Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T13:17:23.862Z Has data issue: false hasContentIssue false

Chapter 9 - Posterior Pituitary

Published online by Cambridge University Press:  24 December 2018

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
S. Ali Imran
Affiliation:
Dalhousie University, Nova Scotia
Get access
Type
Chapter
Information
Clinical Neuroendocrinology
An Introduction
, pp. 154 - 170
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Ball, S G. (2017). The neurohypophysis: Endocrinology of vasopressin and oxytocin. www.endotext.org.Google Scholar
Ball, S G & Iqbal, Z. (2016). Diagnosis and treatment of hyponatraemia. Best Prac Res Clin Endocr Metab 30, 161173.Google Scholar
Christ-Crain, M, Morgenthaler, N G & Fenske, W. (2016). Copeptin as a biomarker and a diagnostic tool in the evaluation of patients with polyuria-polydipsia and hyponatremia. Best Prac Res Clin Endocr Metab 30, 235247.Google Scholar
Leng, G & Sabatier, N. (2016). Measuring oxytocin and vasopressin: bioassays, immunoassays and random numbers. J Neuroendocr 28, 113.Google Scholar

References

Afsar, B. (2017). Pathophysiology of copeptin in kidney disease and hypertension. Clin Hypertension 23, 13.Google Scholar
Babey, M, Kopp, P & Robertson, G L. (2011). Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Revs Endocr 7, 701714.Google Scholar
Ball, S G. (2017). The neurohypophysis: endocrinology of vasopressin and oxytocin. www.endotext.org.Google Scholar
Barber, S M, Liebelt, B D & Baskin, D S. (2014). Incidence, etiology and outcomes of hyponatremia after transsphenoidal surgery: experience with 344 consecutive patients at a single tertiary center. J Clin Med 3, 11991219.Google Scholar
Baskaran, C, Plessow, F, Silva, L et al. (2017). Oxytocin secretion is pulsatile in men and is related to social-emotional functioning. Psychoneuroendocr 85, 2834.CrossRefGoogle ScholarPubMed
Berl, T. (2015). Vasopressin antagonists. New Engl J Med 372, 22072216.Google Scholar
Bershad, A K, Kirkpatrick, M G, Seiden, J A & de Wit, H. (2015). Effects of acute doses of prosocial drugs methamphetamine and alcohol on plasma oxytocin levels. J Clin Psychopharmacol 35, 308312.Google Scholar
Besser, G M & Thorner, M O. (2002). Comprehensive Clinical Endocrinology, 3rd Edition (St. Louis, MO: Mosby).Google Scholar
Bhandari, SS, Loke, I, Davies, JE, Squire, IB, Struck, J & Ng, LL. (2009). Gender and renal function influence plasma levels of copeptin in healthy individuals. Clin Sci 116, 257263.Google Scholar
Blevins, J E, Graham, J L, Morton, G J et al. (2015). Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am J Physiol 308, R431R438.Google Scholar
Boccia, M L, Petrusz, P, Suzuki, K, Marson, L & Pedersen, C A. (2013). Immunohistochemical localization of oxytocin receptors in human brain. Neurosci 253, 155164.Google Scholar
Brimdyr, K, Cadwell, K, Widström, A-M et al. (2015). The association between common labor drugs and suckling when skin-to-skin during the first hour after birth. Birth 42, 319328.Google Scholar
Burckhardt, M A, Wellmann, M, Fouzas, S et al. (2014). Sexual disparity of copeptin in healthy newborn infants. J Clin Endocr Metab 99, E1750E1753.Google Scholar
Capatina, C, Paluzzi, A, Mitchell, R & Karavitaki, N. (2015). Diabetes insipidus after traumatic brain injury. J Clin Med 4, 14481462.Google Scholar
Carmichael, M S, Humbert, R, Dixen, J, Palmisano, G, Greenleaf, W & Davidson, J M. (1987). Plasma oxytocin increases in the human sexual response. J Clin Endocr Metab 64, 2731.Google Scholar
Chard, T. (1989). Fetal and maternal oxytocin in human parturition. Am J Perinatol 6, 145152.Google Scholar
Christ-Crain, M & Fenske, W. (2016). Copeptin in the diagnosis of vasopressin-dependent disorders of fluid homeostasis. Nat Revs Endocr 12,168176.Google Scholar
