Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-03T16:51:37.284Z Has data issue: false hasContentIssue false

16 - Fumarate-based hydrogels in regenerative medicine applications

from Part III - Hydrogel scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Steven Lu
Affiliation:
Rice University
Kyobum Kim
Affiliation:
Rice University
Johnny Lam
Affiliation:
Rice University
F. Kurtis Kasper
Affiliation:
Rice University
Antonios G. Mikos
Affiliation:
Rice University
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Hydrogels are an excellent scaffold structure for numerous applications in tissue engineering and regenerative medicine. In particular, they can be used as cell and drug carriers to deliver such therapeutic components directly and locally [1]. Hydrogels can be injected and crosslinked in situ, reducing the need for risky invasive surgeries [2]. In addition, hydrogels can mimic the natural extracellular matrix (ECM) environment, and allow one to control cellular and tissue functions as well as the transport of nutrients and bioactive molecules [3, 4].

Fumarate-based hydrogels are synthetic polymers, allowing flexible control of physical, mechanical, and degradative properties for a desired application [4]. Fumaric acid, the fundamental component of these hydrogel scaffolds, is an unsaturated organic acid that is commonly found in the human body and can be metabolized through the Krebs cycle [5–7]. Polymer chains that contain fumarate units crosslink easily via the unsaturated double bonds and degrade through hydrolysis of the ester bonds in the fumarate group [6–9]. Furthermore, the biodegradable nature of these hydrogels allows neotissue ingrowth and eliminates the need for further surgery to remove the implanted scaffold [5, 10].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Temenoff, J. S., Park, H., Jabbari, E. et al. 2004. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels. J. Biomed. Mater. Res. A, 70, 235–44.CrossRefGoogle ScholarPubMed
Holland, T. A., Tessmar, J. K., Tabata, Y. and Mikos, A. G. 2004. Transforming growth factor-beta 1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment. J. Control. Release, 94, 101–14.CrossRefGoogle ScholarPubMed
Lee, K. Y. and Mooney, D. J. 2001. Hydrogels for tissue engineering. Chem. Rev., 101, 1869–79.CrossRefGoogle ScholarPubMed
Drury, J. L. and Mooney, D. J. 2003. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24, 4337–51.CrossRefGoogle ScholarPubMed
Temenoff, J. S., Kasper, F. K. and Mikos, A. G. 2007. Fumarate-based macromers as scaffolds for tissue engineering applications. In Topics in Tissue Engineering, ed. Ashammakhi, N., Reis, R. L. and Chiellini, E.Oulu: Expertissue E-Book, pp. 6.1–6.16.Google Scholar
Jo, S., Shin, H., Shung, A. K., Fisher, J. P. and Mikos, A. G. 2001. Synthesis and characterization of oligo(poly(ethylene glycol) fumarate) macromer. Macromolecules, 34, 2839–44.CrossRefGoogle Scholar
Sarvestani, A. S., He, X. and Jabbari, E. 2007. Viscoelastic characterization and modeling of gelation kinetics of injectable in situ cross-linkable poly(lactide-co-ethylene oxide-co-fumarate) hydrogels. Biomacromolecules, 8, 406–15.CrossRefGoogle ScholarPubMed
Behravesh, E., Shung, A. K., Jo, S. and Mikos, A. G. 2002. Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate). Biomacromolecules, 3, 153–8.CrossRefGoogle Scholar
Temenoff, J. S., Athanasiou, K. A., LeBaron, R. G. and Mikos, A. G. 2002. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J. Biomed. Mater. Res., 59, 429–37.CrossRefGoogle ScholarPubMed
Temenoff, J. S. and Mikos, A. G. 2000. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21, 2405–12.CrossRefGoogle ScholarPubMed
Suggs, L. J., Krishnan, R. S., Garcia, C. A. et al. 1998. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res., 42, 312–20.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Shin, H., Ruhe, P. Quinten, Mikos, A. G. and Jansen, J. A. 2003. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels. Biomaterials, 24, 3201–11.CrossRefGoogle ScholarPubMed
