Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T18:14:09.470Z Has data issue: false hasContentIssue false

3 - The Ordovician Enigma

Fish, First Appearances and Phylogenetic Controversies

Published online by Cambridge University Press:  31 December 2018

Zerina Johanson
Affiliation:
Natural History Museum, London
Charlie Underwood
Affiliation:
Birkbeck, University of London
Martha Richter
Affiliation:
Natural History Museum, London
Get access

Summary

The Ordovician history of fish is limited by a combination of biological, environmental and taphonomic constraints but appears to contain significant milestones referencing the first appearances of a number of major groups, including putative jawed fish. In addition, the depositional settings from which fish are recovered are restricted to a narrow range of environments, and, similarly, the stratigraphic coverage remains patchy despite increases in reporting over recent years. The Gondwanan and Laurentian record further diminishes with the onset of the end-Ordovician glaciation and concomitant extinction event, a pattern which continues into ‘Talimaa’s Gap’ at the base of the Silurian. Phylogenetically, many of the Ordovician taxa are problematic to place in the higher taxonomic groupings that dominate the Siluro-Devonian. With caution, a number of the scale-based taxa fall within the crown-gnathostomes, re-emphasizing the importance of the Great Ordovician Biodiversification Event in setting the scene for subsequent vertebrate evolutionary radiations and range expansions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albanesi, GL, Astini, R. 2002. Fauna de conodontes y Sacabambaspis janvieri (Vertebrata) en el Ordovícico Medio de la Cordillera Oriental Argentina. Implicancias estratigráficas y paleogeográfica. In: Anzótegui, LA, Lutz, AI, Gallego, OF, editors. VIII Congreso Argentino de Paleontología y Bioestratigrafía, Corrientes, Chile, 17a.Google Scholar
Albanesi, GL, Benedetto, JL, Gagnier, P-Y. 1995. Sacabambaspis janvieri (Vertebrata) y conodontes del Llandeiliano temprano en la Formacion La Cantera, Precordillera de San Juan, Argentina: Bol Acad Nac Cienc, Córdoba 60:519543.Google Scholar
Aldridge, RJ, Gabbott, SE, Theron, JN. 2001. The Soom Shale. In: Briggs, DEG, Crowther, PR, editors. Palaeobiology II. Oxford: Blackwell. pp. 340342.Google Scholar
Algeo, TJ, Seslavinsky, KB. 1995. The Paleozoic world – Continental flooding, hypsometry and sea level. Am J Sci 295:787822.Google Scholar
Allulee, JL, Holland, SM. 2005. The sequence stratigraphic and environmental context of primitive vertebrates: Harding Sandstone, Upper Ordovician, Colorado, USA. Palaios 20:518533.CrossRefGoogle Scholar
Andreev, PS, Coates, MI, Shelton, RM, Cooper, PR, Smith, MP, Sansom, IJ. 2015. Upper Ordovician chondrichthyan‐like scales from North America. Palaeontology 58:691704.CrossRefGoogle Scholar
Andreev, PS, Coates, MI, Karatajūtė-Talimaa, VN, Shelton, RM, Cooper, PR, Sansom, IJ. 2016a. The systematics of the Mongolepidida (Chondrichthyes) and the Ordovician origins of the clade. PeerJ 4:e1850.Google Scholar
Andreev, PS, Coates, MI, Karatajūtė-Talimaa, VN, Shelton, RM, Cooper, PR, Sansom, IJ. 2016b. Elegestolepis and its kin, the earliest monodontode chondrichthyans. J Vert Paleo:e1245664.Google Scholar
