Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T14:59:34.190Z Has data issue: false hasContentIssue false

34 - Stable isotopes from diatom silica

from Part V - Other applications

Published online by Cambridge University Press:  05 June 2012

Melanie J. Leng
Affiliation:
NERC Isotope Geosciences Laboratory
George E. A. Swann
Affiliation:
NERC Isotope Geosciences Laboratory
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 575 - 589
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, C. M. O'D., Taylor, S., Delaney, J. S., Ma, P., & Herzog, G. F. (2002). Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules. Geochimica et Cosmochimica Acta, 66, 173–83.CrossRefGoogle Scholar
Alleman, L. Y., Cardinal, D., Cocquyt, C., et al. (2005). Silicon isotope fractionation in Lake Tanganyika and its main tributaries. Journal of Great Lakes Research, 31, 509–19.CrossRefGoogle Scholar
Altabet, M. A. & Francois, R. (1994). Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochemical Cycles, 8, 103–16.CrossRefGoogle Scholar
Barker, P. A., Street-Perrot, F. A., Leng, M. J., et al. (2001). A 14,000-year oxygen isotope record from diatom silica in two alpine lakes on Mt. Kenya. Science, 292, 2307–10.CrossRefGoogle ScholarPubMed
Basile-Doelsch, I., Meunier, J. D., & Parron, C. (2005). Another continental pool in the terrestrial silicon cycle. Nature, 433, 399–402.CrossRefGoogle ScholarPubMed
Bemis, B. E., Spero, H., Bijma, J., & Lea, D. W. (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography, 13, 150–60.CrossRefGoogle Scholar
Beucher, C. P., Brzezinski, M. A., & Crosta, X. (2007). Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Global Biogeochemical Cycles, 21, GB3015, DOI:10.1029/2006GB002746.CrossRefGoogle Scholar
Bidigare, R. R., Hanson, K. L., Buesseler, K. O., et al. (1999). Iron stimiulated change in 13C fractionation and export by equatorial Pacific phytoplankton: towards a paleogrowth rate proxy. Paleoceanography, 14, 589–95.CrossRefGoogle Scholar
Binz, P. (1987). Oxygen-isotope analysis on recent and fossil diatoms from Lake Walen and Lake Zurich (Switzerland) and its application on paleoclimatic studies. Unpublished Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.
Brandriss, M. E., O'Neil, J. R., Edlund, M. B., & Stoermer, E.F. (1998). Oxygen isotope fractionation between diatomaceous silica and water. Geochimica et Cosmochimica Acta, 62, 1119–25.CrossRefGoogle Scholar
Brewer, T. S., Leng, M. J., Mackay, A. W., et al. (2008). Unravelling contamination signals in biogenic silica oxygen isotope composition: the role of major and trace element geochemistry. Journal of Quaternary Science, 23, 321–30.CrossRefGoogle Scholar
Brunelle, B. G., Sigman, D. M., Cook, M. S., et al. (2007). Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22, DOI:10.1029/2005PA001205.CrossRefGoogle Scholar
Brzezinski, M. A., Jones, J. L., Beucher, C. P., & Demarest, M. S. (2006). Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate. Analytical Chemistry, 78, 6109–14.CrossRefGoogle ScholarPubMed
Brzezinski, M. A., Pride, C. J., Franck, V. M., et al. (2002). A switch from Si(OH)4 to NO3– depletion in the glacial Southern Ocean. Geophysical Research Letters, 29, 1564, DOI: 10.1029/2001GL014349.CrossRefGoogle Scholar
Burkhardt, S., Amoroso, G., Riebesell, U. & Sültemeyer, D. (2001). CO2 and HCO3− uptake in marine diatoms acclimated to different CO2 concentrations. Limnology and Oceanography, 46, 1378–91.CrossRefGoogle Scholar
Burkhardt, S., Riebesell, U., & Zondervan, I. (1999). Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta, 63, 3729–41.CrossRefGoogle Scholar
Cardinal, D., Alleman, L. Y., Jong, J., Ziegler, K., & André, L. (2003). Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. Journal of Analytical Atomic Spectrometry, 18, 213–18.CrossRefGoogle Scholar
Cardinal, D., Alleman, L. Y., Dehairs, F., et al. (2005). Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochemical Cycles, 18, GB2007, DOI: 10.1029/2004GB002364.Google Scholar
