intelligence hypothesis: An additional evolutionary stimulus to intelligence? In Whiten, A. & Byrne, R. (Eds.), Machiavellian intelligence II: Extensions and evaluations (pp. 289311). Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511525636.012Google Scholar
Carter, G. G., Schino, G., & Farine, D. (2019). Challenges in assessing the roles of nepotism and reciprocity in cooperation networks. Animal Behaviour, 150, 255271. http://dx.doi.org/10.1016/j.anbehav.2019.01.006Google Scholar
Carter, G. G., & Wilkinson, G. S. (2013). Food sharing in vampire bats: Reciprocal help predicts donations more than relatedness or harassment. Proceedings of the Royal Society, B, 280, 20122573. https://doi.org/10.1098/rspb.2012.2573Google Scholar
Colvin, T. R. (1975). Aversive conditioning black bear to honey utilizing lithium chloride. Proceedings of the Annual Conference of the Southeastern Association of Game and Fish Commissions, 29, 450453.Google Scholar
Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6, 178189. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5%3C178::AID-EVAN5%3E3.0.CO;2-8Google Scholar
Dunbar, R. I. M. (2009). The social brain hypothesis and its implications for social evolution. Annals of Human Biology, 36, 562572. https://doi.org/10.1080/03014460902960289Google Scholar
Dungl, E., Schratter, D., & Huber, L. (2008). Discrimination of face-like patterns in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 122, 335e343. https://doi.org/10.1037/0735-7036.122.4.335Google Scholar
Eaton, T., Hutton, R., Leete, J., Lieb, J., Robeson, A., & Vonk, J. (2018). Bottoms-up: Rejecting top-down human-centered approaches in comparative psychology. International Journal of Comparative Psychology, 31. https://escholarship.org/uc/item/11t5q9wtGoogle Scholar
Elbroch, M. L., Levy, M., Lubell, M., Quigley, H., & Caragiulo, A. (2017). Adaptive social strategies in a solitary carnivore. Science Advances, 3, e1701218. https://doi.org/10.1126/sciadv.1701218Google Scholar
Gillin, C. M., Hammond, F. M., & Peterson, C. M. (1994). Evaluation of an aversive conditioning technique used on female grizzly bears in the Yellowstone Ecosystem. International Conference on Bear Restoration and Management, 9, 503512.Google Scholar
Gittleman, J. L. (1986). Carnivore brain size, behavioral ecology, and phylogeny. Journal of Mammalogy, 67, 2336. https://doi.org/10.2307/1380998Google Scholar
Hamilton, J., & Vonk, J. (2015). Do dogs (Canis lupus familiaris) recognize kin? Behavioural Processes, 119, 123134. https://doi.org/10.1016/j.beproc.2015.08.004Google Scholar
Hartmann, D., Davila-Ross, M., Wong, S. T., Call, J., & Scheumann, M. (2017). Spatial transposition tasks in Indian sloth bears (melursus ursinus) and Bornean sun bears (helarctos malayanus euryspilus). Journal of Comparative Psychology, 131, 290303. http://dx.doi.org/10.1037/com0000077Google Scholar
Hepper, P. G. (1994). Long-term retention of kinship recognition established during infancy in the domestic dog. Behavioural Processes, 33, 314. http://dx.doi.org/10.1016/0376-6357(94)90056-6Google Scholar
Hertel, A. G., Leclerc, M., Warren, D., Pelletier, F., Zedrosser, A., & Mueller, T. (2019). Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Animal Behaviour, 147, 91104. http://dx.doi.org/10.1016/j.anbehav.2018.11.008Google Scholar
Hertel, A. G., Steyaert, S. M. J. G., Zedrosser, A., Mysterud, A., Lodberg-Holm, H., Gelink, H. W., Kindberg, J., & Swenson, J. E. (2016). Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behavioral Ecology and Sociobiology, 70, 831842. http://dx.doi.org/10.1007/s00265-016-2106-2Google Scholar
Holekamp, K. E., Dantzer, B., Stricker, G., Shaw Yoshida, K. C., & Benson-Amram, S. (2015). Brains, brawn and sociality: A hyaena’s tale. Animal Behaviour, 103, 237248. http://dx.doi.org/10.1016/j.anbehav.2015.01.023Google Scholar
Humphrey, N. K. (1976). The social function of intellect. In Bateson, P. P. G. & Hinde, R. A. (Eds.), Growing points in ethology (pp. 303317). Cambridge University Press.Google Scholar
Johnson-Ulrich, Z. (2017). Predictors of behavioral flexibility and problem-solving in carnivora (Order No. 10615355). Available from Dissertations & Theses @ Oakland University. (1980794459).Google Scholar
Johnson-Ulrich, Z., Vonk, J., Humbyrd, M., Crowley, M., Wojtkowski, E., Yates, F., & Allard, S. (2016). Picture object recognition in an American black bear (Ursus americanus). Animal Cognition, 19, 12371242. https://doi.org/10.1007/s10071-016-1011-4Google Scholar
Jolly, A. (1965). Lemur social behavior and primate intelligence. Science, 153, 501506. https://doi.org/10.1126/science.153.3735.501Google Scholar
Lea, S. E. G., & Osthaus, B. (2018). In what sense are dogs special? Canine cognition in comparative context. Learning & Behavior, 46, 335363. http://dx.doi.org/10.3758/s13420-018-0349-7Google Scholar
Marshall-Pescini, S., Schwarz, J. F. L., Kostelnik, I., Virányi, Z., & Range, F. (2017). Importance of a species’ socioecology: Wolves outperform dogs in a conspecific cooperation task. Proceedings of the National Academy of Sciences, 114, 1179311798. https://doi.org/10.1073/pnas.1709027114Google Scholar
Mazur, R., & Seher, V. (2008). Socially learned foraging behaviour in wild black bears, Ursus americanus. Animal Behaviour, 75, 15031508. https://doi.org/10.1016/j.anbehav.2007.10.027Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions Panthera leo. Animal Behaviour, 47, 379387. http://dx.doi.org/10.1006/anbe.1994.1052Google Scholar
Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. American Anthropologist, 83, 534548. https://doi.org/10.1525/aa.1981.83.3.02a00020Google Scholar
Mitchell, M. S., & Powell, R. A. (2007). Optimal use of resources structures home ranges and spatial distribution of black bears. Animal Behaviour, 74, 219230. http://dx.doi.org/10.1016/j.anbehav.2006.11.017Google Scholar
Morehouse, A. T., Graves, T. A., Mikle, N., & Boyce, M. S. (2016). Nature vs. nurture: Evidence for social learning of conflict behaviour in grizzly bears. PLoS ONE, 11, 15. https://doi.org/10.1371/journal.pone.0165425Google Scholar
Noyce, K. V., & Garshelis, D. L. (2011). Seasonal migrations of black bears (Ursus americanus): Causes and consequences. Behavioral Ecology and Sociobiology, 65, 823835. http://dx.doi.org/10.1007/s00265-010-1086-xGoogle Scholar
Ordiz, A., Kindberg, J., Saebo, S., Swenson, J., & Stoen, O. (2014). Brown bear circadian behavior reveals human environmental encroachment, Biological Conservation, 173, 19. https://doi.org/10.1016/j.biocon.2014.03.006Google Scholar
Ostojić, L., & Clayton, N. S. (2014). Behavioural coordination of dogs in a cooperative problem-solving task with a conspecific and a human partner. Animal Cognition, 17, 445459. https://doi.org/10.1007/s10071-013-0676-1Google Scholar
Perdue, B. M., Snyder, R. J., Pratte, J., Marr, M. J., & Maple, T. L. (2009). Spatial memory recall in the giant panda (Ailuropoda melanoleuca). Journal of Comparative Psychology, 123, 275279. https://doi.org/10.1037/a0016220Google Scholar
Perdue, B. M., Snyder, R., Zhihe, Z., Marr, J., & Maple, T. (2011) Sex differences in spatial ability: A test of the range size hypothesis in order carnivore. Animal Behaviour, 7, 380383. https://doi.org/10.1098/rsbl.2010.1116Google Scholar
Polson, J. E. (1983). Application of aversion techniques for the reduction of losses to beehives by black bears in Northeastern Saskatchewan, SRC Publication No. C-805-13-E-83.Google Scholar
Range, F., & Virányi, Z. (2015). Tracking the evolutionary origins of dog-human cooperation: The “canine cooperation hypothesis”. Frontiers in Psychology, 5, 2. https://doi.org/10.3389/fpsyg.2014.01582Google Scholar
Ripperger, S. P., Carter, G. G., Duda, N., Koelpin, A., Cassens, B., Kapitza, R., Josic, D., Berrío-Martínez, J., Page, R. A., & Mayer, F. (2019). Vampire bats that cooperate in the lab maintain their social networks in the wild. Current Biology, 23, 41394144. https://doi.org/10.1016/j.cub.2019.10.024Google Scholar
Ripperger, S. P., Page, R. A., Mayer, F., & Carter, G. G. (2020). Evidence for unfamiliar kin recognition in vampire bats. BioRxiv. https://doi.org/10.1101/2019.12.16.874057Google Scholar
Rogers, L. L., Mansfield, S. A., Hornby, K., Hornby, S., Debruyn, T. D., Mize, M., Clark, R., & Burghardt, G. M. (2014). Black bear reactions to venomous and non‐venomous snakes in eastern North America. Ethology, 120, 641651. http://dx.doi.org/10.1111/eth.12236Google Scholar
Sakai, S. T., Arsznov, B. M., Lundrigan, B. L., & Holekamp, K. E. (2011). Brain size and social complexity: A computed tomography study in hyaenidae. Brain, Behavior and Evolution, 77, 91104. http://dx.doi.org/10.1159/000323849Google Scholar
Samuel, L., Arnesen, C., Zedrosser, A., & Rosell, F. (2020). Fears from the past? The innate ability of dogs to detect predator scents. Animal Cognition, 23, 721729. http://dx.doi.org/10.1007/s10071-020-01379-yGoogle Scholar
Schubiger, M. N., Fichtel, C., & Burkart, J. M. (2020). Validity of cognitive tests for non-human animals: Pitfalls and prospects. Frontiers in Psychology, 11, 1835. https://doi.org/10.3389/fpsyg.2020.01835Google Scholar
Silk, J., Brosnan, S. F., Vonk, J., Henrich, J., Povinelli, D. J., Shapiro, S., Richardson, A., Lambeth, S. P., & Mascaro, J. (2005). Chimpanzees are indifferent to the welfare of unrelated group members. Nature, 437, 13571359. https://doi.org/10.1038/nature04243Google Scholar
Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261268. http://dx.doi.org/10.1007/s10508-006-9168-6Google Scholar
Smith, M. E., Linnell, J. D., Odden, J., & Swenson, J. E. (2000). Review of methods to reduce livestock depradation: I. Guardian animals. Acta Agriculturae Scandinavica, Section A-Animal Science, 50, 279290. https://doi.org/10.1080/090647000750069476Google Scholar
Sol, D. (2009). The cognitive-buffer hypothesis for the evolution of large brains. In Dukas, R. & Ratcliffe, J. M. (Eds.), Cognitive ecology II (pp. 111136). University of Chicago Press.Google Scholar
Stevens, J. R., & Gilby, I. C. (2004). A conceptual framework for nonkin food sharing: Timing and currency of benefits. Animal Behaviour, 67, 603614. http://dx.doi.org/10.1016/j.anbehav.2003.04.012Google Scholar
Stevens, J. R., & Stephens, D. W. (2002). Food sharing: A model of manipulation by harassment. Behavioral Ecology, 13, 393400. http://dx.doi.org/10.1093/beheco/13.3.393Google Scholar
Stillfried, M., Belant, J. L., Svoboda, N. J., Beyer, D. E., & Kramer-Schadt, S. (2015). When top predators become prey: Black bears alter movement behaviour in response to hunting pressure. Behavioural Processes, 120, 3039. http://dx.doi.org/10.1016/j.beproc.2015.08.003Google Scholar
Støen, O., Bellemain, E., Sæbø, S., & Swenson, J. E. (2005). Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology, 59, 191197. http://dx.doi.org/10.1007/s00265-005-0024-9Google Scholar
Stringham, S. F. (2012). Salmon fishing by bears and the dawn of cooperative predation. Journal of Comparative Psychology, 126, 329338. http://dx.doi.org/10.1037/a0028238Google Scholar
Suraci, J. P., Clinchy, M., Roberts, D. J., & Zanette, L. Y. (2017). Eavesdropping in solitary large carnivores: Black bears advance and vocalize toward cougar playbacks. Ethology, 123, 593599. http://dx.doi.org/10.1111/eth.12631Google Scholar
Tarou, L. R. (2004). An examination of the role of associative learning and spatial memory in foraging of two species of bear (family: Ursidae) (Ailuropoda melanoleuca, Tremarctos ornatus). Dissertation Abstracts International: Section B: The Sciences and Engineering, 64, 5260.Google Scholar
Ternent, M. A., & Garshelis, D. L. (1999). Taste-aversion conditioning to reduce nuisance activity by black bears in a Minnesota military reservation. Wildlife Society Bulletin, 720–728.Google Scholar
Udell, M. A. R. (2018). A new approach to understanding canine social cognition. Learning & Behavior, 46, 329330. http://dx.doi.org/10.3758/s13420-018-0334-1Google Scholar
Udell, M. A. R., & Vitale Shreve, K. R. (2017). Editorial: Feline behavior and cognition. Behavioural Processes, 141, 259260. http://dx.doi.org/10.1016/j.beproc.2017.04.005Google Scholar
Virányi, Z., & Range, F. (2014). On the way to a better understanding of dog domestication: Aggression and cooperativeness in dogs and wolves. In Kaminski, J. & Marshall-Pescini, S. (Eds.), The social dog: Behaviour and cognition (pp. 3562). Academic Press.Google Scholar
Vonk, J. (2016). Bigger brains may make better problem-solving carnivores. Learning and Behavior, 44, 99100. https://doi.org/10.3758/s13420-016-0222-5Google Scholar
Vonk, J. (2018). Social strategies in a not-so-social pumas. Learning and Behavior, 46, 105106. https://doi.org/10.3758/s13420-017-0312-zGoogle Scholar
Vonk, J., Allard, S., Torgerson-White, L., Bennett, C., Galvan, M., McGuire, M. M., Hamilton, J., Johnson-Ulrich, Z., & Lieb, J. (2015). Manipulating spatial and visual cues in a win-stay foraging task in captive grizzly bears (Ursus arctos horribilus). In Thayer, E. A. (Ed.), Spatial, long-and short-term memory: Functions, differences and effects of injury (pp. 4760). Nova Publishers.Google Scholar
Vonk, J., & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231238. https://doi.org/10.1016/j.anbehav.2012.05.001Google Scholar
Vonk, J., Edge, J., Pappas, J., Robeson, A., & Jordan, A. (2020). Cross species comparisons: When comparing apples to oranges is fruitful. In Shackelford, T. K. (Ed.), The Sage handbook of evolutionary psychology (pp. 285310). Sage.Google Scholar
Vonk, J., & Jett, S. E. (2018). “Bear-ly” learning: Limits of abstraction in black bear cognition. Animal Behavior and Cognition, 5, 6878. https://doi.org/10.26451/abc.05.01.06.2018Google Scholar
