Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T22:36:28.392Z Has data issue: false hasContentIssue false

7 - Invertebrates

from IIb - Escape decisions prior to pursuit

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 177 - 196
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, T., Tominaga, O., Seikai, T. & Masuda, R. (2007). Observational learning improves predator avoidance in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles. Journal of Sea Research, 58, 5964.Google Scholar
Bateman, P. W. & Fleming, P. A. (2005). Direct and indirect costs of limb autotomy in field crickets Gryllus bimaculatus. Animal Behaviour, 69, 151159.Google Scholar
Bateman, P. W. & Fleming, P. A. (2006a). Increased susceptibility to predation for autotomized house crickets (Acheta domestica). Ethology, 112, 670677.Google Scholar
Bateman, P. W. & Fleming, P. A. (2006b). Sex, intimidation and severed limbs: The effect of simulated predator attack and limb autotomy on calling behavior and level of caution in the field cricket Gryllus bimaculatus. Behavioral Ecology and Sociobiology, 59, 674681.Google Scholar
Bateman, P. W. & Fleming, P. A. (2008). An intra-and inter-specific study of body size and autotomy as a defense in Orthoptera. Journal of Orthoptera Research, 17, 315320.Google Scholar
Bateman, P. W. & Fleming, P. A. (2011). Failure to launch? The influence of limb autotomy on the escape behavior of a semiaquatic grasshopper Paroxya atlantica (Acrididae). Behavioral Ecology, 22, 763768.Google Scholar
Bateman, P. W. & Fleming, P. A. (2013a). The influence of web silk decorations on fleeing behaviour of Florida orb weaver spiders, Argiope florida (Aranaeidae). Canadian Journal of Zoology, 91, 468472.Google Scholar
Bateman, P. W. & Fleming, P. A. (2013b). Signaling or not-signaling: variation in vulnerability and defense tactics of armored ground crickets (Acanthoplus speiseri: Orthoptera, Tettigoniidae, Hetrodinae). Journal of Insect Behavior, 26, 1422.Google Scholar
Bateman, P. W. & Fleming, P. A. (2014). Switching to Plan B: changes in the escape tactics of two grasshopper species (Acrididae: Orthoptera) under repeated predatory approaches. Behavioral Ecology and Sociobiology, 68, 457465.Google Scholar
Bellman, K. L. & Krasne, F. B. (1983). Adaptive complexity of interactions between feeding and escape in crayfish. Science, 221, 779781.Google Scholar
Ben-Ari, M. & Inbar, M.(2013). When herbivores eat predators: Predatory insects effectively avoid incidental ingestion by mammalian herbivores. PloS ONE, 8, e56748.Google Scholar
Briffa, M. & Twyman, C. (2011). Do I stand out or blend in? Conspicuousness awareness and consistent behavioural differences in hermit crabs. Biology Letters, 7, 330332.Google Scholar
Camhi, J. M. (1969). Locust wind receptors I. Transducer mechanics and sensory response. Journal of Experimental Biology, 50, 335348.Google Scholar
Card, G. M. (2012). Escape behaviors in insects. Current Opinion in Neurobiology, 22, 180186.Google Scholar
Castellanos, I., Barbosa, P., Zuria, I., Tammaru, T. & Christman, M. C. (2011). Contact with caterpillar hairs triggers predator-specific defensive responses. Behavioral Ecology, 22, 10201025.Google Scholar
Chan, A. A. Y.-H., Giraldo-Perez, P., Smith, S. & Blumstein, D. T. (2010). Anthropogenic noise affects risk assessment and attention: The distracted prey hypothesis. Biology Letters, 6, 458461.Google Scholar
Chappell, M. A. & Whitman, D. W. (1990). Grasshopper thermoregulation. In Chapman, R. F. & Joern, A. (eds.) Biology of Grasshoppers. New York: Wiley.Google Scholar
Cooper, W. E. Jr. (2006). Risk factors and escape strategy in the grasshopper Dissosteira carolina. Behaviour, 143, 12011218.Google Scholar