Chmeleff, J., Horn, I., Steinhoefel, G., & Blanckenburg, F. (2008). In situ determination of precise stable Si isotope ratios by UV-femtosecond laser ablation high-resolution multi-collector ICP-MS. Chemical Geology, 29, 155–66.CrossRefGoogle Scholar
Crespin, J., Alexandre, A., Sylvestre, F., et al. (2008). IR laser extraction technique applied to oxygen isotope analysis of small biogenic silica samples. Analytical Chemistry, 80, 2372–8.CrossRefGoogle ScholarPubMed
Crosta, X., Beucher, C., Pahnke, K., & Brzezinski, M. A. (2007). Silicic acid leakage from the Southern Ocean: opposing effects of nutrient uptake and oceanic circulation. Geophysical Research Letters, 34, L13601, DOI:10.1029/2006GL029083.CrossRefGoogle Scholar
Crosta, X. & Shemesh, A. (2002). Reconciling down core anticorrelation of diatom carbon and nitrogen isotopic ratios from the Southern Ocean. Paleoceanography, 17, 1010, DOI: 10.1029/2000PA000565.CrossRefGoogle Scholar
Crosta, X., Shemesh, A., Etourneau, J., et al. (2005). Nutrient cycling in the Indian sector of the Southern Ocean over the last 50,000 years. Global and Biogeochemical Cycles, 19, GB3007, DOI:10.1029/2004GB002344.CrossRefGoogle Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.CrossRefGoogle Scholar
Freitas, A. S. W., McCulloch, A. W., & McInnes, A. G. (1991). Recovery of silica from aqueous silicate solutions via trialkyl or tetraalkylammonium silicomolybdate, Canadian Journal of Chemistry, 69, 611–14.CrossRefGoogle Scholar
Rocha, C. L. (2002). Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochemistry, Geophysics, Geosystems, 3, DOI:10.1029/2002GC000310.Google Scholar
Rocha, C. L. (2006). Opal-based isotopic proxies of paleoenvironmental conditions. Global Biogeochemical Cycles, 20, GB4S09. DOI:10.1029/2005GB002664.Google Scholar
Rocha, C. L. & Bickle, M. J. (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology, 217, 267–82.CrossRefGoogle Scholar
Rocha, C. L., Brzezinski, M. A., & DeNiro, M. J. (1996). Purification, recovery and laser-driven fluorination of silicon from dissolved and particulate silica for the measurements of natural stable isotopes abundances. Analytical Chemistry, 68, 3746–50.CrossRefGoogle Scholar
Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. (1997). Fractionation of silicon isotopes by marine diatoms during biogenic silica formation. Geochimica et Cosmochimica Acta, 61, 5051–6.CrossRefGoogle Scholar
Rocha, C. L., Brzezinski, M. A. & DeNiro, M. J. (2000). A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64, 2467–77.CrossRefGoogle Scholar
Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., & Shemesh, A. (1998). Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395, 680–3.CrossRefGoogle Scholar
Ding, T., Jiang, S., Wan, D., et al. (1996). Silicon Isotope Geochemistry. Beijing: Geological Publishing House.Google Scholar
Dugdale, R. C., Lyle, M., Wilkerson, F. P., et al. (2004). Influence of equatorial diatom processes on Si deposition and atmospheric CO2 cycles at glacial/interglacial timescales. Paleoceanography, 19, PA3011: DOI:10.1029/2003PA000929.CrossRefGoogle Scholar
Duplessy, J. C., Lalou, C., & Vinot, A. C. (1970). Differential isotopic fractionation in benthic foraminifera and paleotemperatures revised. Science, 213, 1247–50.Google Scholar
Epstein, S. & Taylor, H. P. (1970a). The concentration and isotopic composition of hydrogen, carbon and silicon in Apollo 11 lunar rocks and minerals. Proceedings of the Apollo 11 Lunar Science Conference, 2, 1085–96.Google Scholar
Epstein, S. & Taylor, H. P. (1970b). Stable isotopes, rare gases, solar wind and spallation products. Science, 167, 533–5.CrossRefGoogle Scholar
Epstein, S. & Taylor, H. P. (1971). O18/O16, Si30/Si28, D/H and C13/C12 ratios in lunar samples. Proceedings of the Second Lunar Conference, 2, 1421–41.Google Scholar
Freeman, K. H. & Hayes, J. M. (1992). Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochemical Cycles, 6, 185–98.CrossRefGoogle ScholarPubMed