Cobo, E. (1973). Effect of different doses of ethanol on the milk-ejecting reflex in lactating women. Am J Obs Gynecol 115, 817821.CrossRefGoogle ScholarPubMed
Coiro, V, Alboni, A, Gramellini, D et al. (1992 ). Inhibition by ethanol of the oxytocin response to breast stimulation in normal women and the role of endogenous opioids. Acta Endocr 126, 213216.Google Scholar
de Jong, T R, Menon, R, Bludau, A et al. (2015). Salivary oxytocin concentrations in response to running, sexual self-stimulation, breastfeeding and the TSST: the Regensburg Oxytocin Challenge (ROC) study. Psychoneuroendocr 62, 381388.Google Scholar
Dudás, B, Semeniken, K R & Merchenthaler, I. (2006). Morphological substrate of the catecholaminergic input of the vasopressin neuronal system in humans. J Neuroendocr 18, 895901.Google Scholar
Dumais, K M & Veenema, A H. (2016). Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior. Front Neuroendocr 40, 123.Google Scholar
Fenske, W, Sandner, B & Christ-Crain, M. (2016). A copeptin-based classification of the osmoregulatory defects in the syndrome of inappropriate antidiuresis. Best Prac Res Clin Endocr Metab 30, 219233.CrossRefGoogle ScholarPubMed
Fenske, W K, Schnyder, I, Koch, G et al. (2018a). Release and decay kinetics of copeptin vs AVP in response to osmotic alterations in healthy volunteers. J Clin Endocr Metab 103, 505513.Google Scholar
Fenske, W, Refardt, J, Chifu, I et al. (2018b). A copeptin-based approach in the diagnosis of diabetes insipidus. New Engl J Med 379, 428439.CrossRefGoogle ScholarPubMed
Freeman, S M, Smith, A L, Goodman, M M & Bales, K L. (2017). Selective localization of OXYtocin receptors and vasopressin 1a receptors in the human brainstem. Social Neurosci 12, 113123.Google Scholar
Fuchs, A R, Romero, R, Keefe, D, Parra, M, Oyarzun, E & Behnke, E. (1991). Oxytocin secretion and human parturition: pulse frequency and duration increase during spontaneous labor in women. Am J Obstet Gynecol 165, 15151523.Google Scholar
Fuxe, K, Andersson, K, Eneroth, P, Härfstrand, A & Agnati, L F. (1989). Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocr 14, 1941.Google Scholar
Giel, K, Zipfel, S & Hallschmid, M. (2017). Oxytocin and eating disorders: a narrative review on emerging findings and perspectives. Curr Neuropharmacol 16, 11111121.Google Scholar
Hammer, M & Engell, H C. (1982). Episodic secretion of vasopressin in man. Acta Endocr 101, 517523.Google Scholar
Hrabovszky, E, Kallo, I, Steinhauser, A, Merchenthaler, I, Coen, C W, Petersen, S L & Liposits, Z. (2004). Estrogen receptor-β in oxytocin and vasopressin neurons of the rat and human hypothalamus: immunocytochemical and in situ hybridization studies. J Comp Neurol 473, 315333.Google Scholar
Iovino, M, Giagulli, V A, Licchelli, B, Iovino, E, Guastamacchia, E & Triggiani, V. (2016). Synaptic inputs of neural afferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr Metab Imm Disord: Drug Targets 16, 276287.Google Scholar
Ishunina, T A & Swaab, D F. (1999). Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus; size changes in relation to age and sex. J Clin Endocr Metab 84, 46374644.Google Scholar
Jean-Alphonse, F, Perkovska, S, Frantz, M-C et al. (2009). Biased agonist pharmacochaperones of the AVP V2 receptor may treat congenital nephrogenic diabetes insipidus. J Am Soc Nephrol 20, 21902203.Google Scholar
Jordan, D, Tafani, J A M, Ries, C et al. (1996). Evidence for multiple opioid receptors in the human posterior pituitary. J Neuroendocr 8, 883887.Google Scholar
Kendrick, K M, Guastella, A J & Becker, B. (2017). Overview of human oxytocin research. Curr Topics Behav Neurosci 35, 321348.Google Scholar