Shin, H., Temenoff, J. S. and Mikos, A. G. 2003. In vitro cytotoxicity of unsaturated oligo[poly(ethylene glycol) fumarate] macromers and their cross-linked hydrogels. Biomacromolecules, 4, 552–60.CrossRefGoogle ScholarPubMed
He, X. and Jabbari, E. 2007. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells. Biomacromolecules. 8, 780–92.CrossRefGoogle ScholarPubMed
Behravesh, E., Zygourakis, K. and Mikos, A. G. 2003. Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide. J. Biomed. Mater. Res. A, 65, 260–70.CrossRefGoogle ScholarPubMed
Suggs, L. J., Kao, E. Y., Palombo, L. L. et al. 1998. Preparation and characterization of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomater. Sci. Polymer Edition, 9, 653–66.CrossRefGoogle ScholarPubMed
Tanahashi, K. and Mikos, A. G. 2002. Cell adhesion on poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res., 62, 558–66.CrossRefGoogle ScholarPubMed
Fisher, J. P., Holland, T. A., Dean, D., Engel, P. S. and Mikos, A. G. 2001. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J. Biomater. Sci. Polymer Edition, 12, 673–87.CrossRefGoogle ScholarPubMed
Fisher, J. P., Vehof, J. W., Dean, D. et al. 2002. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model, J. Biomed. Mater. Res., 59, 547–56.CrossRefGoogle Scholar
Timmer, M. D., Carter, C., Ambrose, C. G. and Mikos, A. G. 2003. Fabrication of poly(propylene fumarate)-based orthopaedic implants by photo-crosslinking through transparent silicone molds. Biomaterials, 24, 4707–14.CrossRefGoogle ScholarPubMed
Kim, K., Dean, D., Lu, A., Mikos, A. G. and Fisher, J. P. 2011. Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticle content and initial cell seeding density in biodegradable nanocomposite scaffolds. Acta Biomater., 7, 1249–64.CrossRefGoogle ScholarPubMed
Kasper, F. K., Tanahashi, K., Fisher, J. P. and Mikos, A. G. 2009. Synthesis of poly(propylene fumarate). Nature Protoc., 4, 518–25.CrossRefGoogle Scholar
Suggs, L. J., Payne, R. G., Yaszemski, M. J., Alemany, L. B. and Mikos, A. G. 1997. Synthesis and characterization of a block copolymer consisting of poly(propylene fumarate) and poly(ethylene glycol). Macromolecules, 30, 4318–23.CrossRefGoogle Scholar
Shung, A. K., Behravesh, E., Jo, S. and Mikos, A. G. 2003. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng., 9, 243–54.CrossRefGoogle Scholar
Behravesh, E., Jo, S., Zygourakis, K. and Mikos, A. G. 2002. Synthesis of in situ cross-linkable macroporous biodegradable poly(propylene fumarate-co-ethylene glycol) hydrogels. Biomacromolecules, 3, 374–81.CrossRefGoogle ScholarPubMed
Behravesh, E., Timmer, M. D., Lemoine, J. J., Liebschner, M. A. and Mikos, A. G. 2002. Evaluation of the in vitro degradation of macroporous hydrogels using gravimetry, confined compression testing, and microcomputed tomography. Biomacromolecules, 3, 1263–70.CrossRefGoogle ScholarPubMed
Suggs, L. J., Shive, M. S., Garcia, C. A., Anderson, J. M. and Mikos, A. G. 1999. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res., 46, 22–32.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Behravesh, E. and Mikos, A. G. 2003. Three-dimensional culture of differentiating marrow stromal osteoblasts in biomimetic poly(propylene fumarate-co-ethylene glycol)-based macroporous hydrogels. J. Biomed. Mater. Res. A, 66, 698–706.CrossRefGoogle ScholarPubMed
Tanahashi, K., Jo, S. and Mikos, A. G. 2002. Synthesis and characterization of biodegradable cationic poly(propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion. Biomacromolecules, 3, 1030–7.CrossRefGoogle ScholarPubMed
Tanahashi, K. and Mikos, A. G. 2003. Effect of hydrophilicity and agmatine modification on degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. A, 67, 1148–54.Google ScholarPubMed
Fisher, J. P., Jo, S., Mikos, A. G. and Reddi, A. H. 2004. Thermoreversible hydrogel scaffolds for articular cartilage engineering. J. Biomed. Mater. Res. A, 71, 268–74.CrossRefGoogle ScholarPubMed
Dadsetan, M., Szatkowski, J. P., Yaszemski, M. J. and Lu, L. 2007. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering. Biomacromolecules, 8, 1702–9.CrossRefGoogle ScholarPubMed
