Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-27T22:42:35.805Z Has data issue: false hasContentIssue false

2 - The diatoms: a primer

from Part I - Introduction

Published online by Cambridge University Press:  05 June 2012

Matthew L. Julius
Affiliation:
St. Cloud State University
Edward C. Theriot
Affiliation:
The University of Texas at Austin
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Diatoms have long been lauded for their use as powerful and reliable environmental indicators (Cholnoky, 1968; Lowe, 1974). This utility can be attributed to their high abundance and species diversity, which are distributed among most aquatic environments. Additionally, their remains are highly durable and well preserved in accumulated sediments. Often, scientists exploiting the group simply as environmental proxies give little thought as to how and why the species diversity exists in these environments. This may be a by-product of how diatoms are collected and identified. Diatoms are most often recognized by the presence of a siliceous cell wall, the frustule. This structure varies considerably in shape and architecture among species (Figure 2.1) and virtually all taxonomic diagnosis of taxa is based upon frustular morphology. To properly observe diatom frustules for taxonomic identification, living and sedimentary collections are typically subjected to various “cleaning” techniques designed to remove all organic materials (e.g. Battarbee et al., 2001; Blanco et al., 2008), allowing unobstructed observation of the frustule in the microscope. This frequent observation of inorganic components of the cell without reference to the organic features allows observers to “forget” that the specimens seen in the microscope represent individual organisms competing in the selective environments driven by biotic and abiotic ecological pressures. The abundance and taxonomic diversity can be attributed to the extraordinary success of diatoms in the competitive ecological arena.

The casual observer frequently regards diatoms, like most protists, as primitive ancestral lineages to multicellular organisms. While some protists may fit this description, diatoms do not. Diatoms are a relatively recent evolutionary group with the common ancestor’s origin considered to be between 200 and 190 million years before present (Rothpletz, 1896, 1900; Medlin et al., 1997).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 8 - 22
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12, 809–18.CrossRefGoogle Scholar
Almqvist, N., Bhatia, R., Primbs, G., et al. (2004). Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophysical Journal, 86, 1753–62.CrossRefGoogle ScholarPubMed
Alverson, A. J. (2007). Strong purifying selection in the silicon transporters of marine and freshwater diatoms, Limnology and Oceanography, 52, 1420–9CrossRefGoogle Scholar
Alverson, A. J., Cannone, J. J., Gutell, R. R., & Theriot, E. C. (2006). The evolution of elongate cell shape in diatoms. Journal of Phycology, 42, 655–68.CrossRefGoogle Scholar
Alverson, A. J., Jansen, R. K., and Theriot, E. C. (2007). Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45, 193–210.CrossRefGoogle ScholarPubMed
Andersen, R. A., Saunders, G. W., Paskind, M. P., & Sexton, J. P. (1993). Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. Journal of Phycology, 29, 701–15.CrossRefGoogle Scholar
Apt, K. K., Bhaya, D., & Grossman, A. R. (1994) Characterization of the genes encoding the light-harvesting proteins in diatoms: the biogenesis of the fucocanthin chlorophyll a/c protein complex, Journal of Applied Phycology 6, 225–30.CrossRefGoogle Scholar
Armbrust, E. V. (1999). Identification of a new gene family expressed during the onset of sexual reproduction in the centric diatom Thalassiosira weissflogii. Applied Environmental Microbiology, 65, 121–8.Google ScholarPubMed
Arts, M. T., Brett, M. T., & Kainz, M. J. (2009). Lipids in Aquatic Ecosystems. New York: Springer.Google Scholar
