Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-12T13:23:51.128Z Has data issue: false hasContentIssue false

4 - Frontotemporal dementia

Published online by Cambridge University Press:  31 July 2009

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Foundation, Minnesota
Get access

Summary

Introduction

With “baby boomers” now reaching late middle age, degenerative diseases are becoming an increasingly important national health issue. One such disorder, frontotemporal lobar degeneration (FTLD), is particularly devastating to patients and their families, as symptoms include changes in behavior and the erosion of personal relationships, often during the earliest stages. These disease features place great demands on caregivers and the society at large. Understanding the disease and its complexities, and educating the general public with respect to the course and causes of FTLD, is, therefore, acutely important.

The condition typically presents in patients who are between 45 and 65 years of age, and is at least as likely as early-onset Alzheimer's disease (AD) with a prevalence of approximately 15 per 100,000 population etween 45 and 64 years of age. Knopman and colleagues have shown that FTLD is more common than AD in patients under the age of 60 years, while other authors suggest that FTLD-spectrum disorders account for up to 20% of all patients with degenerative dementias. Genetics remain the only known etiology for FTLD, accounting for up to 40% of all cases, although large epidemiology studies investigating other risk factors have yet to be undertaken.

Frontotemporal lobar degeneration encapsulates a heterogeneous group of clinical and pathological syndromes and can begin with behavioral, cognitive, language or motor signs and symptoms.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ratnavalli, E., Brayne, C., Dawson, K.et al. The prevalence of frontotemporal dementia. Neurology, 2002; 58(11): 1615–21.CrossRefGoogle ScholarPubMed
Knopman, D. S., Petersen, R. C., Edland, S. D.et al. The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994. Neurology, 2004; 62(3): 506–8.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Northen, B.et al. Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry, 1988; 51(3): 353–61.CrossRefGoogle ScholarPubMed
Brun, A.Frontal lobe degeneration of non-Alzheimer type. I. Neuropathol Arch Gerontol Geriatr, 1987; 6(3): 193–208.CrossRefGoogle ScholarPubMed
Pick, A.Uber die Beziehungen der senilen Hirnatrophie zur Aphasie. Prager Med Wochensch, 1892; 17: 165–7.Google Scholar
Alzheimer, A.Uber eigenartige Krankheitsfalle des spateren Alters. Z Ges Neurol Psychiatr, 1911; 4: 356–85.CrossRefGoogle Scholar
Neary, D., Snowden, J. S., Bowen, D. M.et al. Neuropsychological syndromes in presenile dementia due to cerebral atrophy. J Neurol Neurosurg Psychiatry, 1986; 49(2): 163–74.CrossRefGoogle ScholarPubMed
Gustafson, L.Frontal lobe degeneration of non-Alzheimer type. II. Clinical picture and differential diagnosis. Arch Gerontol Geriatr, 1987; 6(3): 209–23.CrossRefGoogle ScholarPubMed
Mann, D. M. A., South, P. W., Snowden, J. S.et al. Dementia of frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry, 1993; 56: 605–14.CrossRefGoogle ScholarPubMed
Knopman, D. S., Mastri, A. R., Frey, W. H. D.et al. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology, 1990; 40(2): 251–6.CrossRefGoogle ScholarPubMed
Jagust, W. J., Reed, B. R., Seab, J. P.et al. Clinical–physiologic correlates of Alzheimer's disease and frontal lobe dementia. Am J Physiol Imaging, 1989; 4: 89–96.Google ScholarPubMed
Miller, B. L., Cummings, J. L., Villanueva-Meyer, J.et al. Frontal lobe degeneration: clinical, neuropsychological, and SPECT characteristics. Neurology, 1991; 41(9): 1374–82.CrossRefGoogle ScholarPubMed
Varma, A. R., Snowden, J. S., Lloyd, J. J.et al. Evaluation of the NINCDS–ADRDA criteria in the differentiation of Alzheimer's disease and frontotemporal dementia. J Neurol Neurosurg Psychiatry, 1999; 66(2): 184–8.CrossRefGoogle ScholarPubMed
Leon, M. J., Convit, A., DeSanti, S.et al. Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease. Int Psychogeriatr, 1997; 9(Suppl 1): 183–90; discussion 247–52.CrossRefGoogle ScholarPubMed
Thompson, P. M., Hayashi, K. M., Zubicaray, G.et al. Dynamics of gray matter loss in Alzheimer's disease. J Neurosci, 2003; 23(3): 994–1005.CrossRefGoogle ScholarPubMed