Andreev, PS, Coates, MI, Sansom, IJ. in prep. Scale-based phylogeny of Palaeozoic chondrichthyans.Google Scholar
Blieck, A, Elliott, DK, Gagnier, P-Y. 1991. Some questions concerning the phylogenetic relationships of heterostracans, Ordovician to Devonian jawless vertebrates. In: Chang, MM, Liu, YH, Zhang, GR, editors. Early Vertebrates and Related Problems of Evolutionary Biology. Beijing: Science Press. pp. 117.Google Scholar
Blieck, A, Turner, S. 2003. Global Ordovician vertebrate biogeography. Palaeogeog, Palaeoclim, Palaeoecol 195: 3754.CrossRefGoogle Scholar
Botella, H, Blom, H, Dorka, M, Ahlberg, PE, Janvier, P. 2007. Jaws and teeth of the earliest bony fishes. Nature 448:583586.Google Scholar
Botella, H, Donoghue, PCJ, Martinez-Pérez, C. 2009. Enameloid microstructure in the oldest known chondrichthyan teeth. In: Ahlberg, PE, Blom, H, Boisvert, CA, editors. Forty years of early vertebrates. Acta Zool 90(Suppl. 1): 103108.Google Scholar
Brazeau, MD. 2012 A revision of the anatomy of the Early Devonian jawed vertebrate Ptomacanthus anglicus Miles. Palaeontology 55:355367.CrossRefGoogle Scholar
Brazeau, MD, Friedman, M. 2015. The origin and early phylogenetic history of jawed vertebrates. Nature 520:490497.Google Scholar
Choo, B, Zhu, M, Zhao, WJ, Jia, LT, Zhu, YA. 2014. The largest Silurian vertebrate and its palaeoecological implications. Sci Rep 4:18.Google Scholar
Cohen, KM, Finney, SC, Gibbard, PL, Fan, J-X. 2013;updated. The ICS International Chronostratigraphic Chart. Episodes 36:199204.CrossRefGoogle Scholar
Cunningham, JA, Rücklin, M, Blom, H, Botella, J, Donoghue, PCJ. 2012. Testing models of dental development in the earliest bony vertebrates, Andreolepis and Lophosteus. Biol Lett 8:833837.Google Scholar
Darby, DG. 1982. The early vertebrate Astraspis, habitat based upon lithological association. J Paleo 56:11871196.Google Scholar
Darton, NH. 1907. Fish remains in Ordovician rocks in Big Horn Mountains, Wyoming, with resume of Ordovician geology of the Northwest. Bull Geol Soc America 17:541566.Google Scholar
Darton, NH. 1909. Discovery of fish remains in the Ordovician of the Black Hills, South Dakota. Bull Geol Soc America 19:567568.Google Scholar
Davies, NS, Sansom, IJ. 2009. Ordovician vertebrate habitats: A Gondwanan perspective. Palaios 24:717722.Google Scholar
Dean, B. 1906. Chimaeroid fishes and their development. Carnegie Inst Washington, Pub 32:1194.Google Scholar
Denison, RH. 1967. Ordovician vertebrates from the western United States. Fieldiana: Geol 16:131192.Google Scholar
Donoghue, PCJ, Keating, JN. 2014. Early vertebrate evolution. Palaeontology 57:879893.Google Scholar
Donoghue, PCJ, Smith, MP. 2001. The anatomy of Turinia pagei (Powrie) and the phylogenetic status of the Thelodonti. Trans R Soc Edinburgh: Earth Sci 92: 537.Google Scholar
Dupret, V, Sanchez, D, Goujet, D, Tafforeau, P, Ahlberg, PE. 2014. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507:500503.Google Scholar
Eliuk, LS. 1973. Middle Ordovician fishing-bearing beds from the St. Lawrence Lowlands of Quebec. Can J Earth Sci 10:954960.Google Scholar
Elliott, DK. 1987. A reassessment of Astraspis desiderata, the oldest North American vertebrate. Science 237: 190192.Google Scholar
Elliott, DK, Blieck, A, Gagnier, P-Y. 1991. Ordovician vertebrates. In: Barnes, CR, Williams, SH, editors. Advances in Ordovician Geology. Paper Geol Surv Canada 90–9:3106.Google Scholar