Georg, R. B., Reynolds, B. C., Frank, M., & Halliday, A. N. (2006a). Mechanisms controlling the silicon isotopic compositions of river waters. Earth and Planetary Science Letters, 249, 290–306.CrossRefGoogle Scholar
Georg, R. B., Reynolds, B. C., Frank, M., & Halliday, A. N. (2006b). New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS. Chemical Geology, 235, 95–104.CrossRefGoogle Scholar
Georg, R. B., Zhu, C., Reynolds, B. C., & Halliday, A. N. (2009). Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochimica et Cosmochimica Acta, 73, 2229–41.CrossRefGoogle Scholar
Giddings, J. C. (1985). A system based on split-flow lateral transport thin (SPLITT) separation cells for rapid and continuous particle fractionation. Separation Science and Technology, 20, 749–68.CrossRefGoogle Scholar
Haimson, M. & Knauth, L. P. (1983). Stepwise fluorination – a useful approach for the isotopic analysis of hydrous minerals. Geochimica et Cosmochimica Acta, 47, 1589–95.CrossRefGoogle Scholar
Haug, G. H., Ganopolski, A., Sigman, D. M., et al. (2005). North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433, 821–5.CrossRefGoogle ScholarPubMed
Hutchins, D. A. & Bruland, K. W. (1998). Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling zone. Nature, 393, 561–4.CrossRefGoogle Scholar
,IAEA/WMO (2006). Global network of isotopes in precipitation. The GNIP database. See http://www.iaea.org/water.
Jacot des Combes, H., Esper, O., Rocha, C. L., et al. (2008). Diatom δ13C, δ15N, and C/N since the last glacial maximum in the Southern Ocean: potential impact of species composition. Paleoceanography, 23, PA4209, DOI:10.1029/2008PA001589.CrossRefGoogle Scholar
Juillet, A. (1980a). Structure de la silice biogenique: nouvelles donnes apportees par l'analyse isotopique de l'oxygene. C. R. Academy of Science, Paris, 290D, 1237–9.Google Scholar
Juillet, A. (1980b). Analyse isotopique de la silice des diatomees lacustres et marines: fractionnement des isotopes de l'oxygene en fonction de la temperature. Thèse de troisième cycle, Université Paris-Sud XI.
Juillet-Leclerc, A. (1986). Cleaning process for diatomaceous samples. In Proceedings of the 8th Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books.Google Scholar
Juillet-Leclerc, A. & Labeyrie, L. (1987). Temperature dependence of the oxygen isotopic fractionation between diatom silica and water. Earth and Planetary Science Letters, 84, 69–74.CrossRefGoogle Scholar
Karsh, K. L., Trull, T. W., Lourey, M. J., & Sigman, D. M. (2003). Relationship of nitrogen isotope fractionation to phytoplankton size and iron availability during the Southern Ocean Iron RElease Experiment (SOIREE). Limnology and Oceanography, 48, 1058–68.CrossRefGoogle Scholar
King, L., Barker, P. A., & Grey, J. (2006). Organic inclusions in lacustrine diatom frustules as a host for carbon and nitrogen isotopes. Verhandlung der Internationalen Verein Limnologie, 29, 1608–10.Google Scholar
Knauth, L. P. (1973). Oxygen and hydrogen isotope ratios in cherts and related rocks. Unpublished Ph.D. thesis, California Institute of Technology.
Kröger, N., Deutzmann, R., & Sumper, M. (1999). Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286, 1129–32.Google ScholarPubMed
Kröger, N., Deutzmann, R., Bergsdorf, C., & Sumper, M. (2000). Species-specific polyamines from diatoms control silica morphology. Proceedings of the National Academy of Sciences of the USA, 97, 14,133–8.CrossRefGoogle ScholarPubMed
Kröger, N., Lorenz, S., Brunner, E., & Sumper, M. (2002). Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science, 298, 584–6.CrossRefGoogle ScholarPubMed
Labeyrie, L. D. (1974). New approach to surface seawater paleotemperatures using (18)O/(16)O ratios in silica of diatom frustules. Nature, 248, 40–2.CrossRefGoogle Scholar
Labeyrie, L. D. (1979). La composition isotopique de l'oxygene de la silice des valves de diatomees. Mise au point d'une nouvelle methode de palaeo-climatologie. Dissertation, Universitie de Paris XI.