Cooper, W. E. Jr. & Frederick, W. G. (2010). Predator lethality, optimal escape behavior, and autotomy. Behavioral Ecology, 21, 9196.Google Scholar
Corcoran, A. J., Wagner, R. D. & Conner, W. E. (2013). Optimal predator risk assessment by the sonar-jamming Arctiine moth Bertholdia trigona. PloS one, 8, e63609.Google Scholar
Dill, L. & Fraser, A. (1997). The worm re-turns: Hiding behaviour a tube-dwelling marine polychaete, Serpula vermicularis. Behavioral Ecology, 8, 186193.Google Scholar
Dill, L. M. & Gillett, J. F. (1991). The economic logic of barnacle Balanus glandula (Darwin) hiding behavior. Journal of Experimental Marine Biology and Ecology, 153, 115127.Google Scholar
Dill, L. M. & Ydenberg, R. C. (1987). The group size-flight distance relationship in water striders (Gerris remigis). Canadian Journal of Zoology, 65, 223226.Google Scholar
Dill, L. M., Fraser, A. H. G. & Roitberg, B. D. (1990). The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia, 83, 473478.Google Scholar
Domenici, P., Booth, D., Blagburn, J. M. & Bacon, J. P. (2008). Cockroaches keep predators guessing by using preferred escape trajectories. Current Biology, 18, 17921796.Google Scholar
Dukas, R. (1998). Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. University of Chicago Press.Google Scholar
Edmunds, M. (1974). Defence in Animals: A Survey of Anti-predatory Defences. Burnt Mill, Harlow: Longman.Google Scholar
Fleming, P. A. & Bateman, P. W. (2007). Just drop it and run: The effect of limb autotomy on running distance and locomotion energetics of field crickets (Gryllus bimaculatus). Journal of Experimental Biology, 210, 14461454.Google Scholar
Fleming, P. A., Muller, D. L. & Bateman, P. W. (2007). Leave it all behind: A taxonomic perspective of autotomy in invertebrates. Biological Reviews, 82, 481510.Google Scholar
Gish, M., Dafni, A. & Inbar, M. (2010). Mammalian herbivore breath alerts aphids to flee host plant. Current Biology, 20, R628R629.Google Scholar
Gish, M., Dafni, A. & Inbar, M. (2011). Avoiding incidental predation by mammalian herbivores: Accurate detection and efficient response in aphids. Naturwissenschaften, 98, 731738.Google Scholar
Gras, H. & Hörner, M. (1992). Wind-evoked escape running of the cricket, Gryllus bimaculatus. I. Behavioural analysis. Journal of Experimental Biology, 171, 189214.Google Scholar
Guderley, H. & Tremblay, I. (2013). Escape responses by jet propulsion in scallops. Canadian Journal of Zoology, 91, 420430.Google Scholar
Gyssels, F. G. M. & Stoks, R. (2005). Threat-sensitive responses to predator attacks in a damselfly. Ethology, 111, 411423.Google Scholar
Hassenstein, B. & Hustert, R. (1999). Hiding responses of locusts to approaching objects. Journal of Experimental Biology, 202, 17011710.Google Scholar
Hatle, J. D. & Faragher, S. G. (1998). Slow movement increases the survivorship of a chemically defended grasshopper in predatory encounters. Oecologia, 115, 260267.Google Scholar
Hedrick, A. V. (2000). Crickets with extravagant mating songs compensate for predation risk with extra caution. Proceedings of the Royal Society of London Series B-Biological Sciences, 267, 671675.Google Scholar
Hemmi, J. M. (2005a). Predator avoidance in fiddler crabs: 1. Escape decisions in relation to the risk of predation. Animal Behaviour, 69, 603614.Google Scholar
Hemmi, J. M. (2005b). Predator avoidance in fiddler crabs: 2. The visual cues. Animal Behaviour, 69, 615625.Google Scholar
Hemmi, J. M. & Pfeil, A.(2010). A multi-stage anti-predator response increases information on predation risk. Journal of Experimental Biology, 213, 14841489.Google Scholar
Hochachka, P. W. & Somero, G. N.(2002). Biochemical Adaptation: Mechanism and Process in Physiological Evolution. New York: Oxford University Press.Google Scholar