Erdtmann, BD, Weber, B, Schultze, H-P, Egenhoff, S. 2000. A possible agnathan plate from the Lower Arenig (Lower Ordovician) of south Bolivia. J Vert Paleo 20:394399.Google Scholar
Friedman, M, Sallan, LC. 2012. Five hundred million years of extinction and recovery: A Phanerozoic survey of large-scale diversity patterns in fishes. Palaeontology 55:707742.Google Scholar
Gabbott, SE, Browning, C, Theron, JN, Whittle, RJ. 2016. The late Ordovician Soom Shale Lagerstätte: An extraordinary post-glacial fossil and sedimentary record. J Geol Soc 174:19.Google Scholar
Gagnier, P-Y. 1989. The oldest vertebrate: A 470-million-year-old fish, Sacabambaspis janvieri, from the Ordovician of Bolivia. Nat Geograph Res 5:250253.Google Scholar
Gagnier, P-Y. 1993a. Sacabambaspis janvieri, Vertébré ordovicien de Bolivie. 1, Analyse morphologique. Ann Paléontol 79:1969.Google Scholar
Gagnier, P-Y. 1993b. Sacabambaspis janvieri, vertébré Ordovicien de Bolivie: 2: analyse phylogénétique. Ann Paléontol 79:119166.Google Scholar
Gagnier, P-Y, Blieck, A. 1992, On Sacabambaspis janvieri and the vertebrate diversity in Ordovician seas. In: Mark-Kurik, E, editor. Fossil Fishes as Living Animals. Tallinn: Academy of Sciences of Estonia. pp. 920.Google Scholar
Gagnier, P-Y, Blieck, A, Rodrigo, G. 1986. First Ordovician vertebrate from South America. Geobios 19:629634.Google Scholar
Gagnier, P-Y, Wilson, MVH. 1996. Early Devonian acanthodians from Northern Canada. Palaeontology 39:241258.Google Scholar
Giles, S, Friedman, M, Brazeau, MD. 2015. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature 520: 8285.Google Scholar
Giles, S, Rücklin, M, Donoghue, PCJ. 2013. Histology of ‘placoderm’ dermal skeletons: Implications for the nature of the ancestral gnathostome. J Morph 274:627644.Google Scholar
Gill, BC, Lyons, TW, Young, SA, Kump, LR, Knoll, AH, Saltzman, MR. 2011. Geochemical evidence for widespread euxinia in the Late Cambrian ocean. Nature 469: 8083.Google Scholar
Gross, W. 1968. Fragliche Actinopterygier-Schuppen aus dem Silur Gotlands. Lethaia 1:184218.Google Scholar
Hanke, GF. 2008. Promesacanthus eppleri n. gen., n. sp., a mesacanthid (Acanthodii, Acanthodiformes) from the Lower Devonian of northern Canada. Geodiversitas 30:287302.Google Scholar
Hanke, GF, Wilson, MVH. 2006. Anatomy of the Early Devonian acanthodian Brochoadmones milesi based on nearly complete body fossils, with comments on the evolution and development of paired fins. J Vert Paleo 26:526537.Google Scholar
Haq, BU, Schutter, SR. 2008. A chronology of Paleozoic sea-level changes. Science 322: 6468.Google Scholar
Heward, AP, Booth, GA, Fortey, RA, Miller, CG, Sansom, IJ. 2016. Darriwilian shallow-marine deposits from The Sultanate of Oman, a poorly known portion of the Arabian margin of Gondwana. Geol Mag 1–26.Google Scholar
Jablonski, D. 1991. Extinctions: A paleontological perspective. Science 253: 754757.Google Scholar
Janvier, P. 1996. The dawn of the vertebrates: characters versus common ascent in the rise of current vertebrate phylogenies. Palaeontology 39: 259287.Google Scholar
Janvier, P, Suárez-Riglos, M. 1986. The Silurian and Devonian vertebrates of Bolivia. Bull l’Instit Français d’Etud Andines 15: 73114.Google Scholar