Labeyrie, L. D. & Juillet, A. (1980). Isotopic exchange of the biogenic silica oxygen. Comptes Rendus Hebdomadaires des Seances de L'Academie des Sciences Serie D, 290, 1185–8.Google Scholar
Labeyrie, L. D. & Juillet, A. (1982). Oxygen isotopic exchangeability of diatom valve silica; interpretation and consequences for palaeoclimatic studies. Geochimica et Cosmochimica Acta, 46, 967–75.CrossRefGoogle Scholar
Lamb, A. L., Brewer, T. S., Leng, M. J., Sloane, H. J., & Lamb, H. F. (2007). A geochemical method for removing the effect of tephra on lake diatom oxygen isotope records. Journal of Paleolimnology, 37, 499–516.CrossRefGoogle Scholar
Lamb, A. L., Leng, M. J., Sloane, H. J., & Telford, R. J. (2005). A comparison of the palaeoclimatic signals from diatom oxygen isotope ratios and carbonate oxygen isotope ratios from a low latitude crater lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 290–302.CrossRefGoogle Scholar
Laws, E. A., Bidigare, R. R., & Popp, B. N. (1997). Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum. Limnology and Oceanography, 42, 1552–60.CrossRefGoogle Scholar
Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., & Macko, S. A. (1995). Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: theoretical considerations and experimental results. Geochimica et Cosmochimica Acta, 59, 1131–8.CrossRefGoogle Scholar
Leng, M. J. & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–31.CrossRefGoogle Scholar
Leng, M. J. & Barker, P. A. (2006). A review of the oxygen isotope composition of lacustrine diatom silica for palaeoclimate reconstruction. Earth Science Reviews, 75, 5–27.CrossRefGoogle Scholar
Leng, M. J., Barker, P. A., Greenwood, P., Roberts, N., & Reed, J. (2001). Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey. Journal of Paleolimnology, 25, 343–9.CrossRefGoogle Scholar
Leng, M. J., Metcalfe, S. E., & Davies, S. J. (2005). Investigating late Holocene climate variability in central Mexico using carbon isotope ratios in organic matter and oxygen isotope ratios from diatom silica within lacustrine sediments. Journal of Paleolimnology, 34, 413–31.CrossRefGoogle Scholar
Leng, M. J. & Sloane, H. J. (2008). Combined oxygen and silicon isotope analysis of biogenic silica. Journal of Quaternary Science, 23, 313–19.CrossRefGoogle Scholar
Lücke, A., Moschen, R., & Schleser, G.H. (2005). High temperature carbon reduction of silica: a novel approach for oxygen isotope analysis of biogenic opal. Geochimica et Cosmochimica Acta, 69, 1423–33.CrossRefGoogle Scholar
Matheney, R. K. & Knauth, L.P. (1989). Oxygen-isotope fractionation between marine biogenic silica and seawater. Geochimica et Cosmochimica Acta, 53, 3207–14.CrossRefGoogle Scholar
Matsumoto, K., Sarmiento, J. L., & Brzezinski, M. A. (2002). Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Global Biogeochemical Cycles, 16, 1031. DOI: 10.1029/2001GB001442.CrossRefGoogle Scholar
Milligan, A. J., Varela, D. E., Brzezinski, M. A., & Morel, F. M. M. (2004). Dynamics of silicon metabolism and silicon isotopic discrimination in a marine diatom as a function of pCO2. Limnology and Oceanography, 49, 322–9.CrossRefGoogle Scholar
Mopper, K. & Garlick, G. D. (1971). Oxygen isotope fractionation between biogenic silica and ocean water. Geochimica et Cosmochimica Acta, 35, 1185–7.CrossRefGoogle Scholar
Morel, F. M. M., Cox, E. H., Kraepiel, A. M. L., et al. (2002) Acquisition of inorganic carbon by the marine diatom Thalassiosira weissflogii. Functional Plant Biology, 29, 301–8.CrossRefGoogle Scholar
Morley, D. W., Leng, M. J., Mackay, A. W., et al. (2004). Cleaning of lake sediment samples for diatom oxygen isotope analysis. Journal of Paleolimnology, 31, 391–401.CrossRefGoogle Scholar
Morley, D. W., Leng, M. J., Mackay, A. W., & Sloane, H. J. (2005). Late glacial and Holocene environmental change in the Lake Baikal region documented by oxygen isotopes from diatom silica. Global and Planetary Change, 46, 221–33.CrossRefGoogle Scholar