Bachvaroff, T. R., Sanchez-Puerta, M. V., & Delwiche, C. F. (2005). Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Molecular Biology Evolution, 22, 1772–82.CrossRefGoogle ScholarPubMed
Battarbee, R. W., Carvalho, L., Jones, V. J., et al. (2001). Diatom analysis. In Tracking Environmental Change using Lake Sediments, ed. Smol, J. P., Birks, H. J. B. and Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 155–202.Google Scholar
Bhattacharya, D. and Medlin, L. K. (2004). Dating and algal origin using molecular clock methods. Protist, 155, 9–10.CrossRefGoogle ScholarPubMed
Bhaya, D. & Grossmann, (1991). A new route for targeting proteins into plastids; evidence from diatoms. Molecular and General Genetics, 229, 400–4.CrossRefGoogle Scholar
Bhaya, D. and Grossman, A. R. (1993). Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Research, 21, 4458–66.Google ScholarPubMed
Biggs, B. J. F. (1996). Patterns in benthic algae of streams. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L. and Lowe, R. L., San Diego, CA: Academic Press, pp. 31–56.CrossRefGoogle Scholar
Blanco, S., Alvarez, I. & Cejudo, C. (2008). A test on different aspects of diatom processing techniques. Journal of Applied Phycology, 20, 445–50.CrossRefGoogle Scholar
Bodyl, A. (2005). Do plastid-related characters support the chromalveolate hypothesis?Journal of Phycology, 41, 712–19.CrossRefGoogle Scholar
Bott, T. L. (1996). Algae in microscopic food webs. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L. and Lowe, R. L., San Diego, CA: Academic Press, pp. 574–607.Google Scholar
Bourne, C. M., Palmer, J. D., & Stoermer, E. F. (1992). Organization of the chloroplast genome of the freshwater centric diatom Cyclotella meneghiniana. Journal of Phycology, 28, 347–55.CrossRefGoogle Scholar
Brzezinski, M. A. (1992). Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. Journal of Plankton Research, 14, 1511–39.CrossRefGoogle Scholar
Brzezinski, M. A., Olson, R. J., & Chisholm, S. W. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecological Progress Series, 67, 83–96.CrossRefGoogle Scholar
Canter, H. M. & Lund, J. W. G. (1948). Studies on plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytologist, 47, 238–61.CrossRefGoogle Scholar
Canter, H. M. & Lund, J. W. G. (1951). Studies on plankton parasites. III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Annals of Botany, 15, 359–71.Google Scholar
Canter, H. M. & Lund, J. W. G. (1953). Studies on plankton parasites. II. The parasitism of diatoms with special reference to lakes in the English Lake District. Transactions of the British Mycological Society, 36, 13–37.CrossRefGoogle Scholar
Cavalier-Smith, T. (2003) Protist phylogeny and the high-level classification of Protozoa. European Journal of Phycology, 39, 338–48.Google Scholar
Chepurnov, V. A., Mann, D. G., Dassow, P., et al. (2006). Oogamous reproduction, with two-step auxosporulation, in the centric diatom Thalassiosira puntigera (Bacillariophyta). Journal of Phycology, 42, 845–58.CrossRefGoogle Scholar
Cholnoky, B. J. (1968). Die Ökologie der Diatomeen in Binnengewässern. Lehere: Verlag von J. Cramer.Google Scholar
Conley, D. J. (1988). Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry, 6, 161–79.CrossRefGoogle Scholar
Conley, D. J. (2002). Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16, 1121.CrossRefGoogle Scholar
Conley, D. J., Kilham, S. S., & Theriot, E. C. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 3, 205–13.CrossRefGoogle Scholar
Cox, E. J. (1996). Identification of freshwater diatoms from live material. London: Chapman & Hall.Google Scholar
Edlund, M. B. & Stoermer, E. F. (1997). Ecological, evolutionary, and systematic significance of diatom life histories. Journal of Phycology 33, 897–918.CrossRefGoogle Scholar
Falkowski, P. G., Katz, M. E., Knoll, A. H., et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–60.CrossRefGoogle ScholarPubMed
Fourtanier, E. & Kociolek, J. P. (1999). Catalogue of the diatom genera. Diatom Research, 14, 1–190.CrossRefGoogle Scholar