Holmes, S. J. (1906). Death-feigning in Ranatra. Journal of Comparative Neurology and Psychology, 16, 200216.Google Scholar
Hugie, D. M. (2003). The waiting game: a “battle of waits” between predator and prey. Behavioral Ecology, 14, 807817.Google Scholar
Humphries, D. A. & Driver, P. M. (1970). Protean defence by prey animals. Oecologia, 5, 285302.Google Scholar
Javůrková, V., Šizling, A. L., Kreisinger, J. & Albrecht, T. (2012). An alternative theoretical approach to escape decision-making: the role of visual cues. PloS one, 7, e32522.Google Scholar
Jones, K. A., Jackson, A. L. & Ruxton, G. D. (2011). Prey jitters; protean behaviour in grouped prey. Behavioral Ecology, 22, 831836.Google Scholar
Juanes, F. & Smith, L. (1995). The ecological consequences of limb damage and loss in decapod crustaceans: A review and prospectus. Journal of Experimental Marine Biology and Ecology, 193, 197223.Google Scholar
Kral, K. (2010). Escape behaviour in blue-winged grasshoppers, Oedipoda caerulescens. Physiological Entomology, 35, 240248.Google Scholar
Krause, J. & Ruxton, G. D. (2002). Living in Groups. Oxford University Press.Google Scholar
Lagerspetz, K. Y. & Vainio, L. A.(2006). Thermal behaviour of crustaceans. Biological Reviews, 81, 237258.Google Scholar
Lagerspetz, K. Y. H. & Kivivuori, L.(1970). The rate and retention of the habituation of the shadow reflex in Balanus improvisus (Cirripedia). Animal Behaviour, 18, 616620.Google Scholar
Lazzari, C. & Varjú, D. (1990). Visual lateral fixation and tracking in the haematophagous bug Triatoma infestans. Journal of Comparative Physiology A, 167, 527531.Google Scholar
Lee, S.-I., Hwang, S., Joe, Y.-E. et al. (2013). Direct look from a predator shortens the risk-assessment time by prey. PloS ONE, 8, e64977.Google Scholar
Lewkiewicz, D. A. & Zuk, M. (2004). Latency to resume calling after disturbance in the field cricket, Teleogryllus oceanicus, corresponds to population-level differences in parasitism risk. Behavioral Ecology and Sociobiology, 55, 569573.Google Scholar
Losey, J. E. & Denno, R. F. (1998). The escape response of pea aphids to foliar-foraging predators: Factors affecting dropping behaviour. Ecological Entomology, 23, 5361.Google Scholar
Martín, J. & Pilar, L. (2014). Hiding time in refuge. In Cooper, W. E. Jr. & Blumstein, D. T. (eds.) Escaping from Predators: An Integrative View of Escape Decisions. Chapter 9.Google Scholar
McGinley, R. H., Prenter, J. & Taylor, P. W. (2013). Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): Links with morphology and between performance traits. Biological Journal of the Linnean Society, 110, 644657.Google Scholar
McPeek, M. A., Schrot, A. K. & Brown, J. M. (1996). Adaptation to predators in a new community: Swimming performance and predator avoidance in damselflies. Ecology, 77, 617629.Google Scholar
Miller, L. A. & Olesen, J. (1979). Avoidance behavior in green lacewings. Journal of Comparative Physiology, 131, 113120.Google Scholar
Miller, L. A. & Surlykke, A. (2001). How some insects detect and avoid being eaten by bats: Tactics and countertactics of prey and predator. BioScience, 51, 570581.Google Scholar
Mima, A., Wada, S. & Goshima, S. (2003). Antipredator defence of the hermit crab Pagurus filholi induced by predatory crabs. Oikos, 102, 104110.Google Scholar
Miyatake, T. (2001). Diurnal periodicity of death-feigning in Cylas formicarius (Coleoptera: Brentidae). Journal of Insect Behavior, 14, 421432.Google Scholar
Nelson, M. K. & Formanowicz, D. R. Jr. (2005). Relationship between escape speed and flight distance in a wolf spider, Hogna carolinensis (Walckenaer 1805). Journal of Arachnology, 33, 153158.Google Scholar