Moschen, R., Lücke, A., Parplies, J., Radtke, U., & Schleser, G. H. (2006). Transfer and early diagenesis of biogenic silica oxygen isotope signals during settling and sedimentation of diatoms in a temperate freshwater lake (Lake Holzmaar, Germany). Geochimica et Cosmochimica Acta, 70, 4367–79.CrossRefGoogle Scholar
Moschen, R., Lücke, A., & Schleser, G. (2005). Sensitivity of biogenic silica oxygen isotopes to changes in surface water temperature and palaeoclimatology. Geophysical Research Letters, 32, L07708, DOI:10.1029/2004GL022167.CrossRefGoogle Scholar
Needoba, J. A. & Harrison, P. J. (2004). Influence of low light and a light:dark cycle on NO3– uptake, intracellular NO3–, and nitrogen isotope fractionation by marine phytoplankton. Journal of Phycology, 40, 505–16.CrossRefGoogle Scholar
Needoba, J. A., Waser, N. A., Harrison, P. J., & Calvert, S. E. (2003). Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Marine Ecology Progress Series, 255, 81–91.CrossRefGoogle Scholar
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., & Quéguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359–72.CrossRefGoogle Scholar
Popp, B. N., Laws, E. A., Bidigare, R. R., et al. (1998). Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta, 62, 69–77.CrossRefGoogle Scholar
Popp, B. N., Trull, T., Kenig, F., et al. (1999). Controls on the carbon isotopic composition of Southern Ocean phytoplankton. Global Biogeochemical Cycles, 13, 827–43.CrossRefGoogle Scholar
Rau, G. H., Riebesell, U., & Wolf-Gladrow, D. (1997) CO2aq-dependent photosynthetic 13C fractionation in the ocean: a model versus measurements. Global Biogeochemical Cycles, 11, 267–78.CrossRefGoogle Scholar
Reynolds, B. C., Aggarwal, J., Andre, L., et al. (2007). An inter-laboratory calibration of Si isotope reference materials. Journal of Analytical Atomic Spectrometry, 22, 561–8.CrossRefGoogle Scholar
Reynolds, B. C., Frank, M., & Halliday, A. N. (2006a). Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters, 244, 431–43.CrossRefGoogle Scholar
Reynolds, B. C., Georg, R. B., Oberli, F., Wiechert, U., & Halliday, A. N. (2006b). Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry, 21, 266–9.CrossRefGoogle Scholar
Riebesell, U., Burkhardt, S., Dauelsberg, A., & Kroon, B. (2000). Carbon isotope fractionation by a marine diatom: dependence on the growth-rate-limiting resource. Marine Ecology Progress Series, 193, 295–303.CrossRefGoogle Scholar
Rings, A., Lücke, A., & Schleser, G.H. (2004). A new method for the quantitative separation of diatom frustules from lake sediments. Limnology and Oceanography Methods, 2, 25–34.CrossRefGoogle Scholar
Robert, F. & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based in silicon isotopes in cherts. Nature, 443, 969–72.CrossRefGoogle ScholarPubMed
Roberts, K., Granum, E., Leegood, R. C., & Raven, J. A. (2007). Carbon acquisition by diatoms. Photosynthesis Research, 93, 79–88.CrossRefGoogle ScholarPubMed
Robinson, R. S., Brunelle, B. G., & Sigman, D. M. (2004). Revisiting nutrient utilisation in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography, 19, PA3001, DOI: 10.1029/2003PA000996.CrossRefGoogle Scholar
Robinson, R. S. & Sigman, D. M. (2008). Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic. Quaternary Science Reviews, 27, 1076–90.CrossRefGoogle Scholar
Robinson, R. S., Sigman, D. M., DiFiore, P. J., et al. (2005). Diatom-bound 15N/14N: new support for enhanced nutrient consumption in the ice age subantarcticPaleoceanography, 20, PA3003, DOI:10.1029/2004PA001114.CrossRefGoogle Scholar
Rosenthal, Y., Dahan, M., & Shemesh, A. (2000). Southern Ocean contributions to glacial-interglacial changes of atmospheric pCO2: an assessment of carbon isotope record in diatoms. Paleoceanography, 15, 65–75.CrossRefGoogle Scholar