Fourtanier, E. & Kociolek, J. P. (2009a). Catalogue of Diatom names, part II: Abas through Bruniopsis. Occasional Papers of the California Academy of Sciences, 156(1).Google Scholar
Fourtanier, E. & Kociolek, J. P. (2009b). Catalogue of diatom names, part I: introduction and bibliography. Occasional Papers of the California Academy of Sciences, 156(2).Google Scholar
Geitler, L. (1973). Auxosporenbildung und Systematik bei pennaten Diatomeen und die Cytologie von Cocconeis-Sippen. Österreichische Botanische Zeitschrift, 122, 299–321.CrossRefGoogle Scholar
Geitler, L. (1982). Die infraspeczifischen Sippen von Cocconeis placentula des Lunzer Seebachs. Archiv für Hydrobiologie. Supplement, 63, 1–11.Google Scholar
Goertzen, L. R. & Theriot, E. C. (2003). Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. Journal of Phycology, 39, 423–39.CrossRefGoogle Scholar
Gordon, R. & Drum, R. (1994). The chemical basis of diatom morphogenesis. International Review of Cytology, 150, 243–372.CrossRefGoogle Scholar
Grzebyk, D., Katz, M. E., Knoll, A. H., et al. (2004). Response to comment on “The evolution of modern eukaryotic phytoplankton.” Science, 306, 2191.CrossRefGoogle Scholar
Guillou, L., Chrétiennot-Dinet, M. J., Medlin, L. K., et al. (1999). Bolidomonas: a new genus with two species belonging to a new algal class, Bolidophyceae (Heterokonta). Journal of Phycology, 35, 368–81.CrossRefGoogle Scholar
Hargraves, P. E. & French, F. W. (1983). Diatom resting spores: significance and strategies. In Survival Strategies of the Algae, ed. Fryxell, G., Cambridge: Cambridge University Press, pp. 49–68.Google Scholar
Harper, J. T. & Keeling, P. J. (2003). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Molecular Biology and Evolution, 20, 1730–5.CrossRefGoogle ScholarPubMed
Harper, J. T., Waanders, E., & Keeling, P. J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. International Journal of Systematic and Evolutionary Microbiology, 55, 487–96.CrossRefGoogle ScholarPubMed
Harwood, D. M. (1988). Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy from Seymour Island, eastern Antarctic Peninsula. In Seymour Island Geology and Paleontology, ed. Feldman, R. M. and Woodburne, M. O., Geological Society of America Memoir, vol. 169, pp. 55–129.CrossRefGoogle Scholar
Harwood, D. M. & Nikolaev, V. A. (1995). Cretaceous diatoms: morphology, taxonomy, biostratigraphy. In Siliceous Microfossils, ed. Blome, C. E., Whalen, P. M., & Reed, K. M., Paleontological Society Short Course 8, Knoxville, TN: The Paleontology Society, pp. 81–106.Google Scholar
Higgins, M. J., Molino, P., Mulvaney, P., & Wetherbee, R. (2003). The structure and nanomechanical properties of the adhesive mucilage that mediates diatom–substratum adhesion and motility. Journal of Phycology, 39, 1181–93.CrossRefGoogle Scholar
Hildebrand, M. K., Dahlin, K., & Volcani, B. E. (1998). Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms, Molecular and General Genetics, 260, 480–6.CrossRefGoogle ScholarPubMed
Hoek, C.. (1978). Algen: Einführung in die Phycologie. Stuttgart: G. Thieme Verlag.Google Scholar
Julius, M. L. (2007a). Perspectives on the evolution and diversification of the diatoms. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. Starratt, S., Paleontological Society Short Course 13, Knoxville, TN: Paleontological Society, pp. 1–13.Google Scholar
Julius, M. L. (2007b). Why sweat the small stuff: the role of microalgae in sustaining Hawaiian ecosystem integrity. Bishop Museum Bulletin in Cultural and Environmental Studies, 3, 183–93.Google Scholar
Julius, M. L., Blob, R., & Schoenfuss, H. L. (2005). The survival of Sicyopterus stimpsoni, an endemic amphidromous Hawaiian gobiid fish, relies on the hydrological cycles of streams: evidence from changes in algal composition of diet through growth stages. Aquatic Ecology, 39, 473–84.CrossRefGoogle Scholar
Julius, M. L., Estabrook, G. F., Edlund, M. B., & Stoermer, E. F. (1997). Recognition of taxonomically significant clusters near the species level, using computationally intensive methods, with examples from the Stephanodiscus niagarae species complex (Bacillariophyceae). Journal of Phycology, 33, 1049–54.CrossRefGoogle Scholar
