Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T14:45:44.719Z Has data issue: false hasContentIssue false

Chapter 1 - The skeleton: structure, growth and development, and basis of skeletal injury

from Section I - Skeletal trauma

Published online by Cambridge University Press:  05 September 2015

Andrew E. Rosenberg
Affiliation:
Director of Anatomic Pathology and Director of Bone and Soft Tissue Pathology at the University of Miami Hospital and Professor of Pathology at the University of Miami Miller School of Medicine, Miami, Florida, USA
Paul K. Kleinman
Affiliation:
Children's Hospital Boston
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Marks, SC, Popoff, SN. Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat. 1988;183(1):1–44.CrossRefGoogle ScholarPubMed
Burdan, F, Szumilo, J, Korobowicz, A, Farooquee, R, Patel, S, Patel, A, et al. Morphology and physiology of the epiphyseal growth plate. Folia Histochem Cytobiol. 2009;47(1):5–16.CrossRefGoogle ScholarPubMed
Laval-Jeantet, M, Balmain, N, Juster, M, Bernard, J. Les rapports de la virole perichondrale et du cartilage en croissance normale et pathologique. Ann Radiol. 1968;11:327–35.Google Scholar
Oestreich, AE, Ahmad, BS. The periphysis and its effect on the metaphysis. I. Definition and normal radiographic pattern. Skeletal Radiol. 1992;21(5):283–6.CrossRefGoogle ScholarPubMed
Neve, A, Corrado, A, Cantatore, FP. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 2011;343(2):289–302.CrossRefGoogle ScholarPubMed
Robey, P, Bianco, P, Termine, JD. The cellular biology and molecular biochemistry of bone formation. In Coe, FL, Favus, MJ, eds. Disorders of Bone and Mineral Metabolism. New York, NY: Raven Press; 1992, pp. 241–63.Google Scholar
Camozzi, V, Vescini, F, Luisetto, G, Moro, L. Bone organic matrix components: their roles in skeletal physiology. J Endocrinol Invest. 2010;33(7 Suppl.):13–15.Google ScholarPubMed
Chau, JF, Leong, WF, Li, B. Signaling pathways governing osteoblast proliferation, differentiation and function. Histol Histopathol. 2009;24(12):1593–606.Google ScholarPubMed
Soltanoff, CS, Chen, W, Yang, S, Li, YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19(1):1–46.CrossRefGoogle ScholarPubMed
Deng, ZL, Sharff, KA, Tang, N, Song, WX, Luo, J, Luo, X, et al. Regulation of osteogenic differentiation during skeletal development. Front Biosci. 2008;13:2001–21.CrossRefGoogle ScholarPubMed
Liu, TM, Lee, EH. Transcriptional regulatory cascades in Runx2-dependent bone development. Tissue Eng Part B Rev. 2013;19(3):254–63.CrossRefGoogle ScholarPubMed
Long, F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2012;13(1):27–38.CrossRefGoogle Scholar
Lin, GL, Hankenson, KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem. 2011;112(12):3491–501.CrossRefGoogle ScholarPubMed
Abdullah, BM, Jafari, A, Zaher, W, Qui, W, Kassem, M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone. 2015;70:28–36.CrossRef
Bonewald, LF. Osteocytes. In Rosen, CJ, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Washington, DC: American Society for Bone and Mineral Research; 2009, pp. 22–7.Google Scholar
Bonewald, LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38.CrossRefGoogle ScholarPubMed
Dallas, SL, Prideaux, M, Bonewald, LF. The osteocyte: an endocrine cell and more. Endocr Rev. 2013;34(5):658–90.CrossRefGoogle ScholarPubMed
Schaffler, MB, Kennedy, OD. Osteocyte signaling in bone. Curr Osteoporos Rep. 2012;10(2):118–25.CrossRefGoogle ScholarPubMed
Bellido, T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2014;94(1):25–34.CrossRefGoogle ScholarPubMed
Belanger, LF. Osteocytic osteolysis. Calcif Tissue Res. 1969;4(1):1–12.CrossRefGoogle ScholarPubMed
Kuroda, Y, Matsuo, K. Molecular mechanisms of triggering, amplifying and targeting RANK signaling in osteoclasts. World J Orthoped. 2012;3(11):167–74.CrossRefGoogle ScholarPubMed
Edwards, JR, Weivoda, MM. Osteoclasts: malefactors of disease and targets for treatment. Discov Med. 2012;13(70):201–10.Google Scholar
Nakamura, I, Takahashi, N, Jimi, E, Udagawa, N, Suda, T. Regulation of osteoclast function. Mod Rheumatol. 2012;22(2):167–77.CrossRefGoogle ScholarPubMed
Mellis, DJ, Itzstein, C, Helfrich, MH, Crockett, JC. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol. 2011;211(2):131–43.CrossRefGoogle ScholarPubMed
Charles, JF, Aliprantis, AO. Osteoclasts: more than bone eaters. Trends Mol Med. 2014;20(8):449–59.CrossRefGoogle ScholarPubMed
Mackie, EJ, Ahmed, YA, Tatarczuch, L, Chen, KS, Mirams, M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.CrossRefGoogle ScholarPubMed
Long, F, Ornitz, DM. Development of endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):1–20.CrossRefGoogle ScholarPubMed