Vonk, J., Jett, S. E., & Mosteller, K. W. (2012). Concept formation in American black bears (Ursus americanus). Animal Behaviour, 84, 953964. https://doi.org/10.1016/j.anbehav.2012.07.020Google Scholar
Vonk, J. & Johnson-Ulrich, Z. (2014). Social and non-social category discriminations in a chimpanzee (Pan troglodytes) and American black bears (Ursus americanus). Learning and Behavior, 42, 231245. https://doi.org/10.3758/s13420-014-0141-2Google Scholar
Vonk, J., & Leete, J. (2017). Carnivore concepts: Categorization in carnivores “bears” further study. International Journal of Comparative Psychology, 30. http://escholarship.org/uc/item/61363164Google Scholar
de Waal, F. B., & Ferrari, P. F. (2010). Towards a bottom-up perspective on animal and human cognition. Trends in Cognitive Sciences, 14, 201207. https://doi.org/10.1016/j.tics.2010.03.003Google Scholar
Waroff, A. J., Fanucchi, L., Robbins, C. T., & Nelson, O. L. (2017). Tool use, problem-solving, and the display of stereotypic behaviors in the brown bear (Ursus arctos). Journal of Veterinary Behavior: Clinical Applications and Research, 17, 6268. https://doi.org/10.1016/j.jveb.2016.11.003Google Scholar
Wynne, C. D. L. (2016). What is special about dog cognition? Current Directions in Psychological Science, 25, 345350. http://dx.doi.org/10.1177/0963721416657540Google Scholar
Wilkinson, G. S. (1988). Reciprocal altruism in bats and other mammals. Ethology & Sociobiology, 9, 85100. https://doi.org/10.1016/0162-3095(88)90015-5Google Scholar
Zamisch, V., & Vonk, J. (2012). Spatial memory in captive American black bears (Ursus americanus). Journal of Comparative Psychology, 126, 372387. https://doi.org/10.1037/a0028081Google Scholar

References

Addessi, E., & Rossi, S. (2010). Tokens improve capuchin performance in the reverse–reward contingency task. Proceedings of the Royal Society of London B: Biological Sciences, rspb20101602. https://doi.org/10.1098/rspb.2010.1602Google Scholar
Ainslie, G. W. (1974). Impulse control in pigeons. Journal of the Experimental Analysis of Behavior, 21, 485489. https://doi.org/10.1901/jeab.1974.21-485Google Scholar
Albiach-Serrano, A., Guillén-Salazar, F., & Call, J. (2007). Mangabeys (Cercocebus torquatus lunulatus) solve the reverse contingency task without a modified procedure. Animal Cognition, 10, 387396. https://doi.org/10.1007/s10071-007-0076-5Google Scholar
Anderson, J. R., Awazu, S., & Fujita, K. (2000). Can squirrel monkeys (Saimiri sciureus) learn self-control: A study using food array selection tests and reverse-reward contingency. Journal of Experimental Psychology: Animal Behavior Processes, 26, 8797. https://doi.org/10.1037//0097-7403.26.1.87Google Scholar
Anderson, J. R., Hattori, Y., & Fujita, K. (2008). Quality before quantity: Rapid learning of reverse-reward contingency by capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 122, 445448. https://doi.org/10.1037/a0012624Google Scholar
Auersperg, A. M. I., Laumer, I. B., & Bugnyar, T. (2013). Goffin cockatoos wait for qualitative and quantitative gains but prefer “better” to “more”. Biology Letters, 9, Article 20121092. https://doi.org/10.1098/rsbl.2012.1092Google Scholar
Beck, B. B. (1980). Animal tool behavior: The use and manufacture of tools by animals. Garland STPM Press.Google Scholar
Beran, M. J. (2002). Maintenance of self-imposed delay of gratification by four chimpanzees (Pan troglodytes) and an orangutan (Pongo pygmaeus). Journal of General Psychology, 129, 4966. https://doi.org/10.1080/00221300209602032Google Scholar
Beran, M. J. (2015). The comparative science of “self-control”: What are we talking about? Frontiers in Psychology, 6, Article 51. https://doi.org/10.3389/fpsyg.2015.00051Google Scholar
Beran, M. J. (2018). Self-control in animals and people. Academic Press. https://doi.org/10.1016/C2016-0-03559-3Google Scholar
Beran, M. J., & Evans, T. A. (2006). Maintenance of delay of gratification by four chimpanzees (Pan troglodytes): The effects of delayed reward visibility, experimenter presence, and extended delay intervals. Behavioural Processes, 73, 315324. https://doi.org/10.1016/j.beproc.2006.07.005Google Scholar
Beran, M. J., James, B. T., Whitham, W., & Parrish, A. E. (2016). Chimpanzees can point to smaller amounts of food to accumulate larger amounts but they still fail the reverse-reward contingency task. Journal of Experimental Psychology: Animal Learning and Cognition, 42, 347358. https://doi.org/10.1037/xan0000115Google Scholar
Beran, M. J., Perdue, B. M., Rossettie, M. S., James, B. T., Whitham, W., Walker, B., Futch, S. E., & Parrish, A. E. (2016). Self-control assessments of capuchin monkeys with the rotating tray task and the accumulation task. Behavioural Processes, 129, 6879. https://doi.org/10.1016/j.beproc.2016.06.007Google Scholar
Beran, M. J., Rossettie, M. S., & Parrish, A. E. (2016). Trading up: Chimpanzees (Pan troglodytes) show self-control through their exchange behavior. Animal Cognition, 19, 109121. https://doi.org/10.1007/s10071-015-0916-7Google Scholar
Beran, M. J., Savage-Rumbaugh, E. S., Pate, J. L., & Rumbaugh, D. M. (1999). Delay of gratification in chimpanzees (Pan troglodytes). Developmental Psychobiology, 34, 119127. https://doi.org/10.1002/(sici)1098-2302(199903)34:2<119::aid-dev5>3.0.co;2-pGoogle Scholar
Boesch-Achermann, H., & Boesch, C. (1993). Tool use in wild chimpanzees: New light from dark forests. Current Directions in Psychological Science, 2, 1821. https://doi.org/10.1111/1467-8721.ep10770551Google Scholar
Boysen, S. T., & Berntson, G. G. (1995). Responses to quantity: Perceptual versus cognitive mechanisms in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 21, 8286. https://doi.org/10.1037//0097-7403.21.1.82Google Scholar
Boysen, S. T., Berntson, G. G., Hannan, M. B., & Cacioppo, J. T. (1996). Quantity-based interference and symbolic representations in chimpanzees (Pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 22, 7686. https://doi.org/10.1037/0097-7403.22.1.76Google Scholar
Boysen, S. T., Mukobi, K. L., & Berntson, G. G. (1999). Overcoming response bias using symbolic representations of number by chimpanzees (Pan troglodytes). Animal Learning and Behavior, 27, 229235. https://doi.org/10.3758/BF03199679Google Scholar
Bramlett, J. L., Perdue, B. M., Evans, T. A., & Beran, M. J. (2012). Capuchin monkeys (Cebus apella) let lesser rewards pass them by to get better rewards. Animal Cognition, 15, 963969. https://doi.org/10.1007/s10071-012-0522-xGoogle Scholar
Brucks, D., Soliani, M., Range, F., & Marshall-Pescini, S. (2017). Reward type and behavioural patterns predict dogs’ success in a delay of gratification paradigm. Scientific Reports, 7, 42459. https://doi.org/10.1038/srep42459Google Scholar
Byrne, R. W., Sanz, C. M., & Morgan, D. B. (2013). Chimpanzees plan their tool use. In Sanz, C. M., Call, J., & Boesch, C. (Eds.), Tool use in animals. Cognition and ecology (pp. 4864). Cambridge University Press. https://doi.org/10.1017/CBO9780511894800.004Google Scholar
Cheng, K. E. N., Peña, J., Porter, M. A., & Irwin, J. D. (2002). Self-control in honeybees. Psychonomic Bulletin & Review, 9, 259263. https://doi.org/10.3758/BF03196280Google Scholar
De Petrillo, F., Gori, E., Micucci, A., Ponsi, G., Paglieri, F., & Addessi, E. (2015). When is it worth waiting for? Food quantity, but not food quality, affects delay tolerance in tufted capuchin monkeys. Animal Cognition, 18, 10191029. https://doi.org/10.1007/s10071-015-0869-xGoogle Scholar
Drapier, M., Chauvin, C., Dufour, V., Uhlrich, P., & Thierry, B. (2005). Food-exchange with humans in brown capuchin monkeys. Primates, 46, 241248. https://doi.org/10.1007/s10329-005-0132-1Google Scholar
Duckworth, A. L., & Kern, M. L. (2011). A meta-analysis of the convergent validity of self-control measures. Journal of Research in Personality, 45, 259268. https://doi.org/10.1016/j.jrp.2011.02.004Google Scholar
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 10871101. https://doi.org/10.1037/0022-3514.92.6.1087Google Scholar
Dufour, V., Pelé, M., Sterck, E. H. M., & Thierry, B. (2007). Chimpanzee (Pan troglodytes) anticipation of food return: Coping with waiting time in an exchange task. Journal of Comparative Psychology, 121, 145155. https://doi.org/10.1037/0735-7036.121.2.145Google Scholar
Dufour, V., Wascher, C. A. F., Braun, A., Miller, R., & Bugnyar, T. (2012). Corvids can decide if a future exchange is worth waiting for. Biology Letters, 8, 201204. https://doi.org/10.1098/rsbl.2011.0726Google Scholar
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143149. https://doi.org/10.3758/BF03203267Google Scholar
Evans, T. A., & Beran, M. J. (2007a). Delay of gratification and delay maintenance by rhesus macaques (Macaca mulatta). Journal of General Psychology, 134, 199216. https://doi.org/10.3200/GENP.134.2.199-216Google Scholar
Evans, T. A., & Beran, M. J. (2007b). Chimpanzees use self-distraction to cope with impulsivity. Biology Letters, 3, 599602. https://doi.org/10.1098/rsbl.2007.0399Google Scholar
Evans, T. A., & Westergaard, G. C. (2006). Self-control and tool use in tufted capuchin monkeys (Cebus apella). Journal of Comparative Psychology, 120, 163166. https://doi.org/10.1037/0735-7036.120.2.163Google Scholar
Freeman, K. B., Nonnemacher, J. E., Green, L., Myerson, J., & Woolverton, W. L. (2012). Delay discounting in rhesus monkeys: Equivalent discounting of more and less preferred sucrose concentrations. Learning & Behavior, 40, 5460. https://doi.org/10.3758/s13420-011-0045-3Google Scholar
Galtress, T., Garcia, A., & Kirkpatrick, K. (2012). Individual differences in impulsive choice and timing in rats. Journal of the Experimental Analysis of Behavior, 98, 6587. https://doi.org/10.1901/jeab.2012.98-65Google Scholar
Genty, E., Chung, P. C., & Roeder, J. J. (2011). Testing brown lemurs (Eulemur fulvus) on the reverse-reward contingency task without a modified procedure. Behavioural Processes, 86, 133137. https://doi.org/10.1016/j.beproc.2010.10.006Google Scholar
Genty, E., Palmier, C., & Roeder, J. J. (2004). Learning to suppress responses to the larger of two rewards in two species of lemurs, Eulemur fulvus and E. macaco. Animal Behaviour, 67, 925932. https://doi.org/10.1016/j.anbehav.2003.09.007Google Scholar
Genty, E., & Roeder, J. J. (2006). Self-control: Why should sea lions, Zalophus californianus, perform better than primates? Animal Behaviour, 72, 12411247. https://doi.org/10.1016/j.anbehav.2006.02.023Google Scholar
Grosch, J., & Neuringer, A. (1981). Self-control in pigeons under the Mischel paradigm. Journal of the Experimental Analysis of Behavior, 35, 321. https://doi.org/10.1901/jeab.1981.35-3Google Scholar
Hayden, B. Y., & Platt, M. L. (2007). Temporal discounting predicts risk sensitivity in rhesus macaques. Current Biology, 17, 4953. https://doi.org/10.1016/j.cub.2006.10.055Google Scholar
Hobhouse, L. T. (1901). Mind in evolution. The Macmillan Company.Google Scholar
Inzlicht, M., Schmeichel, B. J., & Macrae, C. N. (2014). Why self-control seems (but may not be) limited. Trends in Cognitive Sciences, 18, 127133. https://doi.org/10.1016/j.tics.2013.12.009Google Scholar
Kabadayi, C., Bobrowicz, K., & Osvath, M. (2018). The detour paradigm in animal cognition. Animal Cognition 21, 2135. https://doi.org/10.1007/s10071-017-1152-0Google Scholar
Kabadayi, C., Krasheninnikova, A., O’Neill, L., van de Weijer, J., Osvath, M., & von Bayern, A. M. (2017). Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Animal Cognition, 20, 11371146. https://doi.org/10.1007/s10071-017-1131-5Google Scholar
Kabadayi, C., Taylor, L. A., von Bayern, A. M., & Osvath, M. (2016). Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Society Open Science, 3, 160104. https://doi.org/10.1098/rsos.160104Google Scholar
Kahneman, D., & Tversky, A. (1984). Choices, values, and frames. American Psychologist, 39, 341350. https://doi.org/10.1037/0003-066X.39.4.341Google Scholar
Kirkpatrick, K., Marshall, A. T., & Smith, A. P. (2015). Mechanisms of individual differences in impulsive and risky choice in rats. Comparative Cognition & Behavior Reviews, 10, 45. https://doi.org/10.3819/ccbr.2015.100003Google Scholar
Koepke, A. E., Gray, S. L., & Pepperberg, I. M. (2015). Delayed gratification: A Grey parrot (Psittacus erithacus) will wait for a better reward. Journal of Comparative Psychology, 129, 339346. https://doi.org/10.1037/a0039553Google Scholar
Köhler, W. (1925). The mentality of apes. Kegan Paul, Trench, Trubner & Co, Ltd.Google Scholar
Kralik, J. D. (2005). Inhibitory control and response selection in problem solving: How cotton-top tamarins (Saguinas oedipus) overcome a bias for selecting the larger quantity of food. Journal of Comparative Psychology, 119, 7889. https://doi.org/10.1037/0735-7036.119.1.78Google Scholar
Lempert, K. M., & Phelps, E. A. (2016). The malleability of intertemporal choice. Trends in Cognitive Sciences, 20, 6474. https://doi.org/10.1016/j.tics.2015.09.005Google Scholar
Leonardi, R. J., Vick, S. J., & Dufour, V. (2012). Waiting for more: The performance of domestic dogs (Canis familiaris) on exchange tasks. Animal Cognition, 15, 107120. https://doi.org/10.1007/s10071-011-0437-yGoogle Scholar
Logue, A. W. (1988). Research on self-control: An integrating framework. Behavioral and Brain Sciences, 11, 665679. https://doi.org/10.1017/S0140525X00053978Google Scholar
MacLean, E. L., Hare, B., Nunn, C. L., Addessi, E., Amici, F., Anderson, R. C., … & Boogert, N. J. (2014). The evolution of self-control. Proceedings of the National Academy of Sciences, 111, E2140E2148. https://doi.org/10.1073/pnas.1323533111Google Scholar