Julius, M. L., Stepanek, J., Tedrow, O., Gamble, C., & Schoenfess, H. L. (2007). Estrogen-receptor independent effects of two ubiquitous environmental estrogens on Melosira varians Agardh, a common component of the aquatic primary production community. Aquatic Toxicology, 85, 19–27.CrossRefGoogle ScholarPubMed
Julius, M. L., Stoermer, E. F., Taylor, C. M., & Schelske, C. L. (1998). Local extinction of Stephanodiscus niagarae Ehrenb. (Bacillariophyta) in the recent limnological record of Lake Ontario. Journal of Phycology, 34, 766–71.CrossRefGoogle Scholar
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., & Falkowski, P. G. (2004). Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Review of Ecology and Systematics, 35, 523–56.CrossRefGoogle Scholar
Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–93.CrossRefGoogle ScholarPubMed
Keeling, P. J., Archibald, J. M., Fast, N. M., and Palmer, J. D. (2004). Comment on “The evolution of modern eukaryotic phytoplankton,” Science, 306, 2191.CrossRefGoogle Scholar
Kidder, D. L. & Erwin, D. H. (2001). Secular distribution of biogenic silica through the phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109, 509–22.CrossRefGoogle Scholar
Kidder, D. L. & Gierlowski-Kordesch, E. H. (2005). Impact of grassland radiation on the nonmarine silica cycle and Miocene diatomite. Palaios, 20, 198–206.CrossRefGoogle Scholar
Kingston, J. C. (2003). Araphid and monorhaphid diatoms. In Freshwater Algae of North America: Classification and Ecology, ed. Wehr, J. D. and Sheath, R. G., San Diego, CA: Academic Press, pp. 595–636.CrossRefGoogle Scholar
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. (1986). Biological selectivity of extinction: a link between background and mass extinction. Palios, 1, 504–11.CrossRefGoogle Scholar
Kociolek, J. P. (1997). Historical constraints, species concepts and the search for a natural classification of diatoms. Diatom, 13, 3–8.Google Scholar
Kociolek, J. P. & Stoermer, E. F. (1988). A preliminary investigation of the phylogenetic relationships of the freshwater, apical pore field-bearing cymbelloid and gomphonemoid diatoms (Bacillariophyceae). Journal of Phycology, 24, 377–85.CrossRefGoogle Scholar
Kociolek, J. P. & Stoermer, E. F. (1989). Chromosome numbers in diatoms: a review. Diatom Research, 4, 47–54.CrossRefGoogle Scholar
Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae, 1 Teil, Naviculaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D., Stuttgart: Gustav Fischer.Google Scholar
Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae, 2 Teil, Bacillariaceae, Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D.. Jena: Gustav Fischer.Google Scholar
Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae, 3 Teil, Centrales, Fragilariaceae, Eunotiaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D.. Jena, Stuttgart: Gustav Fischer.Google Scholar
Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae, 4 Teil, Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema, In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D.. Jena, Stuttgart: Gustav Fischer.Google Scholar
Kröger, N., Deutzmann, R., & Sumper, M. (1999). Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286, 1129–32.Google ScholarPubMed
Lange-Bertalot, H. (1997). As a practical diatomist, how does one deal with the flood of new names? Diatom, 13, 9–12.Google Scholar
Leblanc, C., Falciatore, A., & Bowler, C. (1999). Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms. Plant Molecular Biology, 40, 1031–44.CrossRefGoogle ScholarPubMed
Leedale, G. F. (1974). How many are the kingdoms of organisms? Taxon, 23, 261–70.CrossRefGoogle Scholar
Lowe, R. L. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. EPA-670/4–74-005. Cincinnati, OH: US Environmental Protection Agency.Google Scholar
MacDonald, J. D. (1869). On the structure of the diatomaceous frustule, and its genetic cycle. Annual Magazine of Natural History, 4, 1–8.Google Scholar
