Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-15T18:54:04.739Z Has data issue: false hasContentIssue false

IV.E.2 - Celiac Disease

from IV.E - Food-Related Disorders

Published online by Cambridge University Press:  28 March 2008

Kenneth F. Kiple
Affiliation:
Bowling Green State University, Ohio
Get access

Summary

Historical Perspective

Celiac disease has been recognized for centuries (Dowd and Walker-Smith 1974) by physicians aware of its major symptoms of diarrhea and gastrointestinal distress accompanied by a wasting away in adults and a failure to grow in children. The Greek physician Aretaeus (first century A.D.) called the condition coeliac diathesis – coeliac deriving from the Greek word koeliakos, or abdominal cavity. The British physician Samuel Gee provided what is generally considered the first modern, detailed description of the condition, which he termed the coeliac affection in deference to Aretaeus, in a lecture presented at St. Bartholomew’s Hospital in London (Gee 1888). At present, celiac disease (or, especially in Britain, coeliac disease) is the most commonly used term for the condition, although various others may be encountered, including celiac syndrome, celiac sprue, nontropical sprue, and glutensensitive enteropathy.

There were perceptions, certainly since Gee’s time, that celiac disease was a consequence of, or at least affected by, diet. Gee (1888: 20) noted that “[a]child, who was fed upon a quart of the best Dutch mussels daily, throve wonderfully, but relapsed when the season for mussels was over.” Such associations with diet led to wide-ranging dietary prescriptions and proscriptions (Haas 1924; Sheldon 1955; Weijers, Van de Kamer, and Dicke 1957; Anderson 1992). Some physicians recommended exclusion of fats – others, exclusion of complex carbohydrates. At times, so many restrictions were applied simultaneously that it became impossible to maintain a satisfactory intake of calories.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S. F., Gish, W., Miller, W., et al. 1990. Basic local alignment search tool. Journal of Molecular Biology 215.CrossRefGoogle ScholarPubMed
Ammerman, A. J., and Cavalli-Sforza, L. L.. 1971. Measuring the rate of spread of early farming in Europe. Man 6.CrossRefGoogle Scholar
Anderson, C. M. 1992. The evolution of a successful treatment for coeliac disease. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Anderson, C. M., Frazer, A. C., French, J. M., et al. 1952. Coeliac disease: Gastrointestinal studies and the effect of dietary wheat flour. Lancet 1.Google ScholarPubMed
Ansaldi, N., Tavassoli, K., Faussone, D., et al. 1988. Clinical and histological behaviour of previously diagnosed children with coeliac disease when rechallenged with gluten. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J.. Leeds, England.Google Scholar
Arnaud-Battandier, N. Cerf-Bensussan, Amsellem, R., and Schmitz, J.. 1986. Increased HLA-DR expression by enterocytes in children with celiac disease. Gastroenterology 91.CrossRefGoogle ScholarPubMed
Ascher, H., and Kristiansson, B.. 1994. Childhood coeliac disease in Sweden. Lancet 344.CrossRefGoogle ScholarPubMed
Auricchio, S., Ritis, G., Vincenzi, M., et al. 1984. Agglutinating activity of gliadin-derived peptides from bread wheat: Implications for coeliac disease pathogenesis. Biochemical and Biophysical Research Communications 121.CrossRefGoogle ScholarPubMed
Baker, P. G., and Read, A. E.. 1976. Oats and barley toxicity in coeliac patients. Postgraduate Medical Journal 52.CrossRefGoogle ScholarPubMed
Bayless, T. M., Yardley, J. H., and Hendrix, T. R.. 1974. Coeliac disease and possible disease relationships. In Coeliac disease: Proceedings of the Second International Coeliac Symposium, ed. Th, W.. Hekkens, J. M. and Peña, A. S.. Leiden, the Netherlands.Google Scholar
Beccari, J. B. 1745. De frumento. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii, 7 vols. II, Part 1. Bologna.Google Scholar
Bernardin, J. E., Saunders, R. M., and Kasarda, D. D.. 1976. Absence of carbohydrate in celiac-toxic A-gliadin. Cereal Chemistry 53.Google Scholar
Bietz, J. A. 1982. Cereal prolamin evolution revealed by sequence analysis. Biochemical Genetics 20.CrossRefGoogle ScholarPubMed