Rosqvist, G., Jonsson, C., Yam, R., Karlén, W., & Shemesh, A. (2004). Diatom oxygen isotopes in pro-glacial lake sediments from northern Sweden: a 5000 year record of atmospheric circulation. Quaternary Science Reviews, 23, 851–9.CrossRefGoogle Scholar
Sancetta, C., Heusser, L., Labeyrie, L., Sathy Naidu, A., & Robinson, S. W. (1985). Wisconsin–Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Marine Geology, 62, 55–68.CrossRefGoogle Scholar
Schiff, C., Kaufman, D. S., Wolfe, A. P., Dodd, J., & Sharp, Z. (2009). Late Holocene storm-trajectory changes inferred from the oxygen isotope composition of lake diatoms, south Alaska. Journal of Paleolimnology, 41, 189–208.CrossRefGoogle Scholar
Schleser, G. H., Lücke, A., Moschen, R., & Rings, A. (2001). Separation of diatoms from sediment and oxygen isotope extraction from their siliceous valves: a new approach. Terra Nostra, 2001/3, 187–91.Google Scholar
Schmidt, M., Botz, R., Rickert, D., Bohrmann, G., Hall, S. R., & Mann, S. (2001). Oxygen isotope of marine diatoms and relations to opal-A maturation. Geochimica et Cosmochimica Acta, 65, 201–11.CrossRefGoogle Scholar
Schmidt, M., Botz, R., Stoffers, P., Anders, T., & Bohrmann, G. (1997). Oxygen isotopes in marine diatoms: a comparative study of analytical techniques and new results on the isotopic composition of recent marine diatoms. Geochimica et Cosmochimica Acta, 61, 2275–80.CrossRefGoogle Scholar
Schneider-Mor, A., Yam, R., Bianchi, C., et al. (2005). Diatom stable isotopes, sea ice presence and sea surface temperature records of the past 640 ka in the Atlantic sector of the Southern Ocean. Geophysical Research Letters, 32, L10704, DOI:10.1029/2005GL022543.CrossRefGoogle Scholar
Schneider-Mor, A., Yam, R., Bianchi, C., et al. (2008). Nutrient regime at the siliceous belt of the Atlantic sector of the Southern Ocean during the past 660 ka. Paleoceanography, 23, PA3217, DOI:10.1029/2007PA001466.CrossRefGoogle Scholar
Shemesh, A., Burckle, L. H., & Hays, J. D. (1994). Meltwater input to the Southern Ocean during the last glacial maximum. Science, 266, 1542–4.CrossRefGoogle ScholarPubMed
Shemesh, A., Burckle, L. H., & Hays, J. D. (1995). Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean. Paleoceanography, 10, 179–96.CrossRefGoogle Scholar
Shemesh, A., Charles, C. D., & Fairbanks, R. G. (1992). Oxygen isotopes in biogenic silica: global changes in ocean temperature and isotopic composition. Science, 256, 1434–6.CrossRefGoogle ScholarPubMed
Shemesh, A., Hodell, D., Crosta, C., Kanfoush, S., Charles, C. & Guilderson, T. (2002). Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleoceanography, 17, 1056, DOI: 10.1029/2000PA000599.CrossRefGoogle Scholar
Shemesh, A., Macko, S.A., Charles, C.D., & Rau, G.H. (1993). Isotopic evidence from reduced productivity in the glacial Southern Ocean. Science, 262, 407–10.CrossRefGoogle ScholarPubMed
Shemesh, A., Mortlock, R. A., Smith, R. J., & Froelich, P. N. (1988). Determination of Ge/Si in marine siliceous microfossils: separation, cleaning and dissolution of diatoms and radiolaria. Marine Chemistry, 25, 305–23CrossRefGoogle Scholar
Sigman, D. M., Altabet, M. A., Francois, R., McCorkle, D. C., & Gaillard, J. F. (1999). The isotopic composition of diatom-bound nitrogen in the Southern Ocean sediments. Paleoceanography, 14, 118–34.CrossRefGoogle Scholar
Sigman, D. M. & Haug, G. H. (2003). The biological pump of the past. In Treatise on Geochemistry, Volume 6, ed. Elderfield, H., Amsterdam: Elsevier.Google Scholar
Singer, A.J. & Shemesh, A. (1995). Climatically linked carbon isotope variation during the past 430,000 years in Southern Ocean sediments. Paleoceanography, 10, 171–7.CrossRefGoogle Scholar
Spadaro, P. A. (1983). Silicon isotope fractionation by the marine diatom Phaeodactylum tricornutum. Unpublished M.Sc. thesis, University of Chicago.