Kitagaki, H., Mori, E., Yamaji, S.et al. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology, 1998; 208(2): 431–9.CrossRefGoogle ScholarPubMed
Read, S. L., Miller, B. L., Mena, I.et al. SPECT in dementia: clinical and pathological correlation. J Am Geriatr Soc, 1995; 43(11): 1243–7.CrossRefGoogle ScholarPubMed
Miller, B. L.Clinical advances in degenerative dementias. [See comments.]Br J Psychiatry, 1997; 171(18): 1–3.CrossRefGoogle Scholar
Neary, D., Snowden, J. S., Gustafson, L.et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 1998; 51(6): 1546–54.CrossRefGoogle ScholarPubMed
Boxer, A. L. and Miller, B. L.Clinical features of frontotemporal dementia. Alzheimer Dis Assoc Disord, 2005; 19(Suppl 1): S3–6.CrossRefGoogle ScholarPubMed
Josephs, K. A., Petersen, R. C., Knopman, D. S.et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology, 2006; 66(1): 41–8.CrossRefGoogle ScholarPubMed
Litvan, I., Agid, Y., Goetz, C.et al. Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology, 1997; 48(1): 119–25.CrossRefGoogle ScholarPubMed
Schneider, J. A., Watts, R. L., Gearing, M.et al. Corticobasal degeneration: neuropathologic and clinical heterogeneity. Neurology, 1997; 48(4): 959–69.CrossRefGoogle ScholarPubMed
Boeve, B. F., Maraganore, D. M., Parisi, J. E.et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology, 1999; 53(4): 795–800.CrossRefGoogle ScholarPubMed
Verny, M., Jellinger, K. A., Hauw, J. J.et al. Progressive supranuclear palsy: a clinicopathological study of 21 cases. Acta Neuropathol, 1996; 91(4): 427–31.CrossRefGoogle ScholarPubMed
Mathuranath, P. S., Xuereb, J. H., Bak, T.et al. Corticobasal ganglionic degeneration and/or frontotemporal dementia? A report of two overlap cases and review of literature. J Neurol Neurosurg Psychiatry, 2000; 68(3): 304–12.CrossRefGoogle ScholarPubMed
Kertesz, A. and Munoz, D. G.. Diagnostic controversies: is CBD part of the “pick complex”Adv Neurol, 2000; 82: 223–31.Google ScholarPubMed
Meyer, A.Uber eine der amyotrophischen Lateralsklerose nahestehende Erkrankung mit psychischen Storungen. Zeitschrift Ges Neurol Psychiatr, 1929; 121: 107–138.CrossRefGoogle Scholar
Hudson, A. J.Amyotrophic lateral sclerosis and its association with dementia, parkinsonism and other neurological disorders: a review. Brain, 1981; 104(2): 217–47.CrossRefGoogle ScholarPubMed
Mitsuyama, Y., Fukunaga, H. and Yamashita, M.. Alzheimer's disease with widespread presence of Lewy bodies. Folia Psychiatr Neurol Jpn, 1984; 38(1): 81–8.Google ScholarPubMed
Morita, K., Kaiya, H., Ikeda, T.et al. Presenile dementia combined with amyotrophy: a review of 34 Japanese cases. Arch Gerontol Geriatr, 1987; 6(3): 263–77.CrossRefGoogle ScholarPubMed
Salazar, A. M., Masters, C. L., Gajdusek, D. C.et al. Syndromes of amyotrophic lateral sclerosis and dementia: relation to transmissible Creutzfeldt–Jakob disease. Ann Neurol, 1983; 14(1): 17–26.CrossRefGoogle Scholar
Clark, A. W., Manz, H. J., White, C. L.et al. Cortical degeneration with swollen chromatolytic neurons: its relationship to Pick's disease. J Neuropathol Exp Neurol, 1986; 45(3): 268–84.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S., Mann, D. M.et al. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry, 1990; 53(1): 23–32.CrossRefGoogle ScholarPubMed
Snowden, J. S., Neary, D. and Mann, D. M. A.. Fronto-temporal Lobar Degeneration: Fronto-temporal Dementia, Progressive Aphasia, Semantic Dementia. New York: Churchill Livingstone, 1996.Google Scholar
Roberson, E. D., Hesse, J. H., Rose, K. D.et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology, 2005; 65(5): 719–25.CrossRefGoogle ScholarPubMed
Johnson, J. K., Diehl, J., Mendez, M. F.et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol, 2005; 62(6): 925–30.CrossRefGoogle ScholarPubMed
Chow, T. W., Miller, B. L., Hayashi, V. N.et al. Inheritance of frontotemporal dementia. Arch Neurol, 1999; 56(7): 817–22.CrossRefGoogle ScholarPubMed
Goldman, J. S., Farmer, J. M., Wood, E. M.et al. Comparison of family histories in FTLD subtypes and related tauopathies. Neurology, 2005; 65(11): 1817–19.CrossRefGoogle Scholar
Swieten, J. C., Stevens, M., Rosso, S. M.et al. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Ann Neurol, 1999; 46(4): 617–26.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Wilhelmsen, K. C., Lynch, T., Pavlou, E.et al. Localization of disinhibition–dementia–parkinsonism–amyotrophy complex to 17q21–22. Am J Hum Genetics, 1994; 55: 1159–65.Google ScholarPubMed