Blanco, A., Resta, P., Simeone, R., et al. 1991. Chromosomal location of seed storage protein genes in the genome of Daspyrum villosum (L.) Candargy. Theoretical and Applied Genetics 82.CrossRefGoogle ScholarPubMed
Booth, C. C., Losowsky, M. S., Walker-Smith, J. A., and Whitney, J. D. W.. 1991. Inter-laboratory variation in gluten detection by ELISA kit. Lancet 337.CrossRefGoogle ScholarPubMed
Brandborg, L. L., Rubin, C. E., and Quinton, W. E.. 1959. A multipurpose instrument for suction biopsy of the esophagus, stomach, small bowel, and colon. Gastroenterology 37.Google ScholarPubMed
Bronstein, H. D., Haeffner, L. J., and Kowlessar, O. D.. 1966. Enzymatic digestion of gliadin: The effect of the resultant peptides in adult celiac disease. Clinica Chimica Acta 14.CrossRefGoogle ScholarPubMed
Bruce, G., Woodley, J. F., and Swan, C. J. H.. 1984. Breakdown of gliadin peptides by intestinal brush borders from coeliac patients. Gut 25.CrossRefGoogle ScholarPubMed
Cade, R., Wagemaker, H., Privette, R. M., et al. 1990. The effect of dialysis and diet on schizophrenia. In Psychiatry: A World Perspective, Vol. 3, ed. Stefanis, C. N., Rabavilas, A. D., and Soldatos, C. R.. New York.Google Scholar
Campbell, J. A. 1992. Dietary management of celiac disease: Variations in the gluten-free diet. Journal of the Canadian Dietetic Association 53.Google Scholar
Castro, M., Crino, A., Papadatou, B., et al. 1993. Down’s syndrome and celiac disease: The prevalence of high IgAantigliadin antibodies and HLA-DR and DQ antigens in trisomy 21. Journal of Pediatric Gastroenterology and Nutrition 16.CrossRefGoogle ScholarPubMed
Chicz, R. M., Urban, R. G., Lane, W. S., et al. 1992. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358.CrossRefGoogle ScholarPubMed
Ciclitira, P. J., Ellis, H. J., and Fagg, N. L. K.. 1984. Evaluation of a gluten free product containing wheat gliadin in patients with coeliac disease. British Medical Journal 289.CrossRefGoogle ScholarPubMed
Ciclitira, P. J., Evans, D. J., Fagg, N. L. K., et al. 1984. Clinical testing of gliadin fractions in coeliac disease. Clinical Science 66.CrossRefGoogle Scholar
Ciclitira, P. J., Nelufer, J. M., Ellis, H. J., and Evans, D. J.. 1986. The effect of gluten on HLA-DR in the small intestinal epithelium of patients with coeliac disease. Clinical and Experimental Immunology 63.Google ScholarPubMed
Collin, P., and Maki, M.. 1994. Associated disorders in coeliac disease: Clinical aspects. Scandinavian Journal of Gastroenterology 29.CrossRefGoogle ScholarPubMed
Coppo, R., Bassolo, B., Rollino, C., et al. 1986. Dietary gluten and primary IgA nephropathy. New England Journal of Medicine 315.Google ScholarPubMed
Cornell, H. J. 1974. Gliadin degradation and fractionation. In Coeliac disease: Proceedings of the Second International Coeliac Symposium, ed. Th, W.. Hekkens, J. M. and Peña, A. S.. Leiden, the Netherlands.Google Scholar
Cornell, H. J. 1988. Wheat proteins and celiac disease. Comments in Agricultural and Food Chemistry 1.Google Scholar
Cronquist, A. 1968. The evolution of flowering plants.Boston.Google Scholar
Crosby, W. H., and Kugler, H. W.. 1957. Intraluminal biopsy of the small intestine: The intestinal biopsy capsule. American Journal of Digestive Diseases 2.CrossRefGoogle ScholarPubMed
Cuadro, C., Ayet, G., Burbano, C., et al. 1995. Occurrence of saponins and sapogenols in Andean crops. Journal of the Science of Food and Agriculture 67.Google Scholar
De Ritis, G., Auricchio, S., Jones, H. W., et al. 1988. In vitro (organ culture) studies of the toxicity of specific A-gliadin peptides in celiac disease. Gastroenterology 94.CrossRefGoogle ScholarPubMed
De Ritis, G., Occorsio, P., Auricchio, S., et al. 1979. Toxicity of wheat flour proteins and protein-derived peptides for in vitro developing intestine from rat fetus. Pediatric Research 13.CrossRefGoogle ScholarPubMed
Dias, J., and Walker-Smith, J.. 1988. Down’s syndrome and coeliac disease. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J. A.. Leeds, England.Google Scholar
Dicke, W. K., Weijers, H. A., and Kamer, J. H.. 1953. Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of celiac disease. Acta Paediatrica (Stockholm) 42.CrossRefGoogle Scholar
Dissanayake, A. S., Truelove, S. C., and Whitehead, R.. 1974. Lack of harmful effects of oats on small-intestinal mucosa in coeliac disease. British Medical Journal 4.CrossRefGoogle Scholar