Madden, G. J., & Bickel, W. K. (Eds.) (2010). Impulsivity: The behavioral and neurological science of discounting. American Psychological Association.Google Scholar
Mischel, W. (2014). The marshmallow test: Mastering self-control. Little, Brown.Google Scholar
Mulcahy, N. J., & Call, J. (2006). Apes save tools for future use. Science, 312, 10381040. https://doi.org/10.1126/science.1125456Google Scholar
Murray, E. A., Kralik, J. D., & Wise, S. P. (2005). Learning to inhibit prepotent responses: successful performance by rhesus macaques, Macaca mulatta, on the reversed-contingency task. Animal Behaviour, 69(4), 991998. https://doi.org/10.1016/j.anbehav.2004.06.034Google Scholar
Osvath, M., & Osvath, H. (2008). Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Animal Cognition, 11, 661674. https://doi.org/10.1007/s10071-008-0157-0Google Scholar
Paglieri, F. (2013). The costs of delay: Waiting versus postponing in intertemporal choice. Journal of the Experimental Analysis of Behavior, 99, 362377. https://doi.org/10.1002/jeab.18Google Scholar
Paglieri, F., Addessi, E., Sbaffi, A., Tasselli, M. I., & Delfino, A. (2015). Is it patience or motivation? On motivational confounds in intertemporal choice tasks. Journal of the Experimental Analysis of Behavior, 103, 196217. https://doi.org/10.1002/jeab.118Google Scholar
Parrish, A. E., James, B. T., Rossettie, M. S., Smith, T., Otalora-Garcia, A., & Beran, M. J. (2018). Investigating the depletion effect: Self-control does not waiver in capuchin monkeys. Animal Behavior and Cognition, 5, 118138. https://doi.org/10.1002/jeab.118Google Scholar
Parrish, A. E., Otalora-Garcia, A., & Beran, M. J. (2017). Dealing with interference: Chimpanzees respond to conflicting cues in a food-choice memory task. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 366376. https://doi.org/10.1037/xan0000151Google Scholar
Parrish, A. E., Perdue, B. M., Stromberg, E. E., Bania, A. E., Evans, T. A., & Beran, M. J. (2014). Delay of gratification by orangutans (Pongo pygmaeus) in the accumulation task. Journal of Comparative Psychology, 128, 209214. https://doi.org/10.1037/a0035660Google Scholar
Pelé, M., Dufour, V., Micheletta, J., & Thierry, B. (2010). Long-tailed macaques display unexpected waiting abilities in exchange tasks. Animal Cognition, 13, 263271. https://doi.org/10.1007/s10071-009-0264-6Google Scholar
Perdue, B. M., Bramlett, J. L., Evans, T. A., & Beran, M. J. (2015). Waiting for what comes later: Capuchin monkeys show self-control even for nonvisible delayed rewards. Animal Cognition, 18, 11051112. https://doi.org/10.1007/s10071-015-0878-9Google Scholar
Rachlin, H. (2000). The science of self-control. Harvard University Press.Google Scholar
Rachlin, H., & Green, L. (1972). Commitment, choice, and self-control. Journal of the Experimental Analysis of Behavior, 17, 1522. https://doi.org/10.1901/jeab.1972.17-15Google Scholar
Seed, A., & Byrne, R. (2010). Animal tool-use. Current Biology, 20, R1032R1039. https://doi.org/10.1016/j.cub.2010.09.042Google Scholar
Shifferman, E. M. (2009). Its own reward: Lessons to be drawn from the reversed-reward contingency paradigm. Animal Cognition, 12, 547558. https://doi.org/10.1007/s10071-009-0215-2Google Scholar
Shumaker, R. W., Walkup, K. R., & Beck, B. B. (2011). Animal tool behavior: the use and manufacture of tools by animals. Johns Hopkins University Press.Google Scholar
Silberberg, A., & Fujita, K. (1996). Pointing at smaller food amounts in an analogue of Boysen and Berntson’s procedure. Journal of the Experimental Analysis of Behavior, 66, 143147. https://doi.org/10.1901/jeab.1996.66-143Google Scholar
Simon, H. A. (1975). The functional equivalence of problem-solving skills. Cognitive Psychology, 7, 268288. https://doi.org/10.1016/0010-0285(75)90012-2Google Scholar
Stevens, J. R., Hallinan, E. V., & Hauser, M. D. (2005). The ecology and evolution of patience in two New World monkeys. Biology Letters, 1, 223226. https://doi.org/10.1098/rsbl.2004.0285Google Scholar
Stevens, J. R., & Mühlhoff, N. (2012). Intertemporal choice in lemurs. Behavioural Processes, 89, 121127. https://doi.org/10.1016/j.beproc.2011.10.002Google Scholar
Stevens, J. R., Rosati, A. G., Heilbronner, S. R., & Mühlhoff, N. (2011). Waiting for grapes: Expectancy and delayed gratification in bonobos. International Journal of Comparative Psychology, 24, 99111. https://escholarship.org/uc/item/4km2r37jGoogle Scholar
Stevens, J. R., Rosati, A. G., Ross, K. R., & Hauser, M. D. (2005). Will travel for food: Spatial discounting in two New World monkeys. Current Biology, 15, 18551860. https://doi.org/10.1016/j.cub.2005.09.016Google Scholar
Stevens, J., & Stephens, D. (2010). The adaptive nature of impulsivity. In Madden, G. & Bickel, W. (Eds.), Impulsivity: The behavioral and neurological science of discounting (pp. 361387). American Psychological Association. https://doi.org/10.1037/12069-013Google Scholar
Strickland, J. C., & Johnson, M. W. (2020). Rejecting impulsivity as a psychological construct: A theoretical, empirical, and sociocultural argument. Psychological Review. Advance online publication. http://dx.doi.org/10.1037/rev0000263Google Scholar
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662. https://doi.org/10.1037/h0054651Google Scholar
Takahashi, T. (2005). Loss of self-control in intertemporal choice may be attributable to logarithmic time-perception. Medical Hypotheses, 65, 691693. https://doi.org/10.1016/j.mehy.2005.04.040Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.Google Scholar
Tobin, H., Chelonis, J. J., & Logue, A. W. (1993). Choice in self-control paradigms using rats. The Psychological Record, 43, 441454.Google Scholar
Tobin, H., & Logue, A. W. (1994). Self-control across species (Columba livia, Homo sapiens, and Rattus norvegicus). Journal of Comparative Psychology, 108, 126133. https://doi.org/10.1037/0735-7036.108.2.126Google Scholar
Tobin, H., Logue, A. W., Chelonis, J. J., Ackerman, K. T., & May, J. G. (1996). Self-control in the monkey Macaca fascicularis. Animal Learning and Behavior, 24, 168174. https://doi.org/10.3758/BF03198964Google Scholar
Toner, I. J., Lewis, B. C., & Gribble, C. M. (1979). Evaluative verbalization and delay maintenance behavior in children. Journal of Experimental Child Psychology, 28, 205210. https://doi.org/10.1016/0022-0965(79)90084-5Google Scholar
Toner, I. J., & Smith, R. A. (1977). Age and overt verbalization in delay-maintenance behavior in children. Journal of Experimental Child Psychology, 24, 123128. https://doi.org/10.1016/0022-0965(77)90025-XGoogle Scholar
Tversky, A., & Kahneman, D. (1981). The framing of decisions and the psychology of choice. Science, 211, 453458. https://doi.org/10.1126/science.7455683Google Scholar
Uher, J., & Call, J. (2008). How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, Gorilla gorilla) perform on the reversed reward contingency task II: Transfer to new quantities, long-term retention, and the impact of quantity ratios. Journal of Comparative Psychology, 122, 204212. https://doi.org/10.1037/0735-7036.122.2.204Google Scholar
Vanderveldt, A., Oliveira, L., & Green, L. (2016). Delay discounting: Pigeon, rat, human – Does it matter? Journal of Experimental Psychology: Animal Learning and Cognition, 42, 141162. https://doi.org/10.1037/xan0000097Google Scholar
Vernouillet, A., Anderson, J., Clary, D., & Kelly, D. M. (2016). Inhibition in Clark’s nutcrackers (Nucifraga columbiana): results of a detour reaching test. Animal Cognition, 19, 661665. https://doi.org/10.1007/s10071-016-0952-yGoogle Scholar
Vick, S. J., Bovet, D., & Anderson, J. R. (2010). How do African grey parrots (Psittacus erithacus) perform on a delay of gratification task? Animal Cognition, 13, 351358. https://doi.org/10.1007/s10071-009-0284-2Google Scholar
Vlamings, P. H., Hare, B., & Call, J. (2010). Reaching around barriers: The performance of the great apes and 3–5-year-old children. Animal Cognition, 13, 273285. https://doi.org/10.1007/s10071-009-0265-5Google Scholar
Vlamings, P. H., Uher, J., & Call, J. (2006). How the great apes (Pan troglodytes, Pongo pygmaeus, Pan paniscus, and Gorilla gorilla) perform on a reversed contingency task: The effects of food quantity and food visibility. Journal of Experimental Psychology: Animal Behavior Processes, 32, 6070. https://doi.org/10.1037/0097-7403.32.1.60Google Scholar
Washburn, D. A. (1994). Stroop-like effects for monkeys and humans: Processing speed or strength of association? Psychological Science, 5, 375379. https://doi.org/10.1111/j.1467-9280.1994.tb00288.xGoogle Scholar
Zhang, H. H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of stimulus–stimulus and stimulus–response compatibility. Cognitive Psychology, 38, 386432. https://doi.org/10.1006/cogp.1998.0703Google Scholar
Zucca, P., Antonelli, F., & Vallortigara, G. (2005). Detour behaviour in three species of birds: quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria). Animal Cognition, 8, 122128. https://doi.org/10.1007/s10071-004-0243-xGoogle Scholar

References

Bachevalier, J. (1990). Ontogenic development of habit and memory formation in primates. Annals of the New York Academy of Sciences, 608, 457484. https://doi.org/10.1111/j.1749-6632.1990.tb48906.xGoogle Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. www.jstor.org/stable/2876819Google Scholar
Basile, B. M., & Hampton, R. R. (2013). Dissociation of active working memory and passive recognition in rhesus monkeys. Cognition, 126(3), 391396. https://doi.org/10.1016/j.cognition.2012.10.012Google Scholar
Basile, B. M., Hampton, R. R., Suomi, S. J., & Murray, E. A. (2009). An assessment of memory awareness in tufted capuchin monkeys (Cebus apella). Animal Cognition, 12(1), 169180. https://doi.org/10.1007/s10071-008-0180-1Google Scholar
Basile, B. M., Schroeder, G. R., Brown, E. K., Templer, V. L., & Hampton, R. R. (2015). Evaluation of seven hypotheses for metamemory performance in rhesus monkeys. Journal of Experimental Psychology: General, 144(1), 85102. https://doi.org/10.1037/xge0000031Google Scholar
Belger, J., & Bräuer, J. (2018). Metacognition in dogs: Do dogs know they could be wrong?. Learning & Behavior, 46(4), 398413. https://doi.org/10.3758/s13420-018-0367-5Google Scholar
Beran, M. J., & Smith, J. D. (2011). Information seeking by rhesus monkeys (Macaca mulatta) and capuchin monkeys (Cebus apella). Cognition, 120(1), 90105. https://doi.org/10.1016/j.cognition.2011.02.016Google Scholar
Beran, M. J., Smith, J. D., Coutinho, M. V. C., Couchman, J. J., & Boomer, J. (2009). The psychological organization of “uncertainty” responses and “middle” responses: A dissociation in capuchin monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes, 35(3), 371381. https://doi.org/10.1037/a0014626Google Scholar
Brady, R. J., & Hampton, R. R. (2018). Nonverbal working memory for novel images in rhesus monkeys. Current Biology, 28(24), 39033910.e3. https://doi.org/10.1016/j.cub.2018.10.025Google Scholar
Brady, R. J., & Hampton, R. R. (2021). Rhesus monkeys (Macaca mulatta) monitor evolving decisions to control adaptive information seeking. Animal Cognition, 24(4), 777785. https://doi.org/10.1007/s10071-021-01477-5Google Scholar
Brauer, J., Call, J., & Tomasello, M. (2004). Visual perspective taking in dogs (Canis familiaris) in the presence of barriers. Applied Animal Behaviour Science, 88(3–4), 299317. https://doi.org/10.1016/j.applanim.2004.03.004Google Scholar
Brown, E. K., Basile, B. M., Templer, V. L., & Hampton, R. R. (2019). Dissociation of memory signals for metamemory in rhesus monkeys (Macaca mulatta). Animal Cognition, 22(3), 331341. https://doi.org/10.1007/s10071-019-01246-5Google Scholar
Brown, E. K., & Hampton, R. R. (2020). Cognitive control of working memory but not familiarity in rhesus monkeys (Macaca mulatta). Learning & Behavior, 48(4), 444452. https://doi.org/10.3758/s13420-020-00432-7Google Scholar
Brown, E. K., Templer, V. L., & Hampton, R. R. (2017). An assessment of domain-general metacognitive responding in rhesus monkeys. Behavioural Processes, 135, 132144. https://doi.org/10.1016/j.beproc.2016.12.004Google Scholar
Call, J., & Carpenter, M. (2001). Do apes and children know what they have seen? Animal Cognition, 4, 207220. https://doi.org/10.1007/s100710100078Google Scholar
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? In Sossin, W. S., Lacaille, J. C., Castellucci, V. F., & Belleville, S. (Eds.), Essence of memory (vol. 169, pp. 323338). Elsevier Science Bv. https://doi.org/10.1016/s0079-6123(07)00020-9Google Scholar
Ferrigno, S., Kornell, N., & Cantlon, J. F. (2017). A metacognitive illusion in monkeys. Proceedings of the Royal Society B: Biological Sciences, 284(1862), 6, Article 20171541. https://doi.org/10.1098/rspb.2017.1541Google Scholar
Finstermeier, K., Dietmar, Z., Brameier, M., Meyer, M., Kreuz, E., Hofreiter, M., & Roos, C. (2013). A mitogenomic phylogeny of living primates. PLOS ONE, 8(7), e69504. https://doi.org/10.1371/journal.pone.0069504Google Scholar
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34, 906911. https://psycnet.apa.org/doi/10.1037/0003-066X.34.10.906Google Scholar
Foote, A. L., & Crystal, J. D. (2007). Metacognition in the rat. Current Biology, 17(6), 551555. https://doi.org/10.1016/j.cub.2007.01.061Google Scholar
Fujita, K. (2009). Metamemory in tufted capuchin monkeys (Cebus apella). Animal Cognition, 12(4), 575585. https://doi.org/10.1007/s10071-009-0217-0Google Scholar
Gabrieli, J. D. E., Corkin, S., Mickel, S. F., & Growdon, J. H. (1993). Intact acquisition and long-term retention of mirror-tracing skill in Alzheimer’s disease and in global amnesia. Behavioral Neuroscience, 107(6), 899910. https://psycnet.apa.org/doi/10.1037/0735-7044.107.6.899Google Scholar