Temenoff, J. S., Park, H., Jabbari, E. et al. 2004. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules, 5, 5–10.CrossRefGoogle ScholarPubMed
Holland, T. A., Tabata, Y. and Mikos, A. G. 2003. In vitro release of transforming growth factor-beta 1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release, 91, 299–313.CrossRefGoogle ScholarPubMed
Park, H., Guo, X., Temenoff, J. S. et al. 2009. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules, 10, 541–6.CrossRefGoogle ScholarPubMed
Temenoff, J. S., Steinbis, E. S. and Mikos, A. G. 2003. Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol) fumarate) hydrogels for guided tissue regeneration applications. J. Biomater. Sci. Polymer Edition, 14, 989–1004.CrossRefGoogle ScholarPubMed
Brink, K. S., Yang, P. J. and Temenoff, J. S. 2009. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol. Acta Biomater., 5, 570–9.CrossRefGoogle ScholarPubMed
Temenoff, J. S., Shin, H., Conway, D. E., Engel, P. S. and Mikos, A. G. 2003. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules, 4, 1605–13.CrossRefGoogle ScholarPubMed
Fisher, J. P., Lalani, Z., Bossano, C. M. et al. 2004. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J. Biomed. Mater. Res. A, 68, 428–38.CrossRefGoogle Scholar
Jo, S., Shin, H. and Mikos, A. G. 2001. Modification of oligo(poly(ethylene glycol) fumarate) macromer with a GRGD peptide for the preparation of functionalized polymer networks. Biomacromolecules, 2, 255–61.CrossRefGoogle ScholarPubMed
Shin, H., Jo, S. and Mikos, A. G. 2002. Modulation of marrow stromal osteoblast adhesion on biomimetic oligo[poly(ethylene glycol) fumarate] hydrogels modified with Arg–Gly–Asp peptides and a poly(ethyleneglycol) spacer. J. Biomed. Mater. Res., 61, 169–79.CrossRefGoogle Scholar
Shin, H., Zygourakis, K., Farach-Carson, M. C., Yaszemski, M. J. and Mikos, A. G. 2004. Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg–Gly–Asp containing peptides. J. Biomed. Mater. Res. A, 69, 535–43.CrossRefGoogle ScholarPubMed
Shin, H., Zygourakis, K., Farach-Carson, M. C., Yaszemski, M. J. and Mikos, A. G. 2004. Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. Biomaterials, 25, 895–906.CrossRefGoogle ScholarPubMed
Shin, H., Temenoff, J. S., Bowden, G. C. et al. 2005. Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg–Gly–Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. Biomaterials, 26, 3645–54.CrossRefGoogle ScholarPubMed
Dadsetan, M., Hefferan, T. E., Szatkowski, J. P. et al. 2008. Effect of hydrogel porosity on marrow stromal cell phenotypic expression. Biomaterials, 29, 2193–202.CrossRefGoogle ScholarPubMed
Park, H., Temenoff, J. S., Holland, T. A., Tabata, Y. and Mikos, A. G. 2005. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials, 26, 7095–103.CrossRefGoogle ScholarPubMed
Park, H., Temenoff, J. S., Tabata, Y., Caplan, A. I. and Mikos, A. G. 2007. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials, 28, 3217–27.CrossRefGoogle ScholarPubMed
Park, H., Temenoff, J. S., Tabata, Y. et al. 2009. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites. J. Biomed. Mater. Res. A, 88, 889–97.CrossRefGoogle ScholarPubMed
Guo, X., Liao, J., Park, H. et al. 2010. Effects of TGF-β3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater., 6, 2920–31.CrossRefGoogle Scholar
Guo, X., Park, H., Liu, G. et al. 2009. In vitro generation of an osteochondral construct using injectable hydrogel composites encapsulating rabbit marrow mesenchymal stem cells. Biomaterials, 30, 2741–52.CrossRefGoogle ScholarPubMed
Holland, T. A., Bodde, E. W., Baggett, L. S. et al. 2005. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds. J. Biomed. Mater. Res. A, 75, 156–67.CrossRefGoogle ScholarPubMed
Holland, T. A., Bodde, E. W., Cuijpers, V. M. et al. 2007. Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair. Osteoarthritis Cartilage, 15, 187–97.CrossRefGoogle ScholarPubMed
Guo, X., Park, H., Young, S. et al. 2010. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomater., 6, 39–47.CrossRefGoogle Scholar
Doroski, D. M., Levenston, M. E. and Temenoff, J. S. 2010. Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng. Part A, 16, 3457–66.CrossRefGoogle ScholarPubMed
