Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-24T02:01:13.108Z Has data issue: false hasContentIssue false

8 - Identifying Life-History Events in Dental Cementum: A Literature Review

from Part I - The Biology of Cementum

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

The circannual rhythm and continuous growth of cementum throughout life have been seen by many researchers as offering an exciting window of potential information of life history recorded in the shape, texture, and chemistry of its increments. A host of studies have thus been presented studying the relationship between these factors and various life history events affecting mammal physiology, most notably pregnancy and parturition. This chapter reviews the literature that has tested this assumption directly, in animals and in humans. Also, we offer theoretical and methodological insights into future advances in cementochronology specifically for identifying and recording these life-history events.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blondiaux, J., Gabart, N., Alduc-Le Bagousse, A., Niel, C., & Tyler, E. (2006). Relevance of Cement Annulations to Paleopathology. Paleopathology Newsletter, 135, 413.Google Scholar
Boggess, K. A. (2008). Maternal Oral Health in Pregnancy. Obstetrics and Gynecology, 111(4), 976–86.Google Scholar
Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., … Chisi, J. (2011). Signposts Ahead: Hard Tissue Signals on Rue Armand de Ricqlès. Comptes Rendus Palevol, 10(5–6), 499507.CrossRefGoogle Scholar
Bucher, H. C., Guyatt, G. H., Cook, R. J., Hatala, R., Cook, D. J., Lang, J. D., & Hunt, D. (1996). Effect of Calcium Supplementation on Pregnancy-Induced Hypertension and Preeclampsia: A Meta-Analysis of Randomized Controlled Trials. JAMA 275(14), 1113–17.Google Scholar
Caplazi, G. (2004). Eine Untersuchung über die Auswirkungen von Tuberkulose auf Anlagerungsfrequenz und Beschaffenheit der Zementringe des Menschlichen Zahnes. Bulletin Der Schweizerischen Gesellschaft Für Anthropologie, 3583.Google Scholar
Cerrito, P., Bailey, S. E., Hu, B., &Bromage, T.G. (2020). Parturitions, Menopause and Other Physiological Stressors Are Recorded in Dental Cementum Microstructure. Sci Rep. 2020, 10(1),5381.Google Scholar
Chappard, C., Bensalah, S., Olivier, C., Gouttenoire, P.J., Marchadier, A., Benhamou, C., & Peyrin, F. (2013). 3D Characterization of Pores in the Cortical Bone of Human Femur in the Elderly at Different Locations as Determined by Synchrotron Micro-Computed Tomography Images. Osteoporos, 147(24), 1023–33.Google Scholar
Coy, P. L., & Garshelis, D. L. (1992). Reconstructing Reproductive Histories of Black Bears from the Incremental Layering in Dental Cementum. Canadian Journal of Zoology, 70(11), 2150–60.Google Scholar
Dean, C. (2006). Tooth Microstructure Tracks the Pace of Human Life-History Evolution. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 27992808.Google Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., & Garrevoet, J. (2018). Incremental Distribution of Strontium and Zinc in Great Ape and Fossil Hominin Cementum Using Synchrotron X-Ray Fluorescence Mapping. Journal of the Royal Society, Interface, 15(138). http://doi.org/10.1098/rsif.2017.0626CrossRefGoogle ScholarPubMed
DeWitte, S. N., & Stojanowski, C. M. (2015). The Osteological Paradox 20 Years Later: Past Perspectives, Future Directions. Journal of Archaeological Research, 23(4), 397450.Google Scholar
Dodds, M. W. J., Johnson, D., & Yeh, C.-K. (2005). Health Benefits of Saliva: A Review. J Dent 33, 223–33.Google Scholar
Edinborough, M., Fearn, S., Pilgrim, M., … Edinborough, K. (2019). Life History Parameters in Acellular Extrinsic Fiber Cementum Microstructure. BioRxiv, 528760.Google Scholar