Gasbarri, A., Pompili, A., Packard, M. G., & Tomaz, C. (2014). Habit learning and memory in mammals: Behavioral and neural characteristics. Neurobiology of Learning and Memory, 114, 198208. https://doi.org/10.1016/j.nlm.2014.06.010Google Scholar
Hampton, R. R. (2001). Rhesus monkeys know when they remember. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 53595362. https://doi.org/10.1073/pnas.071600998Google Scholar
Hampton, R. R. (2009). Multiple demonstrations of metacognition in nonhumans: Converging evidence or multiple mechanisms? Comparative Cognition and Behavior Reviews, 4, 1728.Google Scholar
Hampton, R. R., Engelberg, J. W., & Brady, R. J. (2020). Explicit memory and cognition in monkeys. Neuropsychologia, 138, 107326. https://doi.org/10.1016/j.neuropsychologia.2019.107326Google Scholar
Hampton, R. R., & Hampstead, B. M. (2006). Spontaneous behavior of a rhesus monkey (Macaca mulatta) during memory tests suggests memory awareness. Behavioral Processes, 72, 184189.Google Scholar
Hay, J. F., & Jacoby, L. L. (1996). Separating habit and recollection: Memory slips, process dissociations, and probability matching. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 13231335. https://psycnet.apa.org/doi/10.1037/0278-7393.22.6.1323Google Scholar
Inman, A., & Shettleworth, S. J. (1999). Detecting metamemory in nonverbal subjects: A test with pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 25(3), 389395. https://psycnet.apa.org/doi/10.1037/0097-7403.25.3.389Google Scholar
Kelley, C. M., & Jacoby, L. L. (2000). Recollection and familiarity. In Tulving, E. & Fergus, C. I. M. (Eds.), The Oxford handbook of memory (pp. 215228). Oxford University Press.Google Scholar
Kornell, N., Son, L. K., & Terrace, H. S. (2007). Transfer of metacognitive skills and hint seeking in monkeys. Psychological Science, 18(1), 6471. https://doi.org/10.1111%2Fj.1467-9280.2007.01850.xGoogle Scholar
Malamut, B. L., Saunders, R. C., & Mishkin, M. (1984). Monkeys with combined amygdalo-hippocampal lesions succeed in object discrimination-learning despite 24-hour intertribal intervals. Behavioral Neuroscience, 98, 759769. https://doi.org/10.1037/0735-7044.98.5.759Google Scholar
McMahon, S., Macpherson, K., & Roberts, W. A. (2010). Dogs choose a human informant: Metacognition in canines. Behavioral Processes, 85(3), 293298. https://doi.org/10.1016/j.beproc.2010.07.014Google Scholar
Milner, B. (1962). Les troubles de la memoire accompagnant deslesions hippocampiques bilaterales [Memory impairment accompanying bilateral hippocampal lesions]. In Psychologie de I’hippocampe.Paris: Centre National de la Recherche Scientifique (pp. 257–272).Google Scholar
Paukner, A., Anderson, J., & Fujita, K. (2006). Redundant food searches by capuchin monkeys (Cebus apella): A failure of metacognition? Animal Cognition, 9(2), 110117. www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10071-005-0007-2Google Scholar
Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41, 245251. https://doi.org/10.1016/S0028-3932(02)00157-4Google Scholar
Roberts, W. A., Feeney, M. C., McMillan, N., MacPherson, K., Musolino, E., & Petter, M. (2009). Do pigeons (Columba livia) study for a test? Journal of Experimental Psychology: Animal Behavior Processes, 35(2), 129142. https://doi.org/10.1037/a0013722Google Scholar
Rosati, A. G., & Santos, L. R. (2016). Spontaneous metacognition in rhesus monkeys. Psychological Science, 27(9), 11811191. https://doi.org/10.1177/0956797616653737Google Scholar
Sherry, D. F. (2006). Neuroecology. Annual Review of Psychology, 57, 167197. https://doi.org/10.1146/annurev.psych.56.091103.070324Google Scholar
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory-systems. Psychological Review, 94(4), 439454.Google Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.Google Scholar
Shields, W. E., Smith, J. D., & Washburn, D. A. (1997). Uncertain responses by humans and rhesus monkeys (Macaca mulatta) in a psychophysical same-different task. Journal of Experimental Psychology: General, 126(2), 147164. https://psycnet.apa.org/doi/10.1037/0096-3445.126.2.147Google Scholar
Smith, J. D., Couchman, J. J., & Beran, M. J. (2014). Animal metacognition: A tale of two comparative psychologies. Journal of Comparative Psychology, 128(2), 115131. https://doi.org/10.1037/a0033105Google Scholar
Smith, J. D., Coutinho, M. V. C., Church, B. A., & Beran, M. J. (2013). Executive-attentional uncertainty responses by rhesus macaques (Macaca mulatta). Journal of Experimental Psychology: General, 142(2), 458475. https://doi.org/10.1037/a0029601Google Scholar
Smith, J. D., Shields, W. E., & Washburn, D. A. (1998). Memory monitoring by animals and humans. Journal of Experimental Psychology: General, 127(3), 227250. https://psycnet.apa.org/doi/10.1037/0096-3445.127.3.227Google Scholar
Smith, T. R., Smith, J. D., & Beran, M. (2018). Not knowing what one knows: A meaningful failure of metacognition in capuchin monkeys. Animal Behavior and Cognition, 5(1), 5567. https://doi.org/10.26451/abc.05.01.05.2018Google Scholar
Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453495.Google Scholar
Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal-lobe memory system. Science, 253(5026), 13801386. https://doi.org/10.1126/science.1896849Google Scholar
Sutton, J. E., & Shettleworth, S. J. (2008). Memory without awareness: Pigeons do not show metamemory in delayed matching to sample. Journal of Experimental Psychology-Animal Behavior Processes, 34(2), 266282.Google Scholar
Templer, V. L., Brown, E. K., & Hampton, R. R. (2018). Rhesus monkeys metacognitively monitor memories of the order of events. Scientific Reports, 8(1), 11541. https://doi.org/10.1038/s41598-018-30001-yGoogle Scholar
Templer, V. L., & Hampton, R. R. (2012). Rhesus monkeys (Macaca mulatta) show robust evidence for memory awareness across multiple generalization tests. Animal Cognition, 15(3), 409419. https://doi.org/10.1007/s10071-011-0468-4Google Scholar
Templer, V. L., Lee, K. A., & Preston, A. J. (2017). Rats know when they remember: Transfer of metacognitive responding across odor-based delayed match-to-sample tests. Animal Cognition, 20(5), 891906. https://doi.org/10.1007/s10071-017-1109-3Google Scholar
Tu, H.-W., & Hampton, R. R. (2014). Control of working memory in rhesus monkeys (Macaca mulatta). Journal of Experimental Psychology: Animal Learning and Cognition, 40(4), 467476. https://doi.org/10.1037/xan0000030Google Scholar
Tu, H. W., Pani, A., & Hampton, R. R. (2015). Rhesus monkeys (Macaca mulatta) adaptively adjust information seeking in response to information accumulated. Journal of Comparative Psychology, 129, 347355. https://psycnet.apa.org/doi/10.1037/a0039595Google Scholar
Unsworth, N., & Engle, R. W. (2007). The nature of individual differences in working memory capacity: Active maintenance in primary memory and controlled search from secondary memory. Psychological Review, 114(1), 104132. https://doi.org/10.1037/0033-295x.114.1.104Google Scholar
Washburn, D. A., Gulledge, J. P., Beran, M. J., & Smith, J. D. (2010). With his memory magnetically erased, a monkey knows he is uncertain. Biology Letters, 6(2), 160162. https://doi.org/10.1098/rsbl.2009.0737Google Scholar
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441517. https://doi.org/10.1006/jmla.2002.2864Google Scholar

References

Bell, R., Röer, J. P., & Buchner, A. (2013). Adaptive memory: The survival-processing memory advantage is not due to negativity or mortality salience. Memory & Cognition, 41(4), 490502. https://doi.org/10.3758/s13421-012-0290-5Google Scholar
Bonin, P., Gelin, M., & Bugaiska, A. (2014). Animates are better remembered than inanimates: Further evidence from word and picture stimuli. Memory & Cognition, 42(3), 370382. https://doi.org/10.3758/s13421-013-0368-8Google Scholar
Bonin, P., Gelin, M., Laroche, B., Méot, A., & Bugaiska, A. (2015). The “how” of animacy effects in episodic memory. Experimental Psychology, 62, 371384. https://doi.org/10.1027/1618-3169/a000308Google Scholar
Bonin, P., Gelin, M., Laroche, B. et al. (2020). “Survival Processing of the Selfish Gene?”: Adaptive memory and inclusive fitness. Evolutionary Psychological Science, 6, 155165. https://doi.org/10.1007/s40806-019-00220-1Google Scholar
Bonin, P., Thiebaut, G., Witt, A., & Méot, A. (2019). Contamination is “good” for your memory! Further evidence for the adaptive view of memory. Evolutionary Psychological Science, 5, 300316. https://doi.org/10.1007/s40806-019-00188-yGoogle Scholar
Buller, D. J. (2005). Adapting minds: Evolutionary psychology and the persistent quest for human nature. MIT Press.Google Scholar
Butler, A. C., Kang, S. H. K., & Roediger, H. L. III (2009). Congruity effects between materials and processing tasks in the survival processing paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 14771486. https://doi.org/10.1037/a0017024Google Scholar
Chapman, H. A., Johannes, K., Poppenk, J. L., Moscovitch, M., & Anderson, A. K. (2013). Evidence for the differential salience of disgust and fear in episodic memory. Journal of Experimental Psychology: General, 142(4), 11001112. https://doi.org/10.1037/a0030503Google Scholar
Derringer, C. J., Scofield, J. E., & Kostic, B. (2017). Investigations of a reproductive processing advantage in memory. Memory & Cognition, 45(6), 9831001. https://doi.org/10.3758/s13421-017-0709-0Google Scholar
Ebbinghaus, H. (1885/1964). Memory: A contribution to experimental psychology. Dover, (Originally published 1885; translated 1913.) https://doi.org/10.1037/10011-001Google Scholar
Erdfelder, E., & Kroneisen, M. (2014). Proximate cognitive mechanisms underlying the survival processing effect. In Schwartz, B., Howe, M., Toglia, M., & Otgaar, H. (Eds.), What is adaptive about adaptive memory? (pp. 172198). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199928057.003.0010Google Scholar
Fellner, M.-C., Bäuml, K.-H. T., & Hanslmayr, S. (2013). Brain oscillatory subsequent memory effects differ in power and long-range synchronization between semantic and survival. NeuroImage, 79, 361370. https://doi.org/10.1016/j.neuroimage.2013.04.121Google Scholar
Fernandes, N. L., Pandeirada, J. N. S., Soares, S., & Nairne, J. S. (2017). Adaptive memory: The mnemonic value of contamination. Evolution and Human Behavior, 38, 451460. https://doi.org/10.1016/j.evolhumbehav.2017.04.003Google Scholar
Fitzgerald, C. J., Horgan, T. G., & Himes, S. M. (2016). Shaping men’s memory: The effects of a female’s waist-to-hip ratio on men’s memory for her appearance and biographical information. Evolution and Human Behavior, 37, 510516. https://doi.org/10.1016/j.evolhumbehav.2016.05.004Google Scholar
Forester, G., Kroneisen, M., Erdferlder, E., & Kamp, S.-M. (2019). On the role of retrieval processes in the survival processing effect: Evidence from ROC and ERP analyses. Neurobiology of Learning and Memory, 166, 107083. https://doi.org/10.1016/j.nlm.2019.107083Google Scholar
Horgan, T. G., Broadbent, J., McKibbin, W. F., & Duehring, A. J. (2016). Show versus tell? The effects of mating context on women’s memory for a man’s physical features and verbal statements. Journal of Social and Personal Relationships, 33, 733750. https://doi.org/10.1177/0265407515590279Google Scholar
Howe, M. L., & Derbish, M. H. (2010). On the susceptibility of adaptive memory to false memory illusions. Cognition, 115, 252267. https://doi.org/10.1016/j.cognition.2009.12.016Google Scholar
Kazanas, S. A., & Altarriba, J. (2015). The survival advantage: Underlying mechanisms and extant limitations. Evolutionary Psychology, 13, 360396. https://doi.org/10.1177%2F147470491501300204Google Scholar
Klein, S. B. (2013). Does optimal recall in the adaptive memory paradigm require the encoding context to encourage thoughts about the environment of evolutionary adaptation? Memory & Cognition, 41, 4959. https://doi.org/10.3758/s13421-012-0239-8Google Scholar
Klein, S. B., Cosmides, L., Tooby, J., & Chance, S. (2002). Decisions and the evolution of memory: Multiple systems, multiple functions. Psychological Review, 109, 306329.Google Scholar
Krause, M. A., & Domjan, M. (2017). Ethological and evolutionary perspectives on Pavlovian conditioning. In Call, J., Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T., & Zentall, T. (Eds.), APA handbook of comparative psychology: Perception, learning, and cognition (pp. 247266). American Psychological Association. https://doi.org/10.1037/0000012-012Google Scholar
Krause, M. A., Trevino, S., Cripps, A., Chilton, K., Sower, E., & Taylor, J. P. (2019). Inclusive fitness does not impact the survival processing effect. Animal Behavior and Cognition, 6, 1331. https://doi.org/10.26451/abc.06.01.02.2019Google Scholar
Kroneisen, M., & Bell, R. (2018). Remembering the place with the tiger: Survival processing can enhance source memory. Psychonomic Bulletin & Review, 25, 667673. https://doi.org/10.3758/s13423-018-1431-zGoogle Scholar
Kroneisen, M., & Erdfelder, E. (2011). On the plasticity of the survival processing effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 15531562. https://doi.org/10.1037/a0024493Google Scholar
Kroneisen, M., Rummel, J., & Erdfelder, E. (2014). Working memory load eliminates the survival processing effect. Memory, 22, 92102. https://doi.org/10.1080/09658211.2013.815217Google Scholar
Laurino, J., & Kaczer, L. (2019). Animacy as a memory enhancer during novel word learning: evidence from orthographic and semantic memory tasks. Memory, 27, 820828. https://doi.org/10.1080/09658211.2019.1572195Google Scholar