Karatajūtė-Talimaa, VN. 1973. Elegestolepis grossi gen. et sp. nov., ein neuer Typ der Placoidschuppe aus dem Oberen Silur der Tuwa. Palaeontograph Abt. A 143:3550.Google Scholar
Karatajūtė-Talimaa, VN. 1992. The early stages of dermal skeleton formation in chondrichthyans. In: Mark-Kurik, E, editor. Fossil Fishes as Living Animals. Tallinn: Academy of Sciences of Estonia. pp. 223231.Google Scholar
Karatajūtė-Talimaa, VN. 1997. Taxonomy of loganiid thelodonts. Mod Geol 21: 115.Google Scholar
Karatajūtė-Talimaa, VN. 1998. Determination methods for the exoskeletal remains of early vertebrates. Mitt Museum Naturk Berlin, Geowiss Reihe 1:2151.Google Scholar
Karatajūtė-Talimaa, VN, Novitskaya, L. 1992. Teslepis – a new representative of mongolepid elasmobranchs from the Lower Silurian of Mongolia. Paleontol Zhurnal 1992: 3646.Google Scholar
Karatajūtė-Talimaa, VN, Novitskaya, L. 1997. Sodolepis – a new representative of Mongolepidida (Chondrichthyes?) from the Lower Silurian of Mongolia. Paleontol Zhurnal 1997 : 96103.Google Scholar
Karatajūtė-Talimaa, VN, Novitskaya, L, Rozman, KS, Sodov, Z. 1990. Mongolepis – A new lower Silurian genus of elasmobranchs from Mongolia. Paleontol Zhurnal 1990 : 7686.Google Scholar
Karatajūtė-Talimaa, VN, Smith, MM. 2003. Early acanthodians from the Lower Silurian of Asia. Trans R Soc Edinburgh: Earth Sci 93:277299.Google Scholar
Keating, JN, Marquart, CL, Donoghue, PCJ. 2015. Histology of the heterostracan dermal skeleton: Insight into the origin of the vertebrate mineralized skeleton. J Morph 276: 657680.Google Scholar
King, B, Qiao, T, Lee, MSY, Zhu, M, Long, JA. 2016. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol 66: 488516.Google Scholar
Lapworth, C. 1879. On the tripartite classification of the lower Palaeozoic rocks. Geol Mag 6:115.Google Scholar
Lehtola, KA. 1973. Ordovician vertebrates from Ontario. Contrib Mus Paleo Univ Michigan 24: 2330.Google Scholar
Lehtola, KA. 1983. Articulated Ordovician fish from Canon City, Colorado. J Paleo 57:605607.Google Scholar
Long, JA, Mark-Kurik, E, Johanson, Z, Lee, MSY, Young, GC, Min, Z, Ahlberg, PE, Newman, M, Jones, R, Den Blaauwen, J, Choo, B, Trinajstic, K. 2015. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517: 196199.Google Scholar
Märss, T, Karatajūtē-Talimaa, VN. 2002. Ordovician and Lower Silurian thelodonts from Severnaya Zemlya Archipelago (Russia). Geodiversitas 24: 381404.Google Scholar
Miller, RF, Cloutier, R, Turner, S. 2003. The oldest articulated chondrichthyan from the early Devonian period. Nature 425: 501504.Google Scholar
Ørvig, T. 1958 Pycnaspis splendens, new genus, new species, a new ostracoderm from the upper Ordovician of North America. Proc US Natl Mus 108:123.Google Scholar
Ossian, CR, Halseth, MA. 1976. Discovery of Ordovician vertebrates in the Arbuckle Mountains of Oklahoma. J Paleo 50:773777.Google Scholar
Palmer, TJ, Hudson, JD, Wilson, MA. 1988. Palaeoecological evidence for early aragonite dissolution in ancient calcite seas. Nature 335: 809810.Google Scholar
Pander, CH. 1856. Monographie der fossilen Fische des silurischen Systems der Russisch-Baltischen Gouvernements. Mem Akad Wiss, St Petersburg.Google Scholar
Pradel, A, Maisey, JG, Tafforeau, P, Mapes, RH, Mallatt, J. 2014. A Palaeozoic shark with osteichthyan-like branchial arches. Nature 509:608611.Google Scholar