Farr, J. N., & Almeida, M. (2018). The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. Journal of Bone and Mineral Research, 33(9), 1568–84.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., … Somerman, M. J. (2015). Mineralization Defects in Cementum and Craniofacial Bone from Loss of Bone Sialoprotein. Bone, 78, 150–64.Google Scholar
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millán, J. L., & Somerman, M. J. (2012). Central Role of Pyrophosphate in Acellular Cementum Formation, PLoS ONE 7(6).Google Scholar
Horvath, S., & Raj, K. (2018). DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nature Reviews Genetics, 19(6), 371–84.Google Scholar
Hugoson, A. (1971). Gingivitis in Pregnant Women. A Longitudinal Clinical Study. Odontol Revy, 22(1), 6584.Google Scholar
Johnson, F. B., Sinclair, D. A., & Guarente, L. (1999). Molecular Biology of Aging. Cell, 96(2), 291302.Google Scholar
Kagerer, P., & Grupe, G. (2001). Age-at-Death Diagnosis and Determination of Life-History Parameters by Incremental Lines in Human Dental Cementum as an Identification Aid. Forensic Science International, 118(1), 7582.CrossRefGoogle ScholarPubMed
Kinnby, B., Matsson, L. & Astedt, B. (1996). Aggravation of Gingival Inflammatory Symptoms during Pregnancy Associated with the Concentration of Plasminogen Activator Inhibitor Type 2 (PAI-2) in Gingival Fluid. Journal of Periodontal Research, 31, 271–7.Google Scholar
Klevezal, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Klevezal, G. A., & Stewart, B. S. (1994). Patterns and Calibration of Layering in Tooth Cementum of Female Northern Elephant Seals, Mirounga angustirostris. Journal of Mammalogy, 75(2), 483–7.Google Scholar
Kolb, M. (1978). The Formation of Lines in the Cementum of Premolar Teeth in Foxes. Journal of Zoology, 185, 259–63.Google Scholar
Kuenzie, M., & Wittwer-Backofen, U. (2008). Stress Markers in Tooth Cementum Caused by Pregnancy. American Journal of Physical Anthropology, 46, 135.Google Scholar
Kvam, T. (1984). Age Determination in European Lynx Lynx l. lynx by Incremental Lines in Tooth Cementum. Acta Zool Fenn, 171, 221–3.Google Scholar
Larrue, A., Rattner, A., Peter, Z. A., et al. (2011). Synchrotron Radiation Micro-CT at the Micrometer Scale for the Analysis of the Three-Dimensional Morphology of Microcracks in Human Trabecular Bone. PLoS ONE, 6(7), e21297.Google Scholar
Le Cabec, A., Tang, N. K., Rubio, V. R., & Hillson, S. (2018). Nondestructive Adult Age at Death Estimation: Visualizing Cementum Annulations in a Known Age Historical Human Assemblage Using Synchrotron X-Ray Microtomography. American Journal of Physical Anthropology. http://doi.org/10.1002/ajpa.23702Google Scholar
Legler, D. W., & Menaker, L. (1980). Definition, Etiology, Epidemiology and Clinical Implication of Dental Caries. In Menaker, L., ed. The Biological Basis of Dental Caries. New York: Harper and Row, 217.Google Scholar
Lenander-Lumikari, M., & Loimaranta, V. (2000). Saliva and Dental Caries. Advances in Dental Research, 14(1), 40–7.Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 11941217.Google Scholar
Lukacs, J. R., & Largaespada, L. L. (2006). Explainnig Sex Differences in dental Caries Prevalence: Saliva, Hormones and “Life-History” Etiologies. American Journal of Human Biology, 18, 540–55.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., & Vach, W. (2019). Measuring Incremental Line Width and Appearance in the Tooth Cementum of Recent and Archaeological Human Teeth to Identify Irregularities: First Insights Using a Standardized Protocol. International Journal of Paleopathology, 27, 2437.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., Hotz, G., Vach, W., Wittwer-Backofen, U., & Müller, B. (2017). Imaging of the Human Tooth Cementum Ultrastructure of Archeological Teeth, Using Hard X-Ray Microtomography to Determine Age-at-Death and Stress Periods. 10391:103911C-10391-98. http://dx.doi.org/10.1117/12.2276148Google Scholar
Marsh, P. D. (1999). Microbiologic Aspects of Dental Plaque and Dental Caries. Dent Clin North Am, 43, 599615.Google Scholar