McBride, D. M., Thomas, B. J., & Zimmerman, C. (2013). A test of the survival processing advantage in implicit and explicit memory tests. Memory and Cognition, 41, 862871. https://doi.org/10.3758/s13421-013-0304-yGoogle Scholar
Meinhardt, M. J., Bell, R., Buchner, S., & Röer, J. P. (2020). Adaptive memory: Is the animacy effect on memory due to richness of encoding? Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 416426. https://doi.org/10.1037/xlm0000733Google Scholar
Misirlisoy, M., Tanyas, H., & Atalay, N. B. (2019). Does survival context enhance memory for source? A within-subjects comparison. Memory, 27, 780791. https://doi.org/10.1080/09658211.2019.1566928Google Scholar
Nairne, J. S. (2005). The functionalist agenda in memory research. In Healy, A. F. (Ed.), Experimental cognitive psychology and its applications: Festschrift in honor of Lyle Bourne, Walter Kintsch, and Thomas Landauer (pp. 115126). American Psychological Association. https://doi.org/10.1037/10895-009Google Scholar
Nairne, J. S. (2014). Adaptive memory: Controversies and future directions. In Schwartz, B. L., Howe, M. L., Toglia, M. P., & Otgaar, H. (Eds.). What is adaptive about adaptive memory? (pp. 308321). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199928057.001.0001Google Scholar
Nairne, J. S. (2015). Adaptive memory: Novel findings acquired through forward engineering. In Lindsay, D. S., Kelley, C. M., Yonelinas, A. P., & Roediger, H. L., III (Eds.), Remembering: Attributions, processes, and control in human memory: Papers in honor of Larry L. Jacoby (pp. 314). Psychology Press. https://doi.org/10.4324/9781315752808Google Scholar
Nairne, J. S., Coverdale, M. E., & Pandeirada, J. N. S. (2019). Adaptive memory: The mnemonic power of survival-based generation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45, 19701982. https://doi.org/10.1037/xlm0000687Google Scholar
Nairne, J. S., & Pandeirada, J. N. S. (2008). Adaptive memory: Remembering with a stone-age brain. Current Directions in Psychological Science, 17, 239243. https://doi.org/10.1111%2Fj.1467-8721.2008.00582.xGoogle Scholar
Nairne, J. S., & Pandeirada, J. N. S. (2016). Adaptive memory: The evolutionary significance of survival processing. Perspectives on Psychological Science, 11, 496511. https://doi.org/10.1177%2F1745691616635613Google Scholar
Nairne, J. S., Pandeirada, J. N. S., & Fernandes, N. L. (2017). Adaptive memory. In Byrne, J. H. (Ed.), Learning and memory: A comprehensive reference (2nd ed., vol. 2) (pp. 279293). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.21060-2Google Scholar
Nairne, J. S., Pandeirada, J. N. S., Gregory, K. J., & VanArsdall, J. E. (2009). Adaptive memory: Fitness-relevance and the hunter-gatherer mind. Psychological Science, 20, 740746. https://doi.org/10.1111/j.1467-9280.2009.02356.xGoogle Scholar
Nairne, J. S., Pandeirada, J. N. S., & Thompson, S. R. (2008). Adaptive memory: The comparative value of survival processing. Psychological Science, 19, 176180. https://doi.org/10.1111/j.1467-9280.2008.02064.xGoogle Scholar
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 263273. https://doi.org/10.1037/0278-7393.33.2.263Google Scholar
Nairne, J. S., VanArsdall, J. E., & Cogdill, M. (2017). Remembering the living: Episodic memory is tuned to animacy. Current Directions in Psychological Science, 26, 2227. https://doi.org/10.1177%2F0963721416667711Google Scholar
Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N. S., & Blunt, J. R. (2012). Adaptive memory: Enhanced location memory after survival processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 495501. https://doi.org/10.1037/a0025728Google Scholar
Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N. S., Cogdill, M., & LeBreton, J. M. (2013). Adaptive memory: The mnemonic value of animacy. Psychological Science, 24, 20992105. https://doi.org/10.1177/0956797613480803Google Scholar
Pandeirada, J. N. S., Fernandes, N. L., Vasconcelos, M., & Nairne, J. S. (2017). Adaptive memory: Remembering potential mates. Evolutionary Psychology, 15, 111. https://doi.org/10.1177%2F1474704917742807Google Scholar
Popp, E. Y., & Serra, M. J. (2016). Adaptive memory: Animacy enhances free recall but impairs cued recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 186201. https://doi.org/10.1037/e528942014-958Google Scholar
Popp, E. Y., & Serra, M. J. (2018). The animacy advantage for free-recall performance is not attributable to greater mental arousal. Memory, 26, 8995. https://doi.org/10.1080/09658211.2017.1326507Google Scholar
Premack, D. (1959). Toward empirical behavior laws: 1. Positive reinforcement. Psychological Review, 66, 219233. https://doi.org/10.1037/h0040891Google Scholar
Richardson, R. C. (2007). Evolutionary psychology as maladapted psychology. MIT Press. https://doi.org/10.7551/mitpress/7464.001.0001Google Scholar
Röer, J., Bell, R., & Buchner, A. (2013). Is the survival-processing memory advantage due to richness of encoding? Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 12941302. https://doi.org/10.1037/a0031214Google Scholar
Sandry, J., Trafimow, D., Marks, M. J., & Rice, S. (2013). Adaptive memory: Evaluating alternative forms of fitness-relevant processing in the survival processing paradigm. PLoS ONE., 8(4) E60868. https://doi.org/10.1371/journal.pone.0060868Google Scholar
Savine, A. C., Scullin, M. K., & Roediger, H. L., III. (2011). Survival processing of faces. Memory & Cognition, 39, 13591373. https://doi.org/10.3758/s13421-011-0121-0Google Scholar
Schaller, M., & Park, J. H. (2011). The behavioral immune system (and why it matters). Current Directions in Psychological Science, 20, 99103. https://doi.org/10.1177%2F0963721411402596Google Scholar
Schmitt, D. P., & Pilcher, J. J. (2004). Evaluating evidence of psychological adaptation: How do we know one when we see one? Psychological Science, 15, 642649. https://doi.org/10.1111/j.0956-7976.2004.00734.xGoogle Scholar
Schwartz, B. L. (2019). Using natural ecology to predict higher cognition in human and non-human primates. Animal Behavior and Cognition, 6, 344354. https://doi.org/10.26451/abc.06.04.13.2019Google Scholar
Scofield, J. E., Buchanan, E. M., & Kostic, B. (2017). A meta-analysis of the survival-processing advantage in memory. Psychonomic Bulletin & Review, 25, 9971012. https://doi.org/10.3758/s13423-017-1346-0Google Scholar
Seamon, J. G., Bohn, J. M., Coddington, I. E., Ebling, M. C., Grund, E. M., Haring, C. T., Jang, S.-J., Kim, D., Liong, C., Paley, F. M., Pang, L. K., & Siddique, A. H. (2012). Can survival processing enhance story memory? Testing the generalizability of the adaptive memory framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 10451056. https://doi.org/10.1037/a0027090Google Scholar
Seitz, B. M., Blaisdell, B. M., Polack, C. P., & Miller, R. R. (2019). The role of biological significance in human learning and memory. International Journal of Comparative Psychology, 32. Retrieved from https://escholarship.org/uc/item/67k6r0n9Google Scholar
Seitz, B. M., Polack, C. P., & Miller, R. R. (2018). Adaptive memory: Is there a reproduction-processing effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 11671179. https://doi.org/10.1037%2Fxlm0000513Google Scholar
Seitz, B. M., Polack, C. P., & Miller, R. R. (2020). Adaptive memory: Generality of the parent processing effect and effects of biological relatedness on recall. Evolutionary Psychological Science, 6, 246260. (https://doi.org/10.1007/s40806-020-00233-1Google Scholar
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94, 439454. https://doi.org/10.1037/0033-295X.94.4.439Google Scholar
Shettleworth, S. J. (2010). Cognition, evolution, and behavior (2nd ed.). Oxford University Press.Google Scholar
Slamecka, N. J. (1985). Ebbinghaus: Some associations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 11, 414435. https://doi.org/10.1037/0278-7393.11.3.414Google Scholar
Smith, D. S., Jones, B. C., Feinberg, D. R., & Allan, K. (2012). A modulatory effect of male voice pitch on long-term memory in women: Evidence of adaptation for mate choice? Memory and Cognition, 40, 135144. https://doi.org/10.3758/s13421-011-0136-6Google Scholar
Stillman, C. M., Coane, J. H., Profaci, C. P., Howard, J. H., & Howard, D. V. (2014). The effects of healthy aging on the mnemonic benefit of survival processing. Memory & Cognition, 42, 175185. https://doi.org/10.3758/s13421-013-0353-2 https://doi.org/10.3758/s13421-013-0353-2Google Scholar
Tinbergen, N. (1963) On the methods and aims of ethology. Ethology, 20, 410433. https://doi.org/10.1111/j.1439-0310.1963.tb01161.xGoogle Scholar
Tse, C.-S., & Altarriba, J. (2010). Does survival processing enhance implicit memory? Memory and Cognition, 38, 11101121. https://doi.org/10.3758/MC.38.8.1110Google Scholar
Tybur, J. M., Lieberman, D., Kurzban, R., & DiScioli, P. (2013). Disgust: Evolved function and structure. Psychological Review, 120, 6584. https://doi.org./10.1037/a0030778Google Scholar
VanArsdall, J. E. (2016). Exploring animacy as a mnemonic dimension. Open Access Dissertations. https://docs.lib.purdue.edu/open_access_dissertations/873Google Scholar
Van Buren, B., & Scholl, B. J. (2017). Minds in motion in memory: Enhanced spatial memory driven by the perceived animacy of simple shapes. Cognition, 163, 8792. https://doi.org/10.1016/j.cognition.2017.02.006Google Scholar
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press. https://doi.org/10.1515/9780691185507Google Scholar
Zhang, J., Li, X., & Guo, C. (2020). The neurocognitive features in survival processing: An ERP study. International Journal of Psychophysiology, 149, 3547. https://doi.org/10.1016/j.ijpsycho.2019.10.012Google Scholar

References

Aktipis, C. A. (2006). Recognition memory and the evolution of cooperation: How simple strategies succeed in an agent-based world. Adaptive Behavior, 14, 239247. https://doi.org/10.1177/105971230601400301Google Scholar
Axelrod, R. (1984). The evolution of cooperation. Basic Books.Google Scholar
Axelrod, R., & Hamilton, W. (1981). The evolution of cooperation. Science, 211, 13901396. https://doi.org/10.1126/science.7466396Google Scholar
Barclay, P. (2008). Enhanced recognition of defectors depends on their rarity. Cognition, 107, 817828. https://doi.org/10.1016/j.cognition.2007.11.013Google Scholar
Barclay, P., & Lalumière, M. L. (2006). Do people differentially remember cheaters? Human Nature, 17, 98113. https://doi.org/10.1007/s12110-006-1022-yGoogle Scholar
Baumeister, R. F., Bratslavsky, E., Finkenauer, C., & Vohs, K. D. (2001). Bad is stronger than good. Review of General Psychology, 5, 323370. https://doi.org/10.1037/1089-2680.5.4.323Google Scholar
Bell, R., & Buchner, A. (2009). Enhanced source memory for names of cheaters. Evolutionary Psychology, 7, 317330. https://doi.org/10.1177/147470490900700213Google Scholar
Bell, R., & Buchner, A. (2010). Valence modulates source memory for faces. Memory & Cognition, 38, 2941. https://doi.org/10.3758/MC.38.1.29Google Scholar
Bell, R., & Buchner, A. (2011). Source memory for faces is determined by their emotional evaluation. Emotion, 11, 249261. https://doi.org/10.1037/a0022597Google Scholar
Bell, R., & Buchner, A. (2012). How adaptive is memory for cheaters? Current Directions in Psychological Science, 21, 403408. https://doi.org/10.1177/0963721412458525Google Scholar
Bell, R., Buchner, A., Erdfelder, E., Giang, T., Schain, C., & Riether, N. (2012a). How specific is source memory for faces of cheaters? Evidence for categorical emotional tagging. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 457472. https://doi.org/10.1037/a0026017Google Scholar
Bell, R., Buchner, A., Kroneisen, M., & Giang, T. (2012b). On the flexibility of social source memory: A test of the emotional incongruity hypothesis. Journal of Experimental Psychology: Learning, Memory, & Cognition, 38, 15121529. https://doi.org/10.1037/a0028219Google Scholar
Bell, R., Buchner, A., & Musch, J. (2010). Enhanced old-new recognition and source memory for faces of cooperators and defectors in a social-dilemma game. Cognition, 117, 261275. https://doi.org/10.1016/j.cognition.2010.08.020Google Scholar
Bell, R., Giang, T., & Buchner, A. (2012c). Partial and specific source memory for faces associated to other- and self-relevant negative contexts. Cognition and Emotion, 26, 10361055. https://doi.org/10.1080/02699931.2011.633988Google Scholar
Bell, R., Mieth, L., & Buchner, A. (2015). Appearance-based first impressions and person memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 41, 456472. https://doi.org/10.1037/xlm0000034Google Scholar
Bell, R., Sasse, J., Möller, M., Czernochowski, D., Mayr, S., & Buchner, A. (2016). Event-related potentials in response to cheating and cooperation in a social dilemma game. Psychophysiology, 53, 216228. https://dx.doi.org/10.1111/psyp.12561Google Scholar
Bell, R., Schain, C., & Echterhoff, G. (2014). How selfish is memory for cheaters? Evidence for moral and egoistic biases. Cognition, 132, 437442. https://doi.org/10.1016/j.cognition.2014.05.001Google Scholar
Buchner, A., Bell, R., Mehl, B., & Musch, J. (2009). No enhanced recognition memory, but better source memory for faces of cheaters. Evolution and Human Behavior, 30, 212224. https://doi.org/10.1016/j.evolhumbehav.2009.01.004Google Scholar
Buchner, A., Mehl, B., Rothermund, K., & Wentura, D. (2006). Artificially induced valence of distractor words increases the effects of irrelevant speech on serial recall. Memory & Cognition, 34, 10551062. https://doi.org/10.3758/BF03193252Google Scholar
Buchner, A., Rothermund, K., Wentura, D., & Mehl, B. (2004). Valence of distractor words increases the effects of irrelevant speech on serial recall. Memory & Cognition, 32, 722731. https://doi.org/10.3758/BF03195862Google Scholar