Kim, S H, Bennett, P R & Terzidou, V. (2017). Advances in the role of oxytocin receptors in human parturition. Mol Cell Endocr 449, 5663.Google Scholar
Kirkpatrick, M G, Francis, S M, Lee, R, de Wit, H & Jacob, S. (2014). Plasma oxytocin concentrations following MDMA or intranasal oxytocin in humans. Psychoneuroendocr 46, 2331.Google Scholar
Krüger, T H C, Haake, P, Chereath, D et al. (2003). Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J Endocr 177, 5764.Google Scholar
Lawson, E A. (2017). The effects of oxytocin on eating behaviour and metabolism in humans. Nat Revs Endocr 13, 700709.Google Scholar
Lawson, E A, Marengi, D A, DeSanti, R L, Holmes, T M, Schoenfeld, D A & Tolley, C J. (2015). Oxytocin reduces caloric intake in men. Obesity 23, 950956.Google Scholar
Lee, R, Garcia, F, van de Kar, L D, Hauger, R D & Coccaro, E F. (2003). Plasma oxytocin in response to pharmaco-challenge to D-fenfluramine and placebo in healthy men. Psych Res 118, 129136.Google Scholar
Leng, G & Ludwig, M. (2016). Intranasal oxytocin: myths and delusions. Biol Psych 79, 243250.Google Scholar
Lewandowski, K C & Brabant, G. (2016). Potential clinical utility of copeptin (C-terminal provasopressin) measurements in clinical medicine. Exp Clin Endocr Diabetes 124, 173177.Google Scholar
Libber, S, Harrison, H & Spector, D. (1986). Treatment of nephrogenic diabetes insipidus with prostaglandin synthesis inhibitors. J Pediatr 108, 305311.Google Scholar
Lucas, J W & Zada, G. (2012). Imaging of the pituitary and parasellar region. Semin Neurol 32, 320331.Google Scholar
McNeilly, A S, Robinson, I C, Houston, M J & Howie, P W. (1983). Release of oxytocin and prolactin in response to suckling. Br Med J 286, 257259.Google Scholar
Meyer-Lindenberg, A, Domes, G, Kirsch, P & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Revs Neurosci 12, 524538.Google Scholar
Miller, G. (2013). The promise and perils of oxytocin. Science 339, 267269.Google Scholar
Morgenthaler, N G, Struck, J, Jochberger, S & Dünser, M W. (2008). Copeptin: clinical use of a new biomarker. Trends Endocr Metab 19, 4349.Google Scholar
Morris, M S, Domino, E F & Domino, S E. (2010). Opioid modulation of oxytocin release. J Clin Pharmacol 50, 11121117.Google Scholar
Nissen, E, Uvnäs-Moberg, K, Svensson, K, Stock, S, Widström, A-M & Winberg, J. (1996). Different patterns of oxytocin, prolactin but notcortisol release during breastfeeding in women delivered by Caesarean section or by the vaginal route. Early Hum Develop 45, 103118.Google Scholar
Olszewski, P K, Klockars, A & Levine, A S. (2017). Oxytocin and potential benefits for obesity treatment. Curr Opin Endocr Diabetes Obes 24, 320325.Google Scholar
Ott, V, Finlayson, G, Lehnert, H et al. (2013). Oxytocin reduces reward-driven food intakein humans. Diabetes 62, 34183425.Google Scholar
Olza-Fernández, I, Gabriel, M A N, Gil-Sanchez, A, Garcia-Segura, L M & Arevalo, M A. (2014). Neuroendocrinology of childbirth and mother–child attachment: the basis of an etiopathogenic model of perinatal neurobiological disorders. Front Neuroendocr 35, 459472.Google Scholar
Parker, K J, Oztan, O, Libove, R A et al. (2017). Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Nat Acad Sci USA 114, 81198124.Google Scholar
Radant, A, Peskind, E R, Wilkinson, C W et al. (1992). Neurohypophyseal and pituitary-adrenocortical responses to the alpha-1 agonist methoxamine in humans. Neuroendocr 55, 361366.Google Scholar
Robertson, G L. (2006). Regulation of arginine vasopressin in the syndromeof inappropriate antidiuresis. Am J Med 119, S36S42.Google Scholar
Rondon-Berrios, H & Berl, T. (2016). Vasopressin receptor antagonists: characteristics and clinical role. Best Prac Res Clin Endocr Metab 30, 289303.Google Scholar