Dobbins, W. O., and Rubin, C. E.. 1964. Studies of the rectal mucosa in celiac sprue. Gastroenterology 47.Google ScholarPubMed
Dohan, F. C. 1966. Cereals and schizophrenia: Data and hypothesis. Acta Psychiatrica Scandinavica 42.CrossRefGoogle ScholarPubMed
Dohan, F. C. 1988. Genetic hypothesis of idiopathic schizophrenia: Its exorphin connection. Schizophrenia Bulletin 14.CrossRefGoogle ScholarPubMed
Dowd, B., and Walker-Smith, J.. 1974. Samuel Gee, Aretaeus, and the coeliac affection. British Medical Journal 2.CrossRefGoogle Scholar
Dvorak, J., Kasarda, D. D., Dietler, M. D., et al. 1986. Chromosomal location of seed storage protein genes in the genome of Elytrigia elongata. Canadian Journal of Genetics and Cytology 28.CrossRefGoogle Scholar
Egan-Mitchell, B., Fottrell, P. F., and McNicholl, B.. 1978. Prolonged gluten tolerance in treated coeliac disease. In Perspectives in coeliac disease, ed. McNicholl, B., McCarthy, C. F., and Fottrell, P. F.. Baltimore, Md.Google Scholar
Ejderhamn, J., Veress, B., and Strandvik, B.. 1988. The longterm effect of continual ingestion of wheat starch–containing gluten-free products in coeliac patients. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J.. Leeds, England.Google Scholar
Engler, J. A., Hoppe, M. S., and Bree, M. P.. 1983. The nucleotide sequence of the genes encoded in early region 2b of human adenovirus type 7. Gene 21.CrossRefGoogle ScholarPubMed
Fais, S., Maiuri, L., Pallone, F., et al. 1992. Gliadin induces changes in the expression of MHC-class II antigens by human small intestinal epithelium. Organ culture studies with coeliac mucosa. Gut 33.CrossRefGoogle Scholar
Falchuk, G. M., Gebhard, R. L., Sessoms, C., and Strober, W.. 1974. An in vitro model of gluten-sensitive enteropathy. Journal of Clinical Investigation 53.Google Scholar
Falchuk, Z. M., Nelson, D. L., Katz, A. J., et al. 1980. Gluten-sensitive enteropathy: Influence of histocompatibility type on gluten sensitivity in vitro. Journal of Clinical Investigation 66.CrossRefGoogle ScholarPubMed
Falchuk, Z. M., Rogentine, F. N., and Strober, W.. 1972. Predominance of histocompatibility antigen HL-A8 in patients with gluten-sensitive enteropathy. Journal of Clinical Investigation 51.CrossRefGoogle ScholarPubMed
Fluge, Ø., Sletten, K., Fluge, G., et al. 1994. In vitro toxicity of purified gluten peptides tested by organ culture. Journal of Pediatric Gastroenterology and Nutrition 18.CrossRefGoogle ScholarPubMed
Forssell, F., and Wieser, H.. 1994. Dinkelweizen und Zöliakie. Bericht 1994, Deutsche Forschungsanstalt für Lebensmittelchemie.Garching, Germany.Google Scholar
Frazer, A. C. 1956. Discussion on some problems of steatorrhea and reduced stature. Proceedings of the Royal Society of Medicine 49.Google Scholar
Frazer, A. C., Fletcher, M. B., Ross, C. A. C., et al. 1959. Gluteninduced enteropathy: The effect of partially-digested gluten. Lancet 2.Google Scholar
Freedman, A. R., Galfre, G., Gal, E., et al. 1987a. Detection of wheat gliadin contamination of gluten-free foods by a monoclonal antibody dot immunobinding assay. Clinica Chimica Acta 166.CrossRefGoogle Scholar
Freedman, A. R., Galfre, G., Gal, E., et al. 1987b. Monoclonal antibody ELISA to quantitate wheat gliadin contamination of gluten-free foods. Journal of Immunological Methods 98.CrossRefGoogle Scholar
Fry, L. 1992. Dermatitis herpetiformis. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Gautam, A. M., Lock, C. B., Smilek, D. E., et al. 1994. Minimum structural requirements for peptide presentation by major histocompatibility complex class II molecules: Implications in induction of immunity. Proceedings of the National Academy of Sciences (U.S.) 91.CrossRefGoogle Scholar
Gee, Samuel. 1888. On the coeliac affection. St. Bartholomew’s Hospital Reports 24.Google Scholar
Gjertsen, H. A., Lundin, K. E. A., Sollid, L. M., et al. 1994. T cells recognize a peptide derived from alpha-gliadin presented by the celiac disease associated HLA-DQ (alpha 1*0501, beta 1*0201) heterodimer. Human Immunology 39.CrossRefGoogle ScholarPubMed
Gjertsen, H. A., Sollid, L. M., Ek, J., et al. 1994. T cells from the peripheral blood of coeliac disease patients recognize gluten antigens when presented by HLA-DR, -DQ, or -DP molecules. Scandinavian Journal of Immunology 39.CrossRefGoogle ScholarPubMed