Buller, D. J. (2005a). Adapting minds: Evolutionary psychology and the persistent quest for human nature. MIT Press.Google Scholar
Buller, D. J. (2005b). Evolutionary psychology: The emperor’s new paradigm. Trends in Cognitive Sciences, 9, 277283. https://doi.org/10.1016/j.tics.2005.04.003Google Scholar
Buller, D. J. (2005c). Get over: Massive modularity. Biology and Philosophy, 20, 881891.Google Scholar
Buss, D. M. (2004). Evolutionary psychology: The new science of the mind. Allyn & Bacon.Google Scholar
Cook, G. I., Marsh, R. L., & Hicks, J. L. (2003). Halo and devil effects demonstrate valenced-based influences on source-monitoring decisions. Consciousness and Cognition: An International Journal, 12, 257278. https://doi.org/10.1016/S1053-8100(02)00073-9Google Scholar
Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, 31, 187276. https://doi.org/10.1016/0010-0277(89)90023-1Google Scholar
D’Argembeau, A., & Van der Linden, M. (2004). Influence of affective meaning on memory for contextual information. Emotion, 4, 173188. https://doi.org/10.1037/1528-3542.4.2.173Google Scholar
Doerksen, S., & Shimamura, A. P. (2001). Source memory enhancement for emotional words. Emotion, 1, 511. https://doi.org/10.1037/1528-3542.1.1.5Google Scholar
Dunbar, R. I. M. (2003). The social brain: Mind, language, and society in evolutionary perspective. Annual Review of Anthropology, 32, 163181. https://doi.org/10.1146/annurev.anthro.32.061002.093158Google Scholar
Ehrenberg, K., & Klauer, K. C. (2005). Flexible use of source information: Processing components of the inconsistency effect in person memory. Journal of Experimental Social Psychology, 41, 369387. https://doi.org/10.1016/j.jesp.2004.08.001Google Scholar
Erdfelder, E., & Kroneisen, M. ( 2014). Proximate cognitive mechanisms underlying the survival processing effect. In Schwartz, B. L., Howe, M., Toglia, M., & Otgaar, H. (Eds.), What is adaptive about adaptive memory? (pp. 172198). Oxford University Press.Google Scholar
Fehr, E., & Gächter, S. (2000). Cooperation and punishment in public goods experiments. American Economic Review, 90, 980994. https://doi.org/10.1257/aer.90.4.980Google Scholar
Graesser, A. C., & Nakamura, G. V. (1982). The impact of a schema on comprehension and memory. In Bower, G. H. (Ed.), The psychology of learning and motivation (vol. 16, pp. 59109). Academic Press.Google Scholar
Janssen, M. A. (2008). Evolution of cooperation in a one-shot prisoner’s dilemma based on recognition of trustworthy and untrustworthy agents. Journal of Economic Behavior & Organization, 65, 458471. https://doi.org/10.1016/j.jebo.2006.02.004Google Scholar
Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: Are emotional words more vividly remembered than neutral words? Memory & Cognition, 31, 11691180. https://doi.org/10.3758/BF03195800Google Scholar
Klein, S. B. (2013). The temporal orientation of memory: It’s time for a change of direction. Journal of Applied Research in Memory and Cognition, 2, 222234. https://doi.org/10.1016/j.jarmac.2013.08.001Google Scholar
Kroneisen, M. (2018). Is he important to me? Source memory advantage for personally relevant cheaters. Psychonomic Bulletin & Review, 25, 11291137. https://doi.org/10.3758/s13423-017-1345-1Google Scholar
Kroneisen, M., & Bell, R. (2013). Sex, cheating, and disgust: Enhanced source memory for trait information that violates gender stereotypes. Memory, 21, 167181. https://doi.org/10.1080/09658211.2012.713971Google Scholar
Kroneisen, M., Woehe, L., & Rausch, L. S. (2015). Expectancy effects in source memory: How moving to a bad neighborhood can change your memory. Psychonomic Bulletin & Review, 22, 179189. https://doi.org/10.3758/s13423-014-0655-9Google Scholar
Mealey, L., Daood, C., & Krage, M. (1996). Enhanced memory for faces of cheaters. Ethology & Sociobiology, 17, 119128. https://doi.org/10.1016/0162-3095(95)00131-XGoogle Scholar
Mehl, B., & Buchner, A. (2008). No enhanced memory for faces of cheaters. Evolution and Human Behavior, 29, 3541. https://doi.org/10.1016/j.evolhumbehav.2007.08.001Google Scholar
Mieth, L., Bell, R., & Buchner, A. (2016). Cognitive load does not affect the behavioral and cognitive foundations of social cooperation. Frontiers in Psychology, 7, 1312. https://doi.org/10.3389/fpsyg.201601312Google Scholar
Murty, V. P., FeldmanHall, O., Hunter, L. E., Phelps, E. A., & Davachi, L. (2016). Episodic memories predict adaptive value-based decision-making. Journal of Experimental Psychology: General, 145, 548558. https://doi.org/10.1037/xge0000158Google Scholar
Nairne, J. S., & Pandeirada, J. N. S. (2016). Adaptive memory: The evolutionary significance of survival processing. Perspectives on Psychological Science, 11, 496511. https://doi.org/10.1177/1745691616635613Google Scholar
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 263273. https://doi.org/10.1037/0278-7393.33.2.263 UID 2007-02740-001Google Scholar
Over, D. E. (Ed.) (2003). Evolution and the psychology of thinking: The debate. Psychology Press.Google Scholar
Rothermund, K. (2011). Counter-regulation and control-dependency: Affective processing biases in the service of action regulation. Social Psychology, 42, 5666. https://doi.org/10.1027/1864-9335/a000043Google Scholar
Rothermund, K., Voss, A., & Wentura, D. (2008). Counter-regulation in affective attentional biases: A basic mechanism that warrants flexibility in emotion and motivation. Emotion, 8, 3446. https://doi.org/10.1037/1528-3542.8.1.34Google Scholar
Schaper, M. L., Mieth, L., & Bell, R. (2019). Adaptive memory: Source memory is positively associated with adaptive social decision making. Cognition, 186, 714. https://dx.doi.org/10.1016/j.cognition.2019.01.014Google Scholar
Sears, D. O. (1983). The person-positivity bias. Journal of Personality and Social Psychology, 44, 233250. https://doi.org/10.1037/0022-3514.44.2.233Google Scholar
Suzuki, A., & Suga, S. (2010). Enhanced memory for the wolf in sheep’s clothing: Facial trustworthiness modulates face–trait associative memory. Cognition, 117, 224229. https://doi.org/10.1016/j.cognition.2010.08.004Google Scholar
Suzuki, A., Honma, Y., & Suga, S. (2013). Indelible distrust: Memory bias toward cheaters revealed as high persistence against extinction. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 19011913. https://doi.org/10.1037/a0033335Google Scholar
Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In Barkow, J., Cosmides, L., & Tooby, J. (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 19136). Oxford University Press.Google Scholar
Tooby, J., & Cosmides, L. (2005). Conceptual foundations of evolutionary psychology. In Buss, D. M. (Ed.), The handbook of evolutionary psychology (pp. 567). John Wiley & Sons.Google Scholar
Trivers, R. (1971). The evolution of reciprocal altruism. Quarterly Review of Biology, 46, 3557. https://doi.org/10.1086/406755Google Scholar
Volstorf, J., Rieskamp, J., & Stevens, J. R. (2011). The good, the bad, and the rare: Memory for partners in social interactions. PLoS ONE, 6(4), e18945. www.plosone.org/article/info:doi/10.1371/journal.pone.0018945Google Scholar
Wentura, D., Voss, A., & Rothermund, K. (2009). Playing TETRIS for science counter-regulatory affective processing in a motivationally “hot” context. Acta Psychologica, 131, 171177. https://doi.org/10.1016/j.actpsy.2009.05.008Google Scholar

References

Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R., & Barco, A. (2004). Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: A model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron, 42, 947959. https://doi.org/10.1016/j.neuron.2004.05.021Google Scholar
Banerjee, T., & Chakravarti, D. (2011). A peek into the complex realm of histone phosphorylation. Molecular & Cell Biology, 31, 48584873. https://doi.org/10.1128/MCB.05631-11Google Scholar
Barondes, S. H., & Jarvik, M. E. (1964). The influence of actinomycin-D on brain RNA synthesis and on memory. Journal of Neurochemistry, 11, 187195. https://doi.org/10.1111/j.1471-4159.1964.tb06128.xGoogle Scholar
Barrett, R. M., Malvaez, M., Kramar, E., Matheos, D. P., Arrizon, A., Cabrera, S. M., Lynch, G., Greene, R. W., & Wood, M. A. (2011). Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology, 36, 15451556. https://doi.org/10.1038/npp.2011.61Google Scholar
Bousiges, O., Neidl, R., Majchrzak, M., Muller, M. A., Barbelivien, A., Pereira de Vasconcelos, A., Schneider, A., Loeffler, J. P., Cassel, J. C., & Boutillier, A. L. (2013). Detection of histone acetylation levels in the dorsal hippocampus reveals early tagging on specific residues of H2B and H4 histones in response to learning. PLOS ONE, 8, e57816. https://doi.org/10.1371/journal.pone.0057816Google Scholar
Brush, M. H., Guardiola, A., Connor, J. H., Yao, T. P., & Shenolikar, S. (2004). Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases. Journal of Biological Chemistry, 279, 76857691. https://doi.org/10.1074/jbc.M310997200Google Scholar
Choi, D. C., Maguschak, K. A., Ye, K., Jang, S. W., Myers, K. M., & Ressler, K. J. (2010). Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proceedings of the National Academy of Sciences USA, 107, 26752680. https://doi.org/10.1073/pnas.0909359107Google Scholar
Chwang, W. B., O’Riordan, K. J., Levenson, J. M., & Sweatt, J. D. (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learning & Memory, 13, 322328. https://doi.org/10.1101/lm.152906Google Scholar
Dash, P. K., Moore, A. N., Kobori, N., & Runyan, J. D. (2007). Molecular activity underlying working memory. Learning & Memory, 14, 554563. https://doi.org/10.1101/lm.558707Google Scholar
Davis, H. P., & Squire, L. R. (1984). Protein synthesis and memory: A review. Psychological Bulletin, 96, 518559. https://doi.org/10.1037/0033-2909.96.3.518Google Scholar
Ding, X., Liu, S., Tian, M., Zhang, W., Zhu, T., Li, D., Wu, J., Deng, H., Jia, Y., Xie, W., & Guan, J. S. (2017). Activity-induced histone modifications govern neurexin-1 mRNA splicing and memory preservation. Nature Neuroscience, 20, 690699. https://doi.org/10.1038/nn.4536Google Scholar
Figurov, A., Pozzo-Miller, L. D., Olafsson, P., Wang, T., & Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature, 381, 706709. https://doi.org/10.1038/381706a0Google Scholar
Graff, J., Joseph, N. F., Horn, M. E., Samiei, A., Meng, J., Seo, J., Rei, D., Bero, A. W., Phan, T. X., Wagner, F., & Tsai, L. H. (2014). Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell, 156, 261276. https://doi.org/10.1016/j.cell.2013.12.020)Google Scholar
Graff, J., Rei, D., Guan, J. S., Wang, W. Y., Seo, J., Hennig, K. M., Nieland, T. J., Fass, D. M., Kao, P. F., Kahn, M., & Tsai, L. H. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 483, 222226. https://doi.org/10.1038/nature10849Google Scholar
Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., & Tsai, L. H. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459, 5560. https://doi.org/10.1038/nature07925Google Scholar
Guo, J. U., Su, Y., Zhong, C., Ming, G. L., & Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145, 423434. https://doi.org/10.1016/j.cell.2011.03.022Google Scholar
Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., Paylor, R. E., and Lubin, F. D. (2010). Histone methylation regulates memory formation. Journal of Neuroscience, 30, 35893599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010Google Scholar
Gupta-Agarwal, S., Franklin, A. V., Deramus, T., Wheelock, M., Davis, R. L., McMahon, L. L., & Lubin, F. D. (2012). G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. Journal of Neuroscience, 32, 54405453. https://doi.org/10.1523/JNEUROSCI.0147-12.2012Google Scholar
Han, J. H., Kushner, S. A., Yiu, A. P., Cole, C. J., Matynia, A., Brown, R. A., Neve, R. L., Guzowski, J. F., Silva, A. J., and Josselyn, S. A. (2007). Neuronal competition and selection during memory formation. Science, 316, 457460. https://doi.org/10.1126/science.1139438Google Scholar
Jiang, J., Wang, G. Y., Luo, W., Xie, H., & Guan, J. S. (2018). Mammillary body regulates state-dependent fear by alternating cortical oscillations. Science Reports, 8, 13471. https://doi.org/10.1038/s41598-018-31622-zGoogle Scholar
Jiang, Y., Langley, B., Lubin, F. D., Renthal, W., Wood, M. A., Yasui, D. H., Kumar, A., Nestler, E. J., Akbarian, S., & Beckel-Mitchener, A. C. (2008). Epigenetics in the nervous system. Journal of Neuroscience, 28, 1175311759. https://doi.org/10.1523/JNEUROSCI.3797-08.2008Google Scholar
Kaas, G. A., Zhong, C., Eason, D. E., Ross, D. L., Vachhani, R. V., Ming, G. L., King, J. R., Song, H., & Sweatt, J. D. (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79, 10861093. https://doi.org/10.1016/j.neuron.2013.08.032Google Scholar
Kerimoglu, C., Agis-Balboa, R. C., Kranz, A., Stilling, R., Bahari-Javan, S., Benito-Garagorri, E., Halder, R., Burkhardt, S., Stewart, A. F., & Fischer, A. (2013). Histone-methyltransferase MLL2 (KMT2B) is required for memory formation in mice. Journal of Neuroscience, 33, 34523464. https://doi.org/10.1523/JNEUROSCI.3356-12.2013Google Scholar
Kim, M. S., Akhtar, M. W., Adachi, M., Mahgoub, M., Bassel-Duby, R., Kavalali, E. T., Olson, E. N., and Monteggia, L. M. (2012). An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. Journal of Neuroscience, 32, 1087910886. https://doi.org/10.1523/JNEUROSCI.2089-12.2012Google Scholar
Korzus, E., Rosenfeld, M. G., & Mayford, M. (2004). CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron, 42, 961972. https://doi.org/10.1016/j.neuron.2004.06.002Google Scholar
Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M., & Mansuy, I. M. (2009). Protein phosphatase 1 regulates the histone code for long-term memory. Journal of Neuroscience, 29, 1307913089. https://doi.org/10.1523/JNEUROSCI.3610-09.2009Google Scholar