Rondon-Berrios, H & Berl, T. (2017). Vasopressin receptor antagonists in hyponatremia: uses and misuses. Front Med 4, 141.Google Scholar
Scantamburlo, G, Hansenne, M, Fuchs, S et al. (2005). AVP- and OT-neurophysins response to apomorphine and clonidine in major depression. Psychoneuroendocr 30, 839845.Google Scholar
Semeniken, K, Merchenthaler, I, Hua, W & Dudás, B. (2009). Catecholaminergic input to the oxytocin neurosecretory system in the human hypothalamus. J Chem Neuroanat 37, 229233.Google Scholar
Shen, H. (2015). The hard science of oxytocin. Nature 522, 410412.Google Scholar
Shilling, P D & Feifel, D. (2016). Potential of oxytocin in the treatment of schizophrenia. CNS Drugs 30, 193208.Google Scholar
Simmler, L D, Hysek, C M & Liechti, M E. (2011). Sex differences in the effects of MDMA (ecstasy) on plasma copeptin in healthy subjects. J Clin Endocr Metab 96, 28442850.Google Scholar
Sladek, C D & Kapoor, J R. (2001). Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 171, 200209.Google Scholar
Sofroniew, M V, Weindl, A, Schrell, U & Wetzstein, R. (1981). Immunohistochemistry of vasopressin, oxytocin and neurophysin in the hypothalamus and extrahypothalamic regions of the human and primate brain. Acta Histochem Suppl 24, 7995.Google Scholar
Sukhov, R R, Walker, L C, Rance, N E, Price, D L & Young, WS III. (1993). Vasopressin and oxytocin gene expression in the human hypothalamus. J Comp Neurol 337, 295306.Google Scholar
Tauber, M, Boulanouar, K, Diene, G et al. (2017). The use of oxytocin to improve feeding and social skills in infants with Prader–Willi syndrome. Pediatrics 139, e20162976.Google Scholar
Ueda, T, Yokoyama, Y, Irahara, M & Aono, T. (1994). Influence of psychological stress on suckling-induced pulsatile oxytocin secretion. Obstet Gynecol 84, 259262.Google Scholar
Vasicka, A, Kumaresan, P, Hans, G S & Kumaresan, M. (1978). Plasma oxytocin in initiation of labor. Am J Obstet Gynecol 130, 263273.Google ScholarPubMed
Vuong, C, Van Uum, S H M, O’Dell, L E, Lutfy, K & Friedman, T C. (2010). The effects of opioids and opioid analogs on animal and human endocrine systems. Endocr Revs 31, 98132.Google Scholar
Weiskopf, R B, Reid, I A, Fisher, D M, Holmes, M A, Rosen, J I & Keil, L C. (1987). Effects of fentanyl on vasopressin secretion in human subjects. J Pharmacol Exp Therap 242, 970973.Google Scholar
Wood, C M, Butler, R J, Penney, M D & Holland, P C. (1994). Pulsatile release of arginine vasopressin (AVP) and its effect on response to desmopressin in enuresis. Scand J Urol Nephrol Suppl 163, 93101.Google Scholar
Young, L J & Barrett, C E. (2015). Can oxytocin treat autism? Science 347, 825826.Google Scholar
Zhang, H, Wu, C, Chen, Q, Chen, X, Xu, Z, Wu, J & Cai, D. (2013). Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS ONE 8, e61477.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Posterior Pituitary
  • Michael Wilkinson, Dalhousie University, Nova Scotia, S. Ali Imran, Dalhousie University, Nova Scotia
  • Book: Clinical Neuroendocrinology
  • Online publication: 24 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108149938.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Posterior Pituitary
  • Michael Wilkinson, Dalhousie University, Nova Scotia, S. Ali Imran, Dalhousie University, Nova Scotia
  • Book: Clinical Neuroendocrinology
  • Online publication: 24 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108149938.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Posterior Pituitary
  • Michael Wilkinson, Dalhousie University, Nova Scotia, S. Ali Imran, Dalhousie University, Nova Scotia
  • Book: Clinical Neuroendocrinology
  • Online publication: 24 December 2018
  • Chapter DOI: https://doi.org/10.1017/9781108149938.010
Available formats
×