Medill, S., Derocher, A. E., Stirling, I., & Lunn, N. (2010). Reconstructing the Reproductive History of Female Polar Bears Using Cementum Patterns of Premolar Teeth. Polar Biology, 33(1), 115–24.Google Scholar
Medill, S., Derocher, A. E., Stirling, I., Lunn, N., & Moses, R. A. (2009). Estimating Cementum Annuli Width in Polar Bears: Identifying Sources of Variation and Error. Journal of Mammalogy, 90(5), 1256–64.Google Scholar
Mitteldorf, J. (2016). An Epigenetic Clock Controls Aging. Biogerontology, 17(1), 257–65.Google Scholar
Muhler, J. C., & Shafer, W. G. (1955). Experimental Dental Caries. VII. The Effect of Various Androgens and Estrogens on Dental Caries in the Rat. Journal of Dental Research, 34(5), 661–5.Google Scholar
Nguyen, L., Pilfold, N. W., Derocher, A. E., Stirling, I., Bohart, A. M., & Richardson, E. (2017). Ringed Seal (Pusa hispida) Tooth Annuli as an Index of Reproduction in the Beaufort Sea. Ecological Indicators, 77, 286–92.Google Scholar
Percival, R. S., Challacombe, S. J., & Marsh, P. D. (1994). Flow Rates of Resting Whole and Stimulated Parotid Saliva in Relation to Age and Gender. J Dent Res, 73, 1416–20.Google Scholar
Persson, R. E., Persson, G. R., Kiyak, H. A., & Powell, L. V. (1998). Oral Health and Medical Status in Dentate Low-Income Older Persons. Special Care in Dentistry: Official Publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry, 18(2), 70–7.Google Scholar
Pratt, I. V., Belev, G., Zhu, N., et al. (2015). In Vivo Imaging of Rat Cortical Bone Porosity by Synchrotron Phase Contrast Micro Computed Tomography. Phys Med Biol, 60, 211–32.Google Scholar
Ristova, M., Talevska, M., & Stojanovska, Z. (2018). Accurate Age Estimations from Dental Cementum and a Childbirth Indicator – A Pilot Study. Journal of Forensic Science & Criminology, 6, 112.Google Scholar
Silk, H., Douglass, A. B., Douglass, J. M., & Silk, L. (2008). Oral Health during Pregnancy. American Family Physician, 77(8), 1139–44.Google Scholar
Smith, T. M., Austin, C., Hinde, K., Vogel, E. R., & Arora, M. (2017). Cyclical Nursing Patterns in Wild Orangutans. Science Advances, 3(5), e1601517.Google Scholar
Stewart, R. E. A., Stewart, B. E., Stirling, I., & Street, E. (1996). Counts of Growth Layer Groups in Cementum and Dentine in Ringed Seals (phoca Hispida). Marine Mammal Science, 12(3), 383401.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., & Okasinski, J. S. (2017). Cementum Structure in Beluga Whale Teeth. Acta Biomaterialia, 48, 289–99.Google Scholar
Surarit, R., Krishnamra, N., & Seriwatanachai, D. (2016). Prolactin Receptor and Osteogenic Induction of Prolactin in Human Periodontal Ligament Fibroblasts. Cell Biology International, 40(4), 419–27.Google Scholar
Tang, N., Le Cabec, A., & Antoine, D. (2015). Dentine and Cementum Structure and Properties. In A Companion to Dental Anthropology, Irish, J. D. & Scott, G. R., eds., Hoboken, NJ: John Wiley & Sons, Inc., 204–22.Google Scholar
von Biela, V. R., Testa, J. W., Gill, V. A., & Burns, J. M. (2008). Evaluating Cementum to Determine Past Reproduction in Northern Sea Otters. Journal of Wildlife Management, 72(3), 618–24.Google Scholar
Wittmann, T. A., Izzo, C., Doubleday, Z. A., McKenzie, J., Delean, S., & Gillanders, B. M. (2016). Reconstructing Climate–Growth Relations from the Teeth of a Marine Mammal. Marine Biology, 163(4), 71.CrossRefGoogle Scholar
Wood, J. W., Milner, G. R., Harpending, H. C., & Weiss, K. M. (1992). The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal Samples. Current Anthropology, 33(4), 343–70.Google Scholar
Zazzo, A., Balasse, M., & Patterson, W. P. (2006). The Reconstruction of Mammal Individual History: Refining High-Resolution Isotope Record in Bovine Tooth Dentine. Journal of Archaeological Science, 33(8), 1177–87.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×