Koshibu, K., Graff, J., & Mansuy, I. M. (2010). Nuclear protein phosphatase-1: An epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience, 173, 3036. https://doi.org/10.1016/j.neuroscience.2010.11.023Google Scholar
Lattal, K. M., Barrett, R. M., & Wood, M. A. (2007). Systemic or intrahippocampal delivery of histone deacetylase inhibitors facilitates fear extinction. Behavioral Neuroscience, 121, 11251131. https://doi.org/10.1037/0735-7044.121.5.1125Google Scholar
Lesburgueres, E., Gobbo, O. L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., & Bontempi, B. (2011). Early tagging of cortical networks is required for the formation of enduring associative memory. Science, 331, 924928. https://doi.org/10.1126/science.1196164Google Scholar
Levenson, J. M., O’Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., & Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. Journal of Biological Chemistry, 279, 4054540559. https://doi.org/10.1074/jbc.M402229200Google Scholar
Levenson, J. M., & Sweatt, J. D. (2005). Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience, 6, 108118. https://doi.org/10.1038/nrn1604Google Scholar
Li, D., Wang, G., Xie, H., Hu, Y., Guan, J. S., & Hilgetag, C. C. (2019). Multimodal memory components and their long-term dynamics identified in cortical layers II/III but not layer V. Frontiers in Integrative Neuroscience, 13, 54. https://doi.org/10.3389/fnint.2019.00054Google Scholar
Li, J., Guo, Y., Schroeder, F. A., Youngs, R. M., Schmidt, T. W., Ferris, C., Konradi, C., & Akbarian, S. (2004). Dopamine D2-like antagonists induce chromatin remodeling in striatal neurons through cyclic AMP-protein kinase A and NMDA receptor signaling. Journal of Neurochemistry, 90, 11171131. https://doi.org/10.1111/j.1471-4159.2004.02569.xGoogle Scholar
Lipsky, R. H. (2013). Epigenetic mechanisms regulating learning and long-term memory. International Journal of Developmental Neuroscience, 31, 353358. https://doi.org/10.1016/j.ijdevneu.2012.10.110Google Scholar
Liu, L., van Groen, T., Kadish, I., & Tollefsbol, T. O. (2009). DNA methylation impacts on learning and memory in aging. Neurobiology of Aging, 30, 549560. https://doi.org/10.1016/j.neurobiolaging.2007.07.020Google Scholar
Liu, S., Tian, M., He, F., Li, J., Xie, H., Liu, W., Zhang, Y., Zhang, R., Yi, M., Che, F., & Guan, J. S. (2019). Mutations in ASH1L confer susceptibility to Tourette syndrome. Molecular Psychiatry, 25, 476490. https://doi.org/10.1038/s41380-019-0560-8Google Scholar
Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., & Tonegawa, S. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature, 484, 381385. https://doi.org/10.1038/nature11028Google Scholar
Loebrich, S., & Nedivi, E. (2009). The function of activity-regulated genes in the nervous system. Physiological Review, 89, 10791103. https://doi.org/10.1152/physrev.00013.2009Google Scholar
Lubin, F. D., Roth, T. L., & Sweatt, J. D. (2008). Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience, 28, 1057610586. https://doi.org/10.1523/JNEUROSCI.1786-08.2008Google Scholar
Maddox, S. A., & Schafe, G. E. (2011). Epigenetic alterations in the lateral amygdala are required for reconsolidation of a Pavlovian fear memory. Learning & Memory, 18, 579593. https://doi.org/10.1101/lm.2243411Google Scholar
Malvaez, M., McQuown, S. C., Rogge, G. A., Astarabadi, M., Jacques, V., Carreiro, S., Rusche, J. R., & Wood, M. A. (2013). HDAC3-selective inhibitor enhances extinction of cocaine-seeking behavior in a persistent manner. Proceedings of the National Academy of Sciences USA, 110, 26472652. https://doi.org/10.1073/pnas.1213364110Google Scholar
McQuown, S. C., Barrett, R. M., Matheos, D. P., Post, R. J., Rogge, G. A., Alenghat, T., Mullican, S. E., Jones, S., Rusche, J. R., Lazar, M. A., & Wood, M. A. (2011). HDAC3 is a critical negative regulator of long-term memory formation. Journal of Neuroscience, 31, 764774. https://doi.org/10.1523/JNEUROSCI.5052-10.2011Google Scholar
Miller, C. A., Campbell, S. L., & Sweatt, J. D. (2008). DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning & Memory, 89, 599603. https://doi.org/10.1016/j.nlm.2007.07.016Google Scholar
Miller, C. A., Gavin, C. F., White, J. A., Parrish, R. R., Honasoge, A., Yancey, C. R., Rivera, I. M., Rubio, M. D., Rumbaugh, G., & Sweatt, J. D. (2010). Cortical DNA methylation maintains remote memory. Nature Neuroscience, 13, 664666. https://doi.org/10.1038/nn.2560Google Scholar
Miller, C. A., & Sweatt, J. D. (2007). Covalent modification of DNA regulates memory formation. Neuron, 53, 857869. https://doi.org/10.1016/j.neuron.2007.02.022Google Scholar
Monsey, M. S., Ota, K. T., Akingbade, I. F., Hong, E. S., & Schafe, G. E. (2011). Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdala. PLOS ONE, 6, e19958. https://doi.org/10.1371/journal.pone.0019958Google Scholar
Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L., & Riccio, A. (2008). S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature, 455, 411415. https://doi.org/10.1038/nature07238Google Scholar
Park, H., & Poo, M. M. (2012). Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience, 14, 723. https://doi.org/10.1038/nrn3379Google Scholar
Psotta, L., Lessmann, V., & Endres, T. (2013). Impaired fear extinction learning in adult heterozygous BDNF knock-out mice. Neurobiology of Learning & Memory, 103, 3438. https://doi.org/10.1016/j.nlm.2013.03.003Google Scholar
Ringrose, L., & Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Reviews of Genetics, 38, 413443. https://doi.org/10.1146/annurev.genet.38.072902.091907Google Scholar
Rogge, G. A., Singh, H., Dang, R., & Wood, M. A. (2013). HDAC3 is a negative regulator of cocaine-context-associated memory formation. Journal of Neuroscience, 33, 66236632. https://doi.org/10.1523/JNEUROSCI.4472-12.2013Google Scholar
Rudenko, A., Dawlaty, M. M., Seo, J., Cheng, A. W., Meng, J., Le, T., Faull, K. F., Jaenisch, R., & Tsai, L. H. (2013). Tet1 is critical for neuronal activity-regulated gene expression and memory extinction. Neuron, 79, 11091122. https://doi.org/10.1016/j.neuron.2013.08.003Google Scholar
Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A., & Tonegawa, S. (2015). Memory. Engram cells retain memory under retrograde amnesia. Science, 348, 10071013. https://doi.org/10.1126/science.aaa5542Google Scholar
Sarkar, S., Abujamra, A. L., Loew, J. E., Forman, L. W., Perrine, S. P., & Faller, D. V. (2011). Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling. Anticancer Research, 31, 27232732. https://doi.org/10.3390/ma8105358Google Scholar
Shahbazian, M. D., & Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annual Reviews of Biochemistry, 76, 75100. https://doi.org/10.1146/annurev.biochem.76.052705.162114Google Scholar
Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K., & Wood, M. A. (2009). Modulation of long-term memory for object recognition via HDAC inhibition. Proceedings of the National Academy of Sciences USA, 106, 94479452. https://doi.org/10.1073/pnas.0903964106Google Scholar
Sui, L., Wang, Y., Ju, L. H., & Chen, M. (2012). Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiology of Learning & Memory, 97, 425440. https://doi.org/10.1016/j.nlm.2012.03.007Google Scholar
Tonegawa, S., Liu, X., Ramirez, S., & Redondo, R. (2015). Memory engram cells have come of age. Neuron, 87, 918931. https://doi.org/10.1016/j.neuron.2015.08.002Google Scholar
Vecsey, C. G., Hawk, J. D., Lattal, K. M., Stein, J. M., Fabian, S. A., Attner, M. A., Cabrera, S. M., McDonough, C. B., Brindle, P. K., Abel, T., & Wood, M. A. (2007). Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. Journal of Neuroscience, 27, 61286140. https://doi.org/10.1523/JNEUROSCI.0296-07.2007Google Scholar
Wang, G., Xie, H., Wang, L., Luo, W., Wang, Y., Jiang, J., Xiao, C., Xing, F., & Guan, J. S. (2019). Switching from fear to no fear by different neural ensembles in mouse retrosplenial cortex. Cerebral Cortex, 29, 50855097. https://doi.org/10.1093/cercor/bhz050Google Scholar
Wang, L., Lv, Z., Hu, Z., Sheng, J., Hui, B., Sun, J., & Ma, L. (2010). Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology, 35, 913928. https://doi.org/10.1038/npp.2009.193Google Scholar
Xie, H., Liu, Y., Zhu, Y., Ding, X., Yang, Y., & Guan, J. S. (2014). In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain. Proceedings of the National Academy of Sciences USA, 111, 27882793. https://doi.org/10.1073/pnas.1316808111Google Scholar
Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Tennant, K., Jones, T., & Zuo, Y. (2009). Rapid formation and selective stabilization of synapses for enduring motor memories. Nature, 462, 915919. https://doi.org/10.1038/nature08389Google Scholar
Yeh, S. H., Lin, C. H., & Gean, P. W. (2004). Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Molecular Pharmacology, 65, 12861292. https://doi.org/10.1124/mol.65.5.1286Google Scholar
Yu, N. K., Baek, S. H., & Kaang, B. K. (2011). DNA methylation-mediated control of learning and memory. Molecular Brain, 4, 5. https://doi.org/10.1186/1756-6606-4-5Google Scholar
Zhu, T., Liang, C., Li, D., Tian, M., Liu, S., Gao, G., & Guan, J. S. (2016). Histone methyltransferase Ash1L mediates activity-dependent repression of neurexin-1α. Scientific Report, 6, 26597. https://doi.org/10.1038/srep26597Google Scholar

References

Abraham, W. C., Jones, O. D., & Glanzman, D. L. (2019). Is plasticity of synapses the mechanism of long-term memory storage? Npj Science of Learning, 4, 9. https://doi.org/10.1038/s41539-019-0048-yGoogle Scholar
Akins, C. K., Domjan, M., & Gutiérrez, G. (1994). Topography of sexually conditioned behavior in male Japanese quail (Coturnix japonica) depends on the CS-US interval. Journal of Experimental Psychology: Animal Behavior Processes 20(2), 199209. https://doi.org/10.1037/0097-7403.20.2.199Google Scholar
Aslan, A., & Bäuml, K.-H. T. (2012). Adaptive memory: Young children show enhanced retention of fitness-related information. Cognition, 122(1), 118122. https://doi.org/10.1016/j.cognition.2011.10.001Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. & Spence, J. T. (Eds.), Psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89195). Academic Press. http://dx.doi.org/10.1016/s0079-7421(08)60422-3Google Scholar
Baddeley, A. (1992). Working memory. Science, 255(5044), 556559. https://doi.org/10.1126/SCIENCE.1736359Google Scholar
Bitterman, M. E. (1975). The comparative analysis of learning. Science, 188(4189), 699709. www.jstor.org/stable/1741035Google Scholar
Bitterman, M. E. (1996). Comparative analysis of learning in honeybees. Animal Learning and Behavior, 24, 123141 https://doi.org/10.3758/BF03198961Google Scholar
Blaisdell, A. P., Stolyarova, A., & Stahlman, W. D. (2016). The law of expect or a modified law of effect? Outcome expectation and variation in learned behavior. Conductual, 4(2), 6190. https://doi.org/ISSN:2340-0242Google Scholar
Bolles, R. C., & Fanselow, M. S. (1980). A perceptual-defensive-recuperative model of fear and pain. Behavioral and Brain Sciences, 3(2), 291301. https://doi.org/10.1017/S0140525X0000491XGoogle Scholar
Bonin, P., Gelin, M., Laroche, B. et al. (2020) “Survival processing of the selfish gene?”: Adaptive memory and inclusive fitness. Evolutionary Psychological Science, 6, 155165. https://doi.org/10.1007/s40806-019-00220-1Google Scholar
Bonin, P., Thiebaut, G., Witt, A., & Méot, A. (2019). Contamination is “good” for your memory! Further evidence for the adaptive view of memory. Evolutionary Psychological Science, 5, 300316. https://doi.org/10.1007/s40806-019-00188-yGoogle Scholar
Breland, K., & Breland, M. (1961). The misbehavior of organisms. American Psychologist, 16(11), 681684. https://doi.org/10.1037/h0040090Google Scholar
Bush, R. R., & Mostellar, F. (1955). Stochastic models for learning. John Wiley & Sons.Google Scholar
Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11(6), 671684. https://doi.org/10.1016/S0022-5371(72)80001-XGoogle Scholar
Domjan, M. (1983). Biological constraints on instrumental and classical conditioning: Implications for general process theory. Psychology of Learning and Motivation, 17, 215277. https://doi.org/10.1016/S0079-7421(08)60100-0Google Scholar
Domjan, M. (1997). Behavior systems and the demise of equipotentiality: Historical antecedents and evidence from sexual conditioning. In Bouton, M. E. & Fanselow, M. S. (Eds.), Learning, motivation, and cognition: The functional behaviorism of Robert C. Bolles (pp. 3151). American Psychological Association.Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: From biological constraints to ecological perspectives. In Byrne, J. H. (Ed.), Learning and Memory: A Comprehensive Reference (pp. 189201). Academic Press. https://doi.org/10.1016/b978-0-12-809324-5.21012-2Google Scholar
Escobar, M., & Miller, R. R. (2004). A review of the empirical laws of basic learning in Pavlovian conditioning. International Journal of Comparative Psychology, 17, 279303.Google Scholar
Everitt, B. J., Cardinal, R. N., Parkinson, J. A., & Robbins, T. W. (2003). Appetitive behavior: Impact of amygdala-dependent mechanisms of emotional learning. Annals of the New York Academy of Sciences, 985, 233250. https://doi.org/10.1111/j.1749-6632.2003.tb07085.xGoogle Scholar
Fernandes, N. L., Pandeirada, J. N. S., Soares, S. C., & Nairne, J. S. (2017). Adaptive memory: The mnemonic value of contamination. Evolution and Human Behavior, 38, 451460 https://doi.org/10.1016/j.evolhumbehav.2017.04.003Google Scholar
Foree, D. D., & LoLordo, V. M. (1973). Attention in the pigeon: Differential effects of food-getting versus shock-avoidance procedures. Journal of Comparative and Physiological Psychology, 85(3), 551558. https://doi.org/10.1037/h0035300Google Scholar