Hammoudi, T. M., Lu, H. and Temenoff, J. S. 2010. Long-term spatially defined coculture within three-dimensional photopatterned hydrogels. Tissue Eng. Part C Methods, 16, 1621–8.CrossRefGoogle ScholarPubMed
Zhang, M. W., Park, H., Guo, X. et al. 2010. Adapting biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels for pigment epithelial cell encapsulation and lens regeneration. Tissue Eng. Part C Methods, 16, 261–7.CrossRefGoogle ScholarPubMed
Dadsetan, M., Knight, A. M., Lu, L., Windebank, A. J. and Yaszemski, M. J. 2009. Stimulation of neurite outgrowth using positively charged hydrogels. Biomaterials, 30, 3874–81.CrossRefGoogle ScholarPubMed
Runge, M. B., Dadsetan, M., Baltrusaitis, J. et al. 2010. The development of electrically conductive polycaprolactone fumarate–polypyrrole composite materials for nerve regeneration. Biomaterials, 31, 5916–26.CrossRefGoogle ScholarPubMed
Runge, M. B., Dadsetan, M., Baltrusaitis, J. et al. 2010. Development of electrically conductive oligo(polyethylene glycol) fumarate–polypyrrole hydrogels for nerve regeneration. Biomacromolecules, 11, 2845–53.CrossRefGoogle ScholarPubMed
Wang, S., Yaszemski, M. J., Knight, A. M. et al. 2009. Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomater., 5, 1531–42.CrossRefGoogle ScholarPubMed
Dadsetan, M., Liu, Z., Pumberger, M. et al. 2010. A stimuli-responsive hydrogel for doxorubicin delivery. Biomaterials, 31, 8051–62.CrossRefGoogle ScholarPubMed
Rooney, G. E., Knight, A. M., Madigan, N. N. et al. 2011. Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo[(polyethylene glycol) fumarate] hydrogels. Tissue Eng. Part A, 17, 1287–302.CrossRefGoogle ScholarPubMed
Holland, T. A., Tabata, Y. and Mikos, A. G. 2005. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. J. Control. Release, 101, 111–25.CrossRefGoogle ScholarPubMed
Dadsetan, M., Szatkowski, J. P., Shogren, K. L., Yaszemski, M. J. and Maran, A. 2009. Hydrogel-mediated DNA delivery confers estrogenic response in nonresponsive osteoblast cells. J. Biomed. Mater. Res. A, 91, 1170–7.CrossRefGoogle ScholarPubMed
Kasper, F. K., Seidlits, S. K., Tang, A. et al. 2005. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J. Control. Release, 104, 521–39.CrossRefGoogle ScholarPubMed
Kasper, F. K., Jerkins, E., Tanahashi, K. et al. 2006. Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in vitro. J. Biomed. Mater. Res. A, 78, 823–35.CrossRefGoogle ScholarPubMed
Kasper, F. K., Kushibiki, T., Kimura, Y., Mikos, A. G. and Tabata, Y. 2005. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. J. Control. Release, 107, 547–61.CrossRefGoogle ScholarPubMed
Kasper, F. K., Young, S., Tanahashi, K. et al. 2006. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J. Biomed. Mater. Res. A, 78, 335–42.CrossRefGoogle Scholar
Sarvestani, A. S., Xu, W. J., He, X. Z. and Jabbari, E. 2007. Gelation and degradation characteristics of in situ photo-crosslinked poly(l-lactid-co-ethylene oxide-co-fumarate) hydrogels. Polymer, 48, 7113–20.CrossRefGoogle Scholar
He, X., Ma, J. and Jabbari, E. 2010. Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1α from poly(lactide ethylene oxide fumarate) hydrogels. Int. J. Pharm., 390, 107–16.CrossRefGoogle ScholarPubMed
He, X., Ma, J. and Jabbari, E. 2008. Effect of grafting RGD and BMP-2 protein-derived peptides to a hydrogel substrate on osteogenic differentiation of marrow stromal cells. Langmuir, 24, 12508–16.CrossRefGoogle ScholarPubMed
Sarvestani, A. S., He, X. and Jabbari, E. 2007. Effect of osteonectin-derived peptide on the viscoelasticity of hydrogel/apatite nanocomposite scaffolds. Biopolymers, 85, 370–8.CrossRefGoogle ScholarPubMed
Sarvestani, A. S. and Jabbari, E. 2006. Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites. Biomacromolecules, 7, 1573–80.CrossRefGoogle ScholarPubMed
Xu, W., Ma, J. and Jabbari, E. 2010. Material properties and osteogenic differentiation of marrow stromal cells on fiber-reinforced laminated hydrogel nanocomposites. Acta Biomater., 6, 1992–2002.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×