Ohno, T. & Miyatake, T. (2007). Drop or fly? Negative genetic correlation between death-feigning intensity and flying ability as alternative anti-predator strategies. Proceedings of the Royal Society B: Biological Sciences, 274, 555560.Google Scholar
Peck, L. S., Webb, K. E. & Bailey, D. M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology, 18, 625630.Google Scholar
Ratcliffe, J. M., Fullard, J. H., Arthur, B. J. & Hoy, R. R. (2011). Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proceedings of the Royal Society B: Biological Sciences, 278, 364370.Google Scholar
Reaney, L. T. & Backwell, P. R. Y. (2007). Risk-taking behavior predicts aggression and mating success in a fiddler crab. Behavioral Ecology, 18, 521525.Google Scholar
Riechert, S. E. & Hedrick, A. V. (1990). Levels of predation and genetically based anti-predator behaviour in the spider, Agelenopsis aperta. Animal Behaviour, 40, 679687.Google Scholar
Rind, F. C. & Simmons, P. J. (1992). Orthopteran DCMD neuron: a reevaluation of responses to moving objects. I. Selective responses to approaching objects. Journal of Neurophysiology, 68, 16541666.Google Scholar
Robinson, M. H., Abele, L. G. & Robinson, B.(1970). Attack autotomy: A defence against predators. Science, 169, 301302.Google Scholar
Rodríguez-Prieto, I., Fernández-Juricic, E. & Martín, J. (2006). Anti-predator behavioral responses of mosquito pupae to aerial predation risk. Journal of Insect Behavior, 19, 373381.Google Scholar
Rosen, M. J., Levin, E. C. & Hoy, R. R. (2009). The cost of assuming the life history of a host: acoustic startle in the parasitoid fly Ormia ochracea. Journal of Experimental Biology, 212, 40564064.Google Scholar
Scarratt, A. M. & Godin, J.-G. J. (1992). Foraging and antipredator decisions in the hermit crab Pagurus acadianus (Benedict). Journal of Experimental Marine Biology and Ecology, 156, 225238.Google Scholar
Scrimgeour, G. J. & Culp, J. M. (1994). Foraging and evading predators: The effect of predator species on a behavioural trade-off by a lotic mayfly. Oikos, 7179.Google Scholar
Scrimgeour, G. J., Culp, J. M. & Wrona, F. J. (1994). Feeding while avoiding predators: evidence for a size-specific trade-off by a lotic mayfly. Journal of the North American Benthological Society, 368378.Google Scholar
Sih, A. (1986). Antipredator responses and the perception of danger by mosquito larvae. Ecology, 434441.Google Scholar
Stoks, R. (1998). Effect of lamellae autotomy on survival and foraging success of the damselfly Lestes sponsa (Odonata: Lestidae). Oecologia, 117, 443448.Google Scholar
Stoks, R. (1999). Autotomy shapes the trade-off between seeking cover and foraging in larval damselflies. Behavioral Ecology and Sociobiology, 47, 7075.Google Scholar
Treherne, J. E. & Foster, W. A. (1981). Group transmission of predator avoidance behaviour in a marine insect: The Trafalgar effect. Animal Behaviour, 29, 911917.Google Scholar
Uetz, G. W., Boyle, J., Hieber, C. S. & Wilcox, R. S. (2002). Antipredator benefits of group living in colonial web-building spiders: the “early warning” effect. Animal Behaviour, 63, 445452.Google Scholar
Weyel, W. & Wegener, G. (1996). Adenine nucleotide metabolism during anoxia and postanoxic recovery in insects. Experientia, 52, 474480.Google Scholar
Wong, B. B. M., Bibeau, C., Bishop, K. A. & Rosenthal, G. G. (2005). Response to perceived predation threat in fiddler crabs: trust thy neighbor as thyself?Behavioral Ecology and Sociobiology, 58, 345350.Google Scholar
Zuk, M. & Kolluru, G. R. (1998). Exploitation of sexual signals by predators and parasitoids. Quarterly Review of Biology, 73, 415443.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×