Gobbi, G., Bouquet, F., Greco, L., et al. 1992. Coeliac disease, epilepsy, and cerebral calcifications. Lancet 340.Google ScholarPubMed
Gray, G. 1991. Dietary protein processing: Intraluminal and enterocyte surface effects. In Handbook of physiology: The gastrointestinal system IV. New York.Google Scholar
Gray, G. 1992. Starch digestion and absorption in nonruminants. Journal of Nutrition 122.CrossRefGoogle ScholarPubMed
Greco, L., Maki, M., Donato, F. Di, and Visakorpi, J. K.. 1992. Epidemiology of coeliac disease in Europe and the Mediterranean area. A summary report on the multicentre study by the European Society of Pediatric Gastroenterology and Nutrition. In Common food intolerances 1: Epidemiology of coeliac disease, ed. Auricchio, S. and Visakorpi, J. K.. Basel.Google Scholar
Greenberg, D. A., Hodge, S. E., and Rotter, J. I.. 1982. Evidence for recessive and against dominant inheritance at the HLA-“linked” locus in celiac disease. American Journal of Human Genetics 34.Google Scholar
Haas, S. V. 1924. Value of banana treatment of celiac disease. American Journal of Diseases of Children 28.Google Scholar
Harlan, J. R. 1977. The origins of cereal agriculture in the Old World. In Origins of agriculture, ed. Reed, C. A.. The Hague.Google Scholar
Harlan, J. R., and Wet, J. M. J.. 1975. On Ö. Winge and a prayer: The origins of polyploidy. Botanical Review 41.CrossRefGoogle Scholar
Hekkens, W. Th. J. M. 1978. The toxicity of gliadin: A review. In Perspectives in coeliac disease, ed. McNicholl, B., McCarthy, C. F., and Fottrell, P. E.. Baltimore, Md.Google Scholar
Hekkens, W. Th. J. M., Ch, A. J.. Haex, and Willighagen, R. G. J.. 1970. Some aspects of gliadin fractionation and testing by a histochemical method. In Coeliac disease, ed. Booth, C. C. and Dowling, R. H.. London.Google Scholar
Hekkens, W. Th. J. M., Aarsen, C. J. den, Gilliams, J. P., Lems-Van Kan, Ph., and Bouma-Frölich, G.. 1974. Alphagliadin structure and degradation. In Coeliac disease: Proceedings of the Second International Coeliac Symposium, ed. Th, W.. Hekkens, J. M. and Peña, A. S.. Leiden, Netherlands.Google Scholar
Hekkens, W. Th. J. M., and Twist-de Graaf, M.. 1990. What is gluten-free – levels and tolerances in the gluten-free diet. Die Nahrung 34.CrossRefGoogle ScholarPubMed
Hernandez, J. L., Michalski, J. P., McCombs, C. C., et al. 1991. Evidence for a dominant gene mechanism underlying celiac disease in the west of Ireland. Genetic Epidemiology 8.CrossRefGoogle ScholarPubMed
Hitchcock, A. S. 1950. Manual of the grasses of the United States. Second edition, rev. A. Chase. USDA Miscellaneous Publication No. 200. Washington, D.C.Google Scholar
Holmes, G. K. T., Prior, P., Lane, M. R., et al. 1989. Malignancy in coeliac disease – effect of a gluten free diet. Gut 30.CrossRefGoogle ScholarPubMed
Holmes, G. K. T., and Thompson, H.. 1992. Malignancy as a complication of coeliac disease. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Jos, J., Charbonnier, L., Mossé, J., et al. 1982. The toxic fraction of gliadin digests in coeliac disease. Isolation by chromatography on Biogel P-10. Clinica Chimica Acta 119.CrossRefGoogle ScholarPubMed
Jos, J., Charbonnier, L., Mougenot, J. F., et al. 1978. Isolation and characterization of the toxic fraction of wheat gliadin in coeliac disease. In Perspectives in coeliac disease, ed. McNicholl, B., McCarthy, C. F., and Fottrell, P. E.. Baltimore, Md.Google Scholar
Jos, J., Tand, M. F., Arnaud-Battandier, F., et al. 1983. Separation of pure toxic peptides from a beta-gliadin subfraction using high-performance liquid chromatography. Clinica Chimica Acta 134.CrossRefGoogle ScholarPubMed
Kagnoff, M. F. 1992. Genetic basis of coeliac disease: Role of HLA genes. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Kagnoff, M. F., Austin, R. F., Hubert, J. J., et al. 1984. Possible role for a human adenovirus in the pathogenesis of celiac disease. Journal of Experimental Medicine 160.CrossRefGoogle ScholarPubMed
Kagnoff, M. F., Harwood, J. I., Bugawan, T. L., and Erlich, H. A.. 1989. Structural analysis of the HLA-DR, -DQ, and -DP alleles on the celiac disease–associated HLA-DR3 (DRw17) haplotype. Proceedings of the National Academy of Sciences (U.S.) 86.CrossRefGoogle ScholarPubMed
Kagnoff, M. F., Morzycka-Wroblewska, E., and Harwood, J. I.. 1994. Genetic susceptibility to coeliac disease. In Gastrointestinal immunology and gluten-sensitive disease, ed. Feighery, C. and O'Farrelly, C.. Dublin.Google Scholar