Pradel, A, Sansom, IJ, Gagnier, P-Y, Cespedes, R, Janvier, P. 2007. The tail of the Ordovician fish Sacabambaspis. Biol Lett 3:7275.Google Scholar
Qu, Q, Blom, H, Ahlberg, PE. 2015. Three‐dimensional virtual histology of Silurian osteostracan scales revealed by synchrotron radiation microtomography. J Morph 276:873888.Google Scholar
Qu, Q, Sanchez, S, Blom, H, Tafforeau, P, Ahlberg, PE. 2013. Scales and tooth whorls of ancient fishes challenge distinction between external and oral ‘teeth’. PloS One 8: e71890.Google Scholar
Qu, Q, Sanchez, S, Zhu, M, Blom, H, Ahlberg, PE. 2016. The origin of novel features by changes in developmental mechanisms: Ontogeny and three‐dimensional microanatomy of polyodontode scales of two early osteichthyans. Biol Rev 92:11891212.Google Scholar
Randle, E, Sansom, RS. 2016. Exploring phylogenetic relationships of Pteraspidiformes heterostracans (stem-gnathostomes) using continuous and discrete characters. J Syst Palaeo 15:583599.Google Scholar
Ritchie, A. 1985. Arandaspis prionotolepis the Southern four-eyed fish. In: Rich, PV, van Tets, GF, editors. Kadimakara: Extinct Vertebrates of Australia. Princeton: Princeton University Press. pp. 95101.Google Scholar
Ritchie, A, Gilbert-Tomlinson, J. 1977. First Ordovician vertebrates from the Southern Hemisphere. Alcheringa 1: 351368.Google Scholar
Ross, RJ Jr 1957. Ordovician fossils from wells in the Williston Basin, eastern Montana. US Geol Surv Bull 1021-M:439–510.Google Scholar
Rücklin, M, Donoghue, PCJ. 2015. Romundina and the evolutionary origin of teeth. Biol Lett 11:20150326.Google Scholar
Saltzman, MR, Young, SA, Kump, LR, Gill, BC, Lyons, TW, Runnegar, B. 2011. Pulse of atmospheric oxygen during the late Cambrian. Proc Natl Acad Sci USA 108:38763881.CrossRefGoogle ScholarPubMed
Sansom, IJ, Davies, NS, Coates, MI, Nicoll, RS, Ritchie, A. 2012. Chondrichthyan-like scales from the Middle Ordovician of Australia. Palaeontology 55: 243247.Google Scholar
Sansom, IJ, Donoghue, PCJ, Albanesi, G. 2005b. Histology and affinity of the earliest armoured vertebrate. Biol Lett 1: 446449.Google Scholar
Sansom, IJ, Elliott, DK. 2002. Thelodonts from the Ordovician of Canada. J Vert Paleo 22: 867870Google Scholar
Sansom, IJ, Haines, PW, Andreev, P, Nicoll, RS. 2013. A new pteraspidomorph from the Nibil Formation (Katian, Late Ordovician) of the Canning Basin, Western Australia. J Vert Paleo 33:764769.Google Scholar
Sansom, IJ, Miller, CG, Heward, A, Davies, NS, Booth, GA, Fortey, RA, Paris, F. 2009. Ordovician fish from the Arabian Peninsula. Palaeontology 52:337342.Google Scholar
Sansom, IJ, Smith, MP. 2005. Late Ordovician vertebrates from the Bighorn Mountains of Wyoming, USA. Palaeontology 48: 3148.Google Scholar
Sansom, IJ, Smith, MM, Smith, MP. 2001. The Ordovician radiation of vertebrates. In: Ahlberg, PE, editor. Major Events in Early Vertebrate Evolution: Palaeontology, Phylogeny, Genetics and Development. Systematics Association Special Volume Series. pp. 156171.Google Scholar
Sansom, IJ, Smith, MP, Smith, MM, Turner, P. 1997. Astraspis: The anatomy and histology of an Ordovician fish. Palaeontology 40:625642.Google Scholar
Sansom, IJ, Wang, N-Z, Smith, MM. 2005a. The histology and affinities of sinacanthid fishes: Primitive gnathostomes from the Silurian of China. Z J Linn Soc. 144:379386.Google Scholar