Mann, D. G. (1993). Patterns of sexual reproduction in diatoms. Hydrobiologia, 269/270, 11–20.CrossRefGoogle Scholar
Mann, D. G. (1997). Shifting sands: the use of the lower taxonomic ranks in diatoms. Diatom, 13, 13–17.Google Scholar
Mann, D. G. & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. In Biogeography of Freshwater Algae: Proceedings of the Workshop on Biogeography of Freshwater Algae, Developments in Hydrobiology 118, ed. Kristiansen, J., Dordecht: Kluwer Academic Publishers, pp. 19–32.CrossRefGoogle Scholar
Martin-Jezequel, V., Hildebrand, M., and Brzezinski, M. A. (2000). Silicon metabolism in diatoms: implications for growth. Journal of Phycology, 36, 821–40.CrossRefGoogle Scholar
MacBride, S. A. & Edgar, R. K. (1988) Janus cells unveiled: frustular morphometric variability in Gomphonema angustatum. Diatom Research, 13, 293–310.CrossRefGoogle Scholar
Medlin, L. K., Kooistra, W. H. C. F., Gersonde, R., Sims, P. A., & Wellbrock, U. (1997). Is the origin of the diatoms related to the end-Permian mass extinction? Nova Hedwigia, 65, 1–11.Google Scholar
North, W. J. (1994). Review of Macrocystis biology. In Biology of Economic Algae, ed. Akatsura, I., The Hague: SPB Academic Publishing, pp. 447–528.Google Scholar
Owens, T. G. (1986). Light-harvesting function in the diatom Phaeodactylum tricornutum. Plant Physiology, 80, 732–8CrossRefGoogle ScholarPubMed
Patrick, R. & Reimer, C. W. (1966). The diatoms of the United States I. Academy of Natural Sciences Philadelphia, Monograph no. 13.
Patrick, R. & Reimer, C. W. (1975). The diatoms of the United States II, part 1. Academy of Natural Sciences Philadelphia, Monograph no. 13.
Patterson, D. J. (1989). Stramenopiles: chromophytes from a protistan perspective. In The Chromophyte Algae: Problems and Perspectives, ed. Green, J. C., Leadbeater, B. S. C. and Diver, W. L.. Systematics Association Special Volume No. 38, Oxford: Clarendon Press, pp. 357–79.Google Scholar
Pfitzer, E. (1869). Über den Bau und Zellteilung der Diatomeen, Botanische Zeitung, 27, 774–6.Google Scholar
Pfitzer, E. (1871). Üntersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomeen). In Botanische Abhandlungen aus dem Gebiet der Mophologie und Physiologie, ed. Hanstein, J., Bonn: Adolph Marcus Publishing, pp. 1–189.Google Scholar
Rabosky, D. L. & Sorhannus, U. (2009). Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 457, 183–6.CrossRefGoogle ScholarPubMed
Rivkin, R. B. (1986). Radioisotopic method for measuring cell division rates of individual species of diatoms from natural populations. Applied Environmental Microbiology, 51, 769–75.Google ScholarPubMed
Rothpletz, A. (1896). Über die Flysch-Fucoiden und einige andere fossile Algae, sowie über laisische, Diatomeen führende Hornschwämme. Zeitschrift der Deutschen Geologischen Gesellschaft, 4, 854–914.Google Scholar
Rothpletz, A. (1900). Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, 52, 154–60.Google Scholar
Round, F. E. (1996). What characters define diatom genera, species and infraspecific taxa? Diatom Research, 11, 203–18.CrossRefGoogle Scholar
Round, F. E. (1997). Genera, species and varieties B are problems real or imagined? Diatom, 13, 25–9.Google Scholar
Round, F. E., Crawford, D. M., & Mann, D. G. (1990). The Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge University Press.Google Scholar
Round, F. E. & Sims, P. A. (1981). The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations. In Proceedings of the Sixth Symposium of Recent and Fossil Diatoms, ed. Ross, R., Königstein: Koeltz Scientific Books, pp. 301–20.Google Scholar
Ryall, K., Harper, J. T., & Keeling, P. J. (2003). Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene, 313, 139–48.CrossRefGoogle ScholarPubMed
Sanchez-Puerta, M. V. & Delwiche, C. F. (2008). Minireview: a hypothesis for plastid evolution in chromalveolates. Journal of Phycology, 44, 1097–107.CrossRefGoogle Scholar