Karagiannis, J. A., Priddle, J. D., and Jewell, D. P.. 1987. Cellmediated immunity to a synthetic gliadin peptide resembling a sequence from adenovirus 12. Lancet 1.Google Scholar
Kasarda, D. D. 1980. Structure and properties of alpha-gliadins. Annales de Technologie Agricole (Paris) 29.Google Scholar
Kasarda, D. D. 1981. Toxic proteins and peptides in celiac disease: Relations to cereal genetics. In Food, nutrition, and evolution: Food as an environmental factor in the genesis of human variability, ed. Walcher, D. W. and Kretchmer, N.. New York.Google Scholar
Kasarda, D. D., Okita, T. W., Bernardin, J. E., et al. 1984. Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum). Proceedings of the National Academy of Sciences of the United States of America 81.CrossRefGoogle Scholar
Katz, S. I., Falchuk, Z. M., Dahl, M. V., et al. 1972. HL-A8: A genetic link between dermatitis herpetiformis and gluten-sensitive enteropathy. Journal of Clinical Investigation 51.CrossRefGoogle ScholarPubMed
Kendall, M. J., Cox, P. S., Schneider, R., and Hawkins, C. F.. 1972. Gluten subfractions in coeliac disease. Lancet 2.Google ScholarPubMed
Kihara, T., Kukida, S., and Ichikawa, Y.. 1977. Ultrastructural studies of the duodenal epithelium of Japanese celiac sprue. Journal of Clinical Electron Microscopy 10.Google Scholar
Krainick, H. G., and Mohn, G.. 1959. Weitere Untersuchungen über den schädlichen Weizenmehle-effekt bei der Coliakie. 2. Die Wirkung der enzymatischen Abbauprodukte des Gliadin. Helvetica Paediatrica Acta 14.Google Scholar
Kreft, I., and Javornik, B.. 1979. Buckwheat as a potential source of high quality protein. In Seed protein improvement in cereals and grain legumes, Vol. 2. International Atomic Energy Agency. Vienna.Google Scholar
Kreis, M., Shewry, P. R., Forde, B. G., et al. 1985. Structure and evolution of seed storage proteins and their genes with particular reference to those of wheat, rye, and barley. Oxford Surveys of Plant Molecular and Cell Biology 2.Google Scholar
Kumar, P. 1994. Dermatitis herpetiformis. In Gastrointestinal immunology and gluten-sensitive disease, ed. Feighery, C. and O'Farrelly, C.. Dublin.Google Scholar
Kumar, P. J., Sinclair, T. S., Farthing, M. J. G., et al. 1984. Clinical testing of pure gliadins in coeliac disease. Gastroenterology 86.Google Scholar
Lafiandra, D., Benedettelli, S., Mariotta, B., and Porceddu, E.. 1989. Chromosomal location of gliadin coding genes in T. aestivum ssp. spelta and evidence on the lack of components controlled by Gli-2 loci in wheat aneuploids. Theoretical and Applied Genetics 78.CrossRefGoogle Scholar
Lähdeaho, M.-L., Parkonnen, P., Reunala, T., et al. 1993. Antibodies to adenovirus E1b protein derived peptides of enteric adenovirus type 40 are associated with coeliac disease and dermatitis herpetiformis. Clinical Immunology and Immunopathology 69.CrossRefGoogle ScholarPubMed
Lajolo, F. M., Marquez, U. M. Lanfer, Filesetti-Cozzi, T. M. C. C., and McGregor, D. Ian. 1991. Chemical Composition and toxic compounds in rapeseed (Brassica napus L.) cultivars grown in Brazil. Journal of Agricultural and Food Chemistry 39.CrossRefGoogle Scholar
Lew, E. J.-L., Kuzmicky, D. D., and Kasarda, D. D.. 1992. Characterization of LMW-glutenin subunits by RPHPLC, SDS-PAGE, and N-terminal amino acid sequencing. Cereal Chemistry 69.Google Scholar
Loft, D. E., Marsh, M. N., and Crowe, P.. 1990. Rectal gluten challenge and the diagnosis of coeliac disease. Lancet 335.CrossRefGoogle Scholar
Logan, R. F. A. 1992a. Epidemiology of celiac disease. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Logan, R. F. A. 1992b. Problems and pitfalls in the epidemiology of coeliac disease. In Common food intolerances 1: Epidemiology of coeliac disease, ed. Auricchio, S. and Visakorpi, J. K.. Basel.Google Scholar
Logan, R. F. A., Rifkind, E. A., Turner, I. D., and Ferguson, A.. 1989. Mortality in celiac disease. Gastroenterology 97.CrossRefGoogle ScholarPubMed
Lorenz, K. 1990. Cereals and schizophrenia. In Advances in cereal science and technology, Vol. 10, ed. Pomeranz, Y.. St. Paul, Minn.Google Scholar
Lundin, K. E. A., Scott, H., Hansen, T., et al. 1993. Gliadin-specific, HLA-DQ (a1*0501, b1*0201) restricted T cells isolated from the small intestinal mucosa of celiac disease patients. Journal of Experimental Medicine 178.CrossRefGoogle Scholar