LaCroix, P. Origin of the perichondrial osseous ring. First example of a phenomenon of induction in skeletal development. In LaCroix, P, ed. The Organization of Bones. Philadelphia, PA: Blakiston Co.; 1951, pp. 90–7.Google Scholar
Tsai, A, McDonald, AG, Rosenberg, AE, Gupta, R, Kleinman, PK. High-resolution CT with histopathologic correlates of the classic metaphyseal lesion of infant abuse. Pediatr Radiol. 2014;44(2):124–40.CrossRefGoogle Scholar
Brighton, CT. The growth plate. Orthop Clin North Am. 1984;15(4):571–95.Google ScholarPubMed
Kleinman, PK, Marks, SC. Relationship of the subperiosteal bone collar to metaphyseal lesions in abused infants. J Bone Joint Surg. 1995;77(10):1471–6.CrossRefGoogle ScholarPubMed
Kleinman, PK, Belanger, PL, Karellas, A, Spevak, MR. Normal metaphyseal radiologic variants not to be confused with findings of infant abuse. AJR. 1991;156(4):781–3.CrossRefGoogle Scholar
Karimian, E, Chagin, AS, Savendahl, L. Genetic regulation of the growth plate. Front Endocrinol (Lausanne). 2011;2:113.Google ScholarPubMed
Emons, J, Chagin, AS, Savendahl, L, Karperien, M, Wit, JM. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatr. 2011;75(6):383–91.CrossRefGoogle ScholarPubMed
Mackie, EJ, Tatarczuch, L, Mirams, M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol. 2011;211(2):109–21.CrossRefGoogle ScholarPubMed
Michigami, T. Regulatory mechanisms for the development of growth plate cartilage. Cell Mol Life Sci. 2013;70(22):4213–21.CrossRefGoogle ScholarPubMed
Michigami, T. Current understanding on the molecular basis of chondrogenesis. Clin Pediatr Endocrinol. 2014;23(1):1–8.CrossRefGoogle ScholarPubMed
Fazzalari, NL, Moore, AJ, Byers, S, Byard, RW. Quantitative analysis of trabecular morphogenesis in the human costochondral junction during the postnatal period in normal subjects. Anat Rec. 1997;248(1):1–12.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jerome, C, Hoch, B. Skeletal system. In Treuting, PM, Dintzis, SM, eds. Comparative Anatomy and Histology. Waltham, MA: Academic Press; 2012, pp. 53–70.CrossRefGoogle Scholar
Tsai, A, McDonald, AG, Rosenberg, AE, Stamoulis, C, Kleinman, PK. Discordant radiologic and histological dimensions of the zone of provisional calcification in fetal piglets. Pediatr Radiol. 2013;43:1606–14.CrossRefGoogle ScholarPubMed
Farnum, CE, Wilsman, NJ. Determination of proliferative characteristics of growth plate chondrocytes by labeling with bromodeoxyuridine. Calcif Tissue Int. 1993;52(2):110–19.CrossRefGoogle ScholarPubMed
Hunziker, EB, Schenk, RK, Cruz-Orive, LM. Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. J Bone Joint Surg Am. 1987;69-A:162–73.CrossRefGoogle ScholarPubMed
Gruber, HE, Rimoin, DL. Quantitative histology of cartilage cell columns in the human costochondral junction: findings in newborn and pediatric subjects. Pediatr Res. 1989;25(2):202–4.CrossRefGoogle ScholarPubMed
Park, EA. The imprinting of nutritional disturbances on the growing bone. Pediatrics. 1964;33(Suppl.):815–62.Google ScholarPubMed
Schenk, RK, Wiener, J, Spiro, D. Fine structural aspects of vascular invasion of the tibial epiphyseal plate of growing rats. Acta Anat (Basel). 1968;69(1):1–17.CrossRefGoogle ScholarPubMed
Dodds, GS, Cameron, HC. Studies on experimental rickets in rats. I. Structural modifications of the ephiphyseal cartilages in the tibia and other bones. Am J Anat. 1934;55:135–65.CrossRefGoogle Scholar
Oestreich, AE. The acrophysis: a unifying concept for enchondral bone growth and its disorders. I. Normal growth. Skeletal Radiol. 2003;32(3):121–7.CrossRefGoogle ScholarPubMed
Olsen, BR, Reginato, AM, Wang, W. Bone development. Ann Rev Cell Dev Biol. 2000;16:191–220.CrossRefGoogle ScholarPubMed
Eriksen, EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010;11(4):219–27.CrossRefGoogle ScholarPubMed
Pogoda, P, Priemel, M, Rueger, JM, Amling, M. Bone remodeling: new aspects of a key process that controls skeletal maintenance and repair. Osteoporos Int. 2005;16(Suppl. 2):S18–24.CrossRefGoogle ScholarPubMed
Elefteriou, F, Campbell, P, Ma, Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94(1):140–51.CrossRefGoogle ScholarPubMed
Delaisse, JM. The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation. Bonkey Rep. 2014;6:1–8.Google Scholar
Salter, RB, Harris, WR. Injuries involving the epiphyseal plate. J Bone Joint Surg. 1963;45(3):587–622.CrossRefGoogle Scholar
Caffey, J. Some traumatic lesions in growing bones other than fractures and dislocations: clinical and radiological features. BrJ Radiol. 1957;30:225–38.CrossRefGoogle ScholarPubMed
Kleinman, PK, Marks, SC, Blackbourne, B. The metaphyseal lesion in abused infants: a radiologic–histopathologic study. AJR. 1986;146(5):895–905.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×