Sansom, RS, Freedman, K, Gabbott, SE, Aldridge, RJ, Purnell, MA. 2010. Taphonomy and affinity of an enigmatic Silurian vertebrate, Jamoytius kerwoodi White. Palaeontology 53:13931409.Google Scholar
Sansom, RS, Randle, E, Donoghue, PCJ. 2015. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history. Proc R Soc London B 282:20142245.Google Scholar
Servais, T, Owen, AW, Harper, DAT, Kröger, B, Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): The palaeoecological dimension. Palaeogeog Palaeoclim Palaeoecol 294:99119.Google Scholar
Servais, T, Perrier, V, Danelian, T, Klug, C, Martin, R, Munnecke, A, Nowak, H, Nützel, A, Vandenbroucke, TRA, Williams, M, Rasmussen, CMØ. 2016. The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian. Palaeogeog Palaeoclim Palaeoecol 458:1834.Google Scholar
Smith, MM, Hall, BK. 1990. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev 65:277373.Google Scholar
Smith, MM, Sansom, IJ. 1997. Exoskeletal micro-remains of an Ordovician fish from the Harding Sandstone of Colorado. Palaeontology 40: 645658.Google Scholar
Smith, MP, Donoghue, PCJ, Sansom, IJ. 2002. The spatial and temporal diversification of Early Palaeozoic vertebrates. In: Crame, JA, Owen, AW, editors. Palaeobiogeography and Biodiversity Change: The Ordovician and Mesozoic–Cenozoic Radiations. Geol Soc London Spec Pubs 194:6983.Google Scholar
Swofford, DL. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Massachusetts: Sinauer Associates, Sunderland.Google Scholar
Trotter, JA, Williams, IS, Barnes, CR, Lecuyer, C, Nicoll, RS. 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science 321: 550554.Google Scholar
Turner, S, Blieck, A, Nowlan, GS. 2004. Vertebrates (agnathans and gnathostomes). In: Webby, BD, Paris, F, Droser, ML, Percival, IG, editors. The Great Ordovician Biodiversification Event. New York: Columbia University Press. pp. 327335.Google Scholar
Walcott, CD. 1892. Notes on the discovery of a vertebrate fauna in Silurian (Ordovician) strata. Geol Soc Amer Bull 3: 153172.Google Scholar
Yochelson, EL. 1983. Walcott’s discovery of Middle Ordovician vertebrates. Earth Sci Hist 2: 6675.Google Scholar
Young, GC. 1997. Ordovician microvertebrate remains from the Amadeus Basin, central Australia. J Vert Paleo 17:125.Google Scholar
Young, GC. 2009. An Ordovician vertebrate from western New South Wales, with comments on Cambro-Ordovician vertebrate distribution patterns. Alcheringa 33:7989.Google Scholar
Zhao, WJ, Zhu, M. 2015. A review of Silurian fishes from Yunnan, China and related biostratigraphy. Palaeoworld 24: 243250.Google Scholar
Zhu, M., Ahlberg, PE, Pan, Z, Zhu, Y, Qiao, T, Zhao, W, Jia, L, and Lu, J. (2016) A Silurian maxillate placoderm illuminates jaw evolution. Science 354:334336.Google Scholar
Zhu, M, Yu, X, Ahlberg, PE, Choo, B, Lu, J, Qiao, T, Qu, QM, Zhao, W, Jia, L, Blom, H. 2013. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502:188193.Google Scholar
Zhu, M, Yu, X, Janvier, P. 1999. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397:607610.Google Scholar
Zhu, M, Zhao, WJ, Jia, LT, Lu, J, Qiao, T, Qu, QM. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458: 469474.Google Scholar
Žigaitė, Ž, Karatajūtė-Talimaa, VN, Blieck, A. 2011. Vertebrate microremains from the Lower Silurian of Siberia and Central Asia: Palaeobiodiversity and palaeobiogeography. J Micropalaeo 30:97106.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×