Maki, M., Hällstrom, O., Huupponen, T., et al. 1984. Increased prevalence of coeliac disease in diabetes. Archives of Disease in Childhood 59.CrossRefGoogle ScholarPubMed
Maki, M., Holm, K., Ascher, H., and Greco, L.. 1992. Factors affecting clinical presentation of coeliac disease: Role of type and amount of gluten-containing cereals. In Common food intolerances 1: Epidemiology of coeliac disease, ed. Auricchio, S. and Visakorpi, J. K.. Basel.Google Scholar
Maki, M., Koskimies, S., and Visakorpi, J. K.. 1988. Latent coeliac disease. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J. A., 245. Leeds, England.Google Scholar
Mantzaris, G., and Jewell, D. P.. 1991. In vivo toxicity of a synthetic dodecapeptide from A gliadin in patients with coeliac disease. Scandinavian Journal of Gastroenterology 26.CrossRefGoogle ScholarPubMed
Marsh, M. N. 1992a. Gluten, major histocompatibility complex, and the small intestine. Gastroenterology 102.CrossRefGoogle Scholar
Marsh, M. N. 1992b. Mucosal pathology in gluten sensitivity. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
McMillan, S. A., Haughton, D. J., Biggart, J. D., et al. 1991. Predictive value for coeliac disease of antibodies to gliadin, endomysium, and jejunum in patients attending for biopsy. British Medical Journal 303.CrossRefGoogle ScholarPubMed
McNeish, A. S., Rolles, C. J., Nelson, R., et al. 1974. Factors affecting the differing racial incidence of coeliac disease. In Coeliac disease: Proceedings of the Second International Conference, ed. Th, W.. Hekkens, J. M. and Peña, A. S.. Leiden, the Netherlands.Google Scholar
Messer, M., Anderson, C. M., and Hubbard, L.. 1964. Studies on the mechanism of destruction of the toxic action of wheat gluten in coeliac disease by crude papain. Gut 5.CrossRefGoogle ScholarPubMed
Morris, R., and Sears, E. R.. 1967. The cytogenetics of wheat and its relatives. In Wheat and wheat improvement, ed. Quisenberry, K. S. and Reitz, L. P.. Madison, Wis.Google Scholar
Mylotte, M., Egan-Mitchell, B., McCarthy, C. F., and McNicholl, B.. 1973. Incidence of coeliac disease in the west of Ireland. British Medical Journal 24.Google Scholar
Nowak, T. V., Ghisham, F. K., and Schulze-Delrieu, K.. 1983. Celiac sprue in Down’s syndrome: Considerations on a pathogenic link. American Journal of Gastroenterology 78.Google Scholar
O'Farrelly, C. 1994. Wheat protein sensitive disease may be independent of intestinal structural changes. In Gastrointestinal immunology and gluten-sensitive disease, ed. Feighery, C. and O'Farrelly, C.. Dublin.Google Scholar
Offord, R. E., Anand, B. S., Piris, J., and Truelove, S. C.. 1978. Further fractionation of digests of gluten. In Perspectives in coeliac disease, ed. McNicholl, B., McCarthy, C. F., and Fottrell, P. F.. Baltimore, Md.Google Scholar
Osborne, T. B. 1907. The proteins of the wheat kernel.Washington, D.C.CrossRefGoogle Scholar
Peterson, D., and Brinegar, A. C.. 1986. Oat storage proteins. In Oats: Chemistry and technology, ed. Webster, F. H.. St. Paul, Minn.Google Scholar
Rahnotra, G. S., Gelroth, J. A., Glaser, B. K., and Lorenz, K. J.. 1995. Baking and nutritional qualities of a spelt wheat sample. Lebensmittel-Wissenschaft und -Technologie 28.Google Scholar
Reichelt, K. L., Knivsberg, A. M., Lind, G., and Nødland, M.. 1991. Probable etiology and possible treatment of childhood autism. Brain Dysfunction 4.Google Scholar
Rice, J. R., Ham, C. H., and Gore, W. E.. 1978. Another look at gluten in schizophrenia. American Journal of Psychiatry 135.Google Scholar
Rubenstein, I., and Geraghty, D. E.. 1986. The genetic organization of zein. In Advances in cereal science and technology VIII. St. Paul, Minn.Google Scholar
Rubin, C. E., Brandborg, L. H., Flick, A. M., et al. 1962. Studies of celiac sprue. III. The effect of repeated wheat instillation into the proximal ileum of patients on a glutenfree diet. Gastroenterology 43.Google Scholar
Russel, M. W., Mestecky, J., Julian, B. A., and Galla, J. H.. 1986. IgA-associated renal diseases: Antibodies to environmental antigens in sera and deposition of immunoglobulins and antigens in glomeruli. Journal of Clinical Immunology 6.Google Scholar