Saunders, G. W., Potter, D., Paskind, M. P., & Andersen, R. A. (1995). Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proceedings of the National Academy of Sciences of the USA, 92, 244–8.CrossRefGoogle ScholarPubMed
Schelske, C. L. & Stoermer, E. F. (1971). Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 173, 423–4.CrossRefGoogle ScholarPubMed
Scherer, C., Wiltshirea, K., & Bickmeyer, U. (2007). Inhibition of multidrug resistance transporters in the diatom Thalassiosira rotula facilitates dye staining. Plant Physiology and Biochemistry, 46, 100–3.CrossRefGoogle ScholarPubMed
Schmid, A. M. (1994). Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma, 181, 43–60.CrossRefGoogle Scholar
Schmid, A. M. & Volcani, B. E. (1983). Wall morphogenesis in Cosinodiscus wailesii Gran and Angst. I. Valve morphology and development of its architecture. Jorunal of Phycology, 19, 387–402CrossRefGoogle Scholar
Shubin, N. (2008). Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body. New York: Pantheon Publishers.Google Scholar
Sicko-Goad, L., Schelske, C. L., & Stoermer, E. F. (1984). Estimation of carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnology and Oceanography, 29, 1170–8.CrossRefGoogle Scholar
Sicko-Goad, L., Stoermer, E. F., & Fahnenstiel, G. (1986). Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from anoxic sediments of Douglas Lake, Michigan. I. Light and 14C uptake. Journal of Phycology, 22, 22–8.CrossRefGoogle Scholar
Sicko-Goad, L., Stoermer, E. F., & Ladewski, B. G. (1977). A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma, 93, 147–63.CrossRefGoogle Scholar
Simonsen, R. (1979). The diatom system: ideas on phylogeny. Bacillaria, 2, 9–71.Google Scholar
Sorhannus, U. (2001). A “total evidence” analysis of the phylogenetic relationships among the photosynthetic stramenopiles. Cladistics, 17, 227–41.CrossRefGoogle Scholar
Sorhannus, U. (2007). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1–12.CrossRefGoogle Scholar
Stoermer, E. F. (1967). Polymorphism in Mastogloia. Journal of Phycology, 3, 73–7.CrossRefGoogle ScholarPubMed
Stoermer, E. F. (2001). Diatom taxonomy for paleolimnologists. Journal Paleolimnology, 25, 393–398.CrossRefGoogle Scholar
Sullivan, C. W. (1977). Diatom mineralization of silicic acid. II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology, 13, 86–91.Google Scholar
Townsend, S. A. & Gell, P. A. (2005) The role of substrate type on benthic diatom assemblages in the Daly and Roper rivers of the Australian wet/dry tropics. Hydrobiologia, 548, 101–15.CrossRefGoogle Scholar
Theriot, E. C., Cannone, J. J., Gutell, R. R., & Alverson, A. J. (2009). The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. European Journal of Phycology, 44, 277–90.CrossRefGoogle ScholarPubMed
Theriot, E. C., Sherilyn, C. F., Whitlock, C., & Conley, D. J. (2006). Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 38–54.CrossRefGoogle Scholar
Theriot, E. C. & Stoermer, E. F. (1984). Principal component analysis of Stephanodiscus: observations on two new species from the Stephanodiscus niagarae complex. Bacillaria, 7, 37–58.Google Scholar
Tuchman, M. L., Theriot, E. C., & Stoermer, E. F. (1984). Effects of low level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. Archiv für Protistenkunde, 128, 319–26.CrossRefGoogle Scholar
Tuji, A. (2000). Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycological Research, 48, 75–84.CrossRefGoogle Scholar
Volkman, J. K., Jeffery, S. W., Nichols, P. D., Rogers, G. I., & Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128, 219–40.CrossRefGoogle Scholar
Yoon, H. S., Hackett, J. D., Pinto, G., & Bhattacharya, D. (2002). The single, ancient origin of chromist plastids. Proceedings of the National Academy of Science, USA, 99, 1507–12.CrossRefGoogle ScholarPubMed
Wetherbee, R. (2002). The diatom glasshouse. Science, 298, 13–14.CrossRefGoogle ScholarPubMed
Williams, D. M. & Kociolek, J. P. (2007). Pursuit of a natural classification of diatoms: history, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology, 42, 313–19.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×