Garcia, J., Ervin, F. R., & Koelling, R. A. (1966). Learning with prolonged delay of reinforcement. Psychonomic Science, 5(3), 121122. https://doi.org/10.3758/BF03328311Google Scholar
Garcia, J., Kimeldorf, D. J., & Koelling, R. A. (1955). Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science, 122, 157158. https://doi.org/10.1126/SCIENCE.122.3160.157Google Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4(1), 123124. https://doi.org/10.3758/BF03342209Google Scholar
Gelin, M., Bonin, P., Méot, A., & Bugaiska, A. (2018). Do animacy effects persist in memory for context? Quarterly Journal of Experimental Psychology, 71(4), 965974. https://doi.org/10.1080/17470218.2017.1307866Google Scholar
Gemberling, G. A., & Domjan, M. (1982). Selective associations in one-day-old rats: Taste-toxicosis and texture-shock aversion learning. Journal of Comparative and Physiological Psychology, 96(1), 105113. https://doi.org/10.1037/h0077855Google Scholar
Gould, E. (2007). How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 8(6), 481488. https://doi.org/10.1038/nrn2147Google Scholar
Güntürkün, O., & Bugnyar, T. (2016). Cognition without cortex. Trends in Cognitive Sciences, 20, 291303. https://doi.org/10.1016/j.tics.2016.02.001Google Scholar
Hall, B. K. (2013). Homology, homoplasy, novelty, and behavior. Developmental Psychobiolog, 55, 412. https://doi.org/10.1002/dev.21039Google Scholar
Haralson, J. V., Groff, C. I., & Haralson, S. J. (1975). Classical conditioning in the sea anemone, Cribrina xanthogrammica. Physiology and Behavior, 15, 455460. https://doi.org/10.1016/0031-9384(75)90259-0Google Scholar
Hawkins, R. D., Greene, W., & Kandel, E. R. (1998). Classical conditioning, differential conditioning, and second-order conditioning of the Aplysia gill-withdrawal reflex in a simplified mantle organ preparation. Behavioral Neuroscience, 112, 636645. https://doi.org/10.1037/0735-7044.112.3.636Google Scholar
Holland, P. C. (1981). Acquisition of representation-mediated conditioned food aversions. Learning and Motivation, 12, 118. https://doi.org/10.1016/0023-9690(81)90022-9Google Scholar
Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1, 304309. https://doi.org/10.1038/1124Google Scholar
Howe, M. L., & Otgaar, H. (2013). Proximate mechanisms and the development of adaptive memory. Current Directions in Psychological Science, 22(1), 1622. https://doi.org/10.1177/0963721412469397Google Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. Appleton-Century-Crofts.Google Scholar
Kang, S. H. K., McDermott, K. B., & Cohen, S. M. (2008). The mnemonic advantage of processing fitness-relevant information. Memory & Cognition, 36, 11511156. https://doi.org/10.3758/MC.36.6.1151Google Scholar
Keifer, J., & Summers, C. H. (2016). Putting the “biology” back into “neurobiology”: The strength of diversity in animal model systems for neuroscience research. Frontiers in Systems Neuroscience, 10, 19. https://doi.org/10.3389/fnsys.2016.00069Google Scholar
Knoblich, J. A. (2008). Mechanisms of asymmetric stem cell division. Cell, 132, 583597. https://doi.org/10.1016/j.cell.2008.02.007Google Scholar
Krause, M. A., Trevino, S., Cripps, A., Chilton, K., Sower, E., & Taylor, J. P. (2019). Inclusive fitness does not impact the survival processing effect. Animal Behavior and Cognition, 6, 1331. https://doi.org/10.26451/abc.06.01.02.2019Google Scholar
Liang, Z. S., Nguyen, T., Mattila, H. R., Rodriguez-Zas, S. L., Seeley, T. D., & Robinson, G. E. (2012). Molecular determinants of scouting behavior in honey bees. Science, 335, 12251228. https://doi.org/10.1126/science.1213962Google Scholar
Logue, A. W. (1979). Taste aversion and the generality of the laws of learning. Psychological Bulletin, 86, 276296. https://doi.org/10.1037/0033-2909.86.2.276Google Scholar
Logue, A. W. (1985). Conditioned food aversion learning in humans. Annals of the New York Academy of Sciences, 443, 316329. https://doi.org/10.1111/j.1749-6632.1985.tb27082.xGoogle Scholar
Loy, I., Álvarez, B., Strempler-Rubio, E. C., & Rodríguez, M. (2017). Coordinating associative and ecological accounts of learning in the garden snail Cornu aspersum. Behavioural Processes, 129, 2632. https://doi.org/10.1016/j.beproc.2017.03.004Google Scholar
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman.Google Scholar
Miller, R. R., & Escobar, M. (2002). Learning: Laws and models of basic conditioning. In Pashler, H. & Gallistel, R. (Eds.), Stevens’ handbook of experimental psychology (pp. 47102). John Wiley & Sons.Google Scholar
Mittelbach, M., Kolbaia, S., Weigend, M., & Henning, T. (2019). Flowers anticipate revisits of pollinators by learning from previously experienced visitation intervals. Plant Signaling and Behavior, 14, 6. https://doi.org/10.1080/15592324.2019.1595320Google Scholar
Mohammad, F., Aryal, S., Ho, J. et al. (2016). Ancient anxiety pathways influence Drosophila defense behaviors. Current Biology, 26, 981986. https://doi.org/10.1016/j.cub.2016.02.031Google Scholar
Muszynski, N. M. (2018). Same/Different concept learning and category discrimination in honeybees. University of Hawai’i at Manoa. http://hdl.handle.net/10125/62751Google Scholar
Muszynski, N. M., & Couvillon, P. A. (2015). Relational learning in honeybees (Apis mellifera): Oddity and nonoddity discrimination. Behavioural Processes, 115, 8193. https://doi.org/10.1016/j.beproc.2015.03.001Google Scholar
Nairne, J. S. (2010). Adaptive memory: Evolutionary constraints on remembering. Psychology of Learning and Motivation, 53, 132. https://doi.org/10.1016/S0079-7421(10)53001-9Google Scholar
Nairne, J. S., & Pandeirada, J. N. S. (2008). Adaptive memory: Is survival processing special? Journal of Memory and Language, 59, 377385. https://doi.org/10.1016/J.JML.2008.06.001Google Scholar
Nairne, J. S., Thompson, S. R., & Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 263273. https://doi.org/10.1037/0278-7393.33.2.263Google Scholar
Nairne, J. S., VanArsdall, J. E., & Cogdill, M. (2017). Remembering the Living. Current Directions in Psychological Science, 26, 2227. https://doi.org/10.1177/0963721416667711Google Scholar
Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N. S., Cogdill, M., & LeBreton, J. M. (2013). Remembering the living: Episodic memory is tuned to animacy. Psychological Science, 24, 20992105. https://doi.org/10.1177/0956797613480803Google Scholar
New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. (2007). Spatial adaptations for plant foraging: women excel and calories count. Proceedings of the Royal Society B: Biological Sciences, 274, 26792684. https://doi.org/10.1098/rspb.2007.0826Google Scholar
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108, 483522. https://doi.org/10.1037/0033-295X.108.3.483Google Scholar
Otgaar, H., & Smeets, T. (2010). Adaptive memory: Survival processing increases both true and false memory in adults and children. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 10101016. https://doi.org/10.1037/a0019402Google Scholar
Pandeirada, J. N. S., Fernandes, N. L., Vasconcelos, M., & Nairne, J. S. (2017). Adaptive memory: Remembering potential mates. Evolutionary Psychology, 15, 147470491774280. https://doi.org/10.1177/1474704917742807Google Scholar
Papini, M. R. (2002). Pattern and process in the evolution of learning. Psychological review, 109, 186201. https://doi.org/10.1037//0033-295X.109.1.186Google Scholar
Papini, M. R. (2020). Comparative psychology: Evolution and development of brain and behavior. Taylor & Francis. https://doi.org/10.4324/9781003080701Google Scholar
Pearce, K., Cai, D., Roberts, A. C., & Glanzman, D. L. (2017). Role of protein synthesis and DNA methylation in the consolidation and maintenance of long-term memory in Aplysia. Elife, 6, e18299. https://doi.org/10.1016/j.tins.2018.10.005Google Scholar
Perisse, E., Owald, D., Barnstedt, O., Talbot, C. B. B., Huetteroth, W., & Waddell, S. (2016). Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron, 90, 10861089. https://doi.org/10.1016/j.neuron.2016.04.034Google Scholar
Reaume, C. J., & Sokolowski, M. B. (2011). Conservation of gene function in behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 21002110. https://doi.org/10.1098/rstb.2011.0028Google Scholar
Rescorla, R. (1988). Behavioral studies of Pavlovian conditioning. Annual Review of Neuroscience, 11, 329352. https://doi.org/10.1146/annurev.neuro.11.1.329Google Scholar
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). https://pdfs.semanticscholar.org/afaf/65883ff75cc19926f61f181a687927789ad1.pdfGoogle Scholar
Rumelhart, D. E., & Mcclelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations. MIT Press. https://pdfs.semanticscholar.org/ff2c/2e3e83d1e8828695484728393c76ee07a101.pdfGoogle Scholar
Scarborough, D. L., Cortese, C., & Scarborough, H. S. (1977). Frequency and repetition effects in lexical memory. Journal of Experimental Psychology: Human Perception and Performance, 3, 117. https://doi.org/10.1037/0096-1523.3.1.1Google Scholar
Seitz, B. M., Blaisdell, A. P., Polack, C. W., & Miller, R. R. (2019). The role of biological significance in human learning and memory. International Journal of Comparative Psychology, 32, 120.Google Scholar
Seitz, B. M., Blaisdell, A., & Tomiyama, A. J. (2021). Calories count: Memory of eating is evolutionarily special. Journal of Memory and Language, 117, https://doi.org/10.1016/j.jml.2020.104192Google Scholar
Seitz, B. M., Polack, C. W., & Miller, R. R. (2018). Adaptive memory: Is there a reproduction-processing effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 11671179. https://doi.org/10.1037/xlm0000513https://doi.org/10.1037/xlm0000513Google Scholar
Seitz, B. M., Polack, C. W., & Miller, R. R. (2020). Adaptive memory: Generality of the parent 44 processing effect and effects of biological relatedness on recall. Evolutionary Psychological Science, 6, 246260. https://doi.org/10.1007/s40806-020-00233-1Google Scholar
Seitz, B. M., Tomiyama, A. J., & Blaisdell, A. P. (2021). Eating behavior as a new frontier in memory research. Neuroscience & Biobehavioral Reviews, 127, 795807. https://doi.org/10.1016/j.neubiorev.2021.05.024Google Scholar
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77, 406418. https://doi.org/10.1037/h0029790Google Scholar
Shepard, R. N. (1967). Recognition memory for words, sentences, and pictures. Journal of Verbal Learning and Verbal Behavior, 6, 156163. https://doi.org/10.1016/S0022-5371(67)80067-7Google Scholar
Shettleworth, S. J. (1975). Reinforcement and the organization of behavior in golden hamsters: Hunger, environment, and food reinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 1, 5687. https://doi.org/10.1037/0097-7403.1.1.56Google Scholar
Shomrat, T., & Levin, M. (2013). An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. Journal of Experimental Biology, 216, 37993810. https://doi.org/10.1242/jeb.087809Google Scholar
Sigurdsson, T., Doyère, V., Cain, C. K., & LeDoux, J. E. (2007). Long-term potentiation in the amygdala: A cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215227. https://doi.org/10.1016/j.neuropharm.2006.06.022Google Scholar
Silva, K. M., Silva, F. J., & Machado, A. (2019). The evolution of the behavior systems framework and its connection to interbehavioral psychology. Behavioural Processes, 158, 117125. https://doi.org/10.1016/j.beproc.2018.11.001Google Scholar
Smith, M. C., Coleman, S. R., & Gormezano, I. (1969). Classical conditioning of the rabbit’s nictitating membrane response at backward, simultaneous, and forward CS-US intervals. Journal of Comparative and Physiological Psychology, 69, 226231. https://doi.org/10.1037/h0028212Google Scholar
Staddon, J. E., & Simmelhag, V. L. (1971). The “supersitition” experiment: A reexamination of its implications for the principles of adaptive behavior. Psychological Review, 78, 343. https://doi.org/10.1037/h0030305Google Scholar
Thompson, R. F. (1986). The neurobiology of learning and memory. Science, 233, 941947. https://doi.org/10.1126/science.3738519Google Scholar
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. Columbia University Press. https://doi.org/10.1037/10780-000Google Scholar
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.Google Scholar
Timberlake, W., & Lucas, G. A. (1989). Behavior systems and learning: From misbehavior to general principles. In Klein, S. B. & Mowrer, R. R. (Eds.), Contemporary learning theories: Instrumental conditioning and the impact of biological constraints on learning (pp. 237275). Erlbaum.Google Scholar
Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 4348. https://doi.org/10.1038/35083500Google Scholar
Wen, J. Y. M., Kumar, N., Morrison, G., Rambaldini, G., Runciman, S., Rousseau, J., & Van Der Kooy, D. (1997). Mutations that prevent associative learning in C. elegans. Behavioral Neuroscience, 111, 354368. https://doi.org/10.1037/0735-7044.111.2.354Google Scholar
Wright, A. A., Santiago, H. C., Sands, S. F., Kendrick, D. F., & Cook, R. G. (1985). Memory processing of serial lists by pigeons, monkeys, and people. Science, 229 (4710), 287289. https://doi.org/10.1126/science.9304205Google Scholar
Wright, W. G., Kirschman, D., Rozen, D., & Maynard, B. (1996). Phylogenetic analysis of learning-related neuromodulation in molluscan mechanosensory neurons. Evolution, 50, 22482263. https://doi.org/10.2307/2410695Google Scholar
Zelikowsky, M., & Fanselow, M. S. (2010). Opioid regulation of Pavlovian overshadowing in fear conditioning. Behavioral Neuroscience, 124, 510519. https://doi.org/10.1037/a0020083Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×