Sategna-Guidetti, C., Ferfoglia, G., Bruno, M., et al. 1992. Do IgA antigliadin and IgA antiendomysial antibodies show there is latent celiac disease in primary IgA nephropathy?Gut 33.CrossRefGoogle Scholar
Shattock, P., Kennedy, A., Rowell, F., and Berney, T.. 1990. Role of neuropeptides in autism and their relationships with classical neurotransmitters. Brain Dysfunction 3.Google Scholar
Sheldon, W. 1955. Coeliac disease. Lancet 2.Google Scholar
Shewry, P. R., Autran, J.-C., Nimmo, C. C., et al. 1980. N-terminal amino acid sequence homology of storage protein components from barley and a diploid wheat. Nature 286.CrossRefGoogle Scholar
Shewry, P. R., Parmar, S., and Pappin, D. J. C.. 1987. Characterization and genetic control of the prolamins of Haynaldia villosa: Relationship to cultivated species of the Triticeae (rye, wheat, and barley). Biochemical Genetics 25.CrossRefGoogle Scholar
Shewry, P. R., Sabelli, P. A., Parmar, S., and Lafiandra, D.. 1991. Alpha-type prolamins are encoded by genes on chromosomes 4Ha and 6Ha of Haynaldia villosa Schur (syn. Daspyrum villosum L.). Biochemical Genetics 29.CrossRefGoogle Scholar
Shewry, P. R., Smith, S. J., Lew, E. J.-L., and Kasarda, D. D.. 1986. Characterization of prolamins from meadow grasses: Homology with those of wheat, barley, and rye. Journal of Experimental Botany 37.CrossRefGoogle Scholar
Shewry, P. R., Tatham, A. S., and Kasarda, D. D.. 1992. Cereal proteins and celiac disease. In Coeliac disease, ed. Marsh, M. N.. London.Google Scholar
Shiner, M. 1956. Duodenal biopsy. Lancet 1.Google Scholar
Shmerling, D. H., and Shiner, M.. 1970. The response of the intestinal mucosa to the intraduodenal instillation of gluten in patients with coeliac disease in remission. In Coeliac disease, ed. Booth, C. C. and Dowling, R. H.. Edinburgh.Google Scholar
Shorrosh, B. S., Wen, L., Sen, K. C., et al. 1992. A novel cereal storage protein: Molecular genetics of the 19kDa globulin of rice. Plant Molecular Biology 18.CrossRefGoogle Scholar
Simoons, F. J. 1981. Celiac disease as a geographic problem. In Food, nutrition, and evolution: Food as an environmental factor in the genesis of human variability, ed. Walcher, D. N. and Kretschmer, N.. New York.Google Scholar
Sjøstrom, H., Friis, S. U., Nor, O.én, and Anthonsen, D.. 1992. Purification and characterization of antigenic gliadins in coeliac disease. Clinica Chemica Acta 207.CrossRefGoogle Scholar
Skerritt, J. H., and Hill, A. S.. 1990. Monoclonal antibody sandwich enzyme-immunoassays for determination of gluten in foods. Journal of Agricultural and Food Chemistry 38.CrossRefGoogle Scholar
Skerritt, J. H., and Hill, A. S.. 1991. Self-management of dietary compliance in coeliac disease by means of ELISA “home test” to detect gluten. Lancet 337.CrossRefGoogle Scholar
Skerritt, J. H., and Hill, A. S.. 1992. How “free” is “gluten-free”? Relationship between Kjeldahl nitrogen values and gluten protein content for wheat starches. Cereal Chemistry 69.Google Scholar
Sollid, L., Markussen, G., Ek, J., et al. 1989. Evidence for a primary association of coeliac disease to a particular HLADQ a/b heterodimer. Journal of Experimental Medicine 169.CrossRefGoogle Scholar
Srinivasan, U., Leonard, N., Jones, E., et al. 1996. Absence of oats toxicity in adult coeliac disease. British Medical Journal 313.CrossRefGoogle ScholarPubMed
Sterchi, E. E., and Woodley, J. F.. 1977. Peptidases of the human intestinal brush border membrane. In Perspectives in coeliac disease, ed. McNicholl, B., McCarthy, C. F., and Fottrell, P. F.. Baltimore, Md.Google Scholar
Stern, M., Stallmach, A., Gellerman, B., and Wieser, H.. 1988. In vitro testing of gliadin peptides. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J. A.. Leeds, England.Google Scholar
Stevens, F. M., Egan-Mitchell, B., Cryan, E., et al. 1988. Decreasing incidence of coeliac disease. In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J. A., 306. Leeds, England.Google Scholar
Stevens, F. M., Lavelle, E., Kearns, M., et al. 1988. Is IgA nephropathy (Berger’s disease) dermatitis herpetiformis of the kidney? In Coeliac disease: 100 years, ed. Kumar, P. J. and Walker-Smith, J. A.. Leeds, England.Google Scholar
Stevens, F. M., Lloyd, R. S., Geraghty, S. M. J., et al. 1977. Schizophrenia and coeliac disease – the nature of the relationship. Psychological Medicine 7.CrossRefGoogle ScholarPubMed