Spero, H. J., Bijma, J., Lea, D. W., & Bemis, B. (1997). Effect of seawater carbonate chemistry on planktonic foraminiferal carbon and oxygen isotope values. Nature, 390, 497–500.CrossRefGoogle Scholar
Spero, H. J. & Lea, D. W. (1993). Intraspecific stable isotope variability in the planktonic foraminifera Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontolgy, 22, 221–34.CrossRefGoogle Scholar
Spero, H. J. & Lea, D. W. (1996). Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Marine Micropaleontology, 28, 231–46.CrossRefGoogle Scholar
Street-Perrott, F. A., Barker, P. A., Leng, M. J., et al. (2008). Towards an understanding of late Quaternary variations in the continental biogeochemical cycle of silicon: multi-isotope and sediment-flux data for Lake Rutundu, Mt Kenya, East Africa, since 38 ka BP. Journal of Quaternary Science, 23, 375–87.CrossRefGoogle Scholar
Swann, G. E. A. & Leng, M. J. (2009). A review of diatom δ18O in palaeoceanography. Quaternary Science Reviews, 28, 384–98.CrossRefGoogle Scholar
Swann, G. E. A., Leng, M. J., Sloane, H. J., & Maslin, M. A. (2008). Isotope offsets in marine diatom δ18O over the last 200 ka. Journal of Quaternary Science, 23, 389–400.CrossRefGoogle Scholar
Swann, G. E. A., Leng, M. J., Sloane, H. J., Maslin, M. A., & Onodera, J. (2007). Diatom oxygen isotopes: evidence of a species effect in the sediment record. Geochemistry, Geophysics, Geosystems, 8, Q06012, DOI:10.1029/2006GC001535.CrossRefGoogle Scholar
Swann, G. E. A., Maslin, M. A., Leng, M. J., Sloane, H. J., & Haug, G. H. (2006). Diatom δ18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major northern hemisphere glaciation. Paleoceanography, 21, PA1009, DOI: 10.1029/2005PA001147.CrossRefGoogle Scholar
Takeda, S. (1998). Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature, 393, 774–7.CrossRefGoogle Scholar
Taylor, H. P. & Epstein, S. (1962). Relationships between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks, part I, Principles and experimental results. Bulletin of the Geological Society of America, 73, 461–80.CrossRefGoogle Scholar
Thorliefson, J.T. (1984). A modified stepwise fluorination procedure for the oxygen isotopic analysis of hydrous silica. Unpublished M.Sc. thesis, Arizona State University.
Tyler, J. J., Leng, M. J., & Sloane, H. J. (2007). The effects of organic removal treatment on the integrity of δ18O measurements from biogenic silica. Journal of Paleolimnology, 37, 491–7.CrossRefGoogle Scholar
Bennekom, A. J. & Gaast, S. J. (1976). Possible clay structures in frustules of living diatoms. Geochimica et Cosmochimica Acta, 40, 1–6.Google Scholar
Boorn, S. H. J. M, Vroon, P. Z., Belle, C. C., et al. (2006). Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. Journal of Analytical Atomic Spectrometry, 21, 734–42.CrossRefGoogle Scholar
Varela, D. E., Pride, C. J., & Brzezinski, M. A. (2004). Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochemical Cycles, 18, GB1047, DOI: 10.1029/2003GB002140.CrossRefGoogle Scholar
Wefer, G. & Berger, W. H. (1991). Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100, 207–48.CrossRefGoogle Scholar
Wischmeyer, A. G., Rocha, C. L., Maier-Reimer, E., & Wolf-Gladrow, D. A. (2003). Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochemical Cycles, 17, 1083, DOI:10.1029/2002GB002022.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×