Stokes, P. L., Asquith, P., Holmes, G. K. T., et al. 1972. Histocompatibility antigens associated with adult coeliac disease. Lancet 1.Google Scholar
Strober, W. 1992. The genetic basis of gluten-sensitive enteropathy. In The genetic basis of common diseases, ed. King, R. A., Rotter, J. I., and Motulsky, A.. New York.Google Scholar
Sturgess, R., Day, P., Ellis, H. J., et al. 1994. Wheat peptide challenge in coeliac disease. Lancet 343.CrossRefGoogle ScholarPubMed
Talley, N. J., Valdovinos, M., Petterson, T. M., et al. 1994. Epidemiology of celiac sprue: A community-based study. American Journal of Gastroenterology 89.Google ScholarPubMed
Tao, H. P., and Kasarda, D. D.. 1989. Two-dimensional gel mapping and N-terminal sequencing of LMW-glutenin subunits. Journal of Experimental Botany 40.CrossRefGoogle Scholar
Thomasson, J. R. 1980. Paleoagrostology: A historical review. Iowa State Journal of Research 54.Google Scholar
Tighe, M. R., and Ciclitira, P. J.. 1993. The implications of recent advances in coeliac disease. Acta Paediatrica 82.CrossRefGoogle ScholarPubMed
Van de Kamer, J. H., and Weijers, H. A.. 1955. Coeliac disease. V. Some experiments on the cause of the harmful effect of wheat gliadin. Acta Paediatrica 44.Google ScholarPubMed
Van de Kamer, J. H., Weijers, H. A., and Dicke, W. K.. 1953. Coeliac disease. IV. An investigation into the injurious constituents of wheat in connection with their action on patients with coeliac disease. Acta Paediatrica (Stockholm) 42.Google ScholarPubMed
Van der Hulst, R. R. W. J., Kreel, B. K., Meyenfeldt, M. F., et al. 1993. Glutamine and the preservation of gut integrity. Lancet 341.CrossRefGoogle ScholarPubMed
Van Roon, J. H., Haex, A. J. Ch., Seeder, W. A., and Jong, J.. 1960. Chemical and biochemical analysis of gluten toxicity. No. II. Gastroenterologia 94.Google Scholar
Visakorpi, J. K. 1969. Diabetes and coeliac disease. Lancet 2.Google Scholar
Walker-Smith, J. A., Guandalini, S., Schmitz, J., et al. 1990. Revised criteria for diagnosis of coeliac disease. Archives of the Diseases of Childhood 65.Google Scholar
Walker-Smith, J. A., Kilby, A., and France, N. E.. 1978. Reinvestigation of children previously diagnosed as coeliac disease. In Perspectives in coeliac disease, ed. Mac-Nicholl, B., McCarthy, C. F., and Fottrell, P. F.. Baltimore, Md.Google Scholar
Wang, S.-Z., and Esen, A.. 1986. Primary structure of a prolinerich zein and its cDNA. Plant Physiology 81.CrossRefGoogle Scholar
Weijers, H. A., Kamer, J. H., and Dicke, W. K.. 1957. Celiac disease. In Advances in pediatrics, Vol. 9, ed. Levine, S. Z.. Chicago.Google Scholar
Wieser, H., and Belitz, H.-D.. 1992. Isolation and fragmentation of the coeliac-active gliadin peptide CT-1. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 194.Google Scholar
Wieser, H., Belitz, H.-D., and Ashkenazi, A.. 1984. Amino acid sequence of the coeliac active peptide B 3142. Zeitschrift für Lebensmittel-Untersuchung und - Forschung 179.CrossRefGoogle ScholarPubMed
Wieser, H., Belitz, H.-D., Ashkenazi, A., and Idar, D.. 1983. Isolation of coeliac active peptide fractions from gliadin. Zeitschrift für Lebensmittel-Untersuchung und - Forschung 176.CrossRefGoogle ScholarPubMed
Wieser, H., Belitz, H.-D., Idar, D., and Ashkenazi, A.. 1986. Coeliac activity of the gliadin peptides CT-1 and CT-2. Zeitschrift für Lebensmittel-Untersuchung und - Forschung 182.CrossRefGoogle ScholarPubMed
Wieser, H., Springer, G., Belitz, H.-D., et al. 1982. Toxicity of different wheat gliadins in coeliac disease. Zeitschrift für Lebensmittel-Untersuchung und -Forschung 175.CrossRefGoogle ScholarPubMed
Woodley, J. F. 1972. Pyrrolidonecarboxyl peptidase activity in normal intestinal biopsies and those from coeliac patients. Clinica Chimica Acta 42.CrossRefGoogle Scholar
Zhai, C. K., Jiang, X. L., Xu, Y. S., and Lorenz, K. J.. 1994. Protein and amino acid composition of Chinese and North American wild rice. Lebensmittel-Wissenschaft und - Technologie 27.Google Scholar
Zioudrou, C., Streaty, R. A., and Klee, W. A.. 1979. Opioid peptides derived from food proteins: The exorphins. The Journal of Biological Chemistry 254.Google ScholarPubMed
Zubillaga, P., Vitoria, J. C., Arrieta, A., et al. 1993. Down’s syndrome and celiac disease. Journal of Pediatric Gastroenterology and Nutrition 16.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×