Tsuboi, Y.Neuropathology of familial tauopathy. Neuropathology, 2006; 26(5): 471–4.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Swieten, J. C. and Goedert, M.. Tau gene mutations in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Neurogenetics, 2000; 2(4): 193–205.Google Scholar
Bugiani, O., Murrell, J. R., Giaccone, G.et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J Neuropathol Exp Neurol, 1999; 58(6): 667–77.CrossRefGoogle Scholar
Bird, T., Knopman, D., Swieten, J.et al. Epidemiology and genetics of frontotemporal dementia/Pick's disease. Ann Neurol, 2003; 54(Suppl 5): S29–31.CrossRefGoogle Scholar
Goedert, M. and Jakes, R.. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. Embo J, 1990; 9(13): 4225–30.Google ScholarPubMed
Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V.et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 1998; 282(5395): 1914–17.CrossRefGoogle ScholarPubMed
Poorkaj, P., Bird, T. D., Wijsman, E.et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol, 1998; 43(6): 815–25. [Published erratum appears in Ann Neurol 1998; 44(3): 428.]CrossRefGoogle ScholarPubMed
Hutton, M., Lendon, C. L., Rizzu, P.et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 1998; 393(6686): 702–5.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Murrell, J. R., Goedert, M.et al. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA, 1998; 95(13): 7737–41.CrossRefGoogle ScholarPubMed
Zee, J., Rademakers, R., Engelborghs, S.et al. A Belgian ancestral haplotype harbours a highly prevalent mutation for 17q21-linked tau-negative FTLD. Brain, 2006; 129(Pt 4): 841–52.Google ScholarPubMed
Mackenzie, I. R., Baker, M., West, G.et al. A family with tau-negative frontotemporal dementia and neuronal intranuclear inclusions linked to chromosome 17. Brain, 2006; 129(Pt 4): 853–67.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J. S. and Mann, D. M.. Classification and description of frontotemporal dementias. Ann N Y Acad Sci, 2000; 920(51–52): 46–51.CrossRefGoogle ScholarPubMed
Baker, M., Mackenzie, I. R., Pickering-Brown, S. M.et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006; 442(7105): 916–19.CrossRefGoogle ScholarPubMed
He, Z., Ong, C. H., Halper, J.et al. Progranulin is a mediator of the wound response. Nat Med, 2003; 9(2): 225–9.CrossRefGoogle ScholarPubMed
Baker, M., Mackenzie, I. R., Pickering-Brown, S. M.et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature, 2006; 442(7105): 916–19.CrossRefGoogle ScholarPubMed
Mann, D. M. and South, P. W.. The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathol, 1993; 85(3): 334–40.CrossRefGoogle ScholarPubMed
Seeley, W. W., Carlin, D. A., Allman, J. M.et al. Early frontotemporal dementia targets neurons unique to apes and humans. Ann Neurol, 2006; 60(6): 660–7.CrossRefGoogle ScholarPubMed
Neumann, M., Sampathu, D. M., Kwong, L. K.et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006; 314(5796): 130–3.CrossRefGoogle ScholarPubMed
Dickson, D. W., Bergeron, C., Chin, S. S.et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol, 2002; 61(11): 935–46.CrossRefGoogle ScholarPubMed
Boxer, A. L., Geschwind, M. D., Belfor, N.et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol, 2006; 63(1): 81–6.CrossRefGoogle ScholarPubMed
Hoffman, J. M., Welsh-Bohmer, K. A., Hanson, M.et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med, 2000; 41(11): 1920–8.Google ScholarPubMed
Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P.et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 2002; 58(2): 198–208.CrossRefGoogle ScholarPubMed
Chan, D., Fox, N. C., Jenkins, R.et al. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology, 2001; 57(10): 1756–63.CrossRefGoogle ScholarPubMed
Rabinovici, G. D., Furst, A. J., O'Neil, J. P.et al. 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology, 2007; 68(15): 1205–12.CrossRefGoogle ScholarPubMed
Edwards-Lee, T., Miller, B. L., Benson, D. F.et al. The temporal variant of frontotemporal dementia. Brain, 1997; 120(Pt 6): 1027–40.CrossRefGoogle ScholarPubMed
Galton, C. J., Patterson, K., Graham, K.et al. Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology, 2001; 57(2): 216–25.CrossRefGoogle Scholar
Chan, D., Fox, N. C., Scahill, R. I.et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol, 2001; 49(4): 433–42.CrossRefGoogle ScholarPubMed
Mummery, C. J., Patterson, K., Wise, R. J.et al. Disrupted temporal lobe connections in semantic dementia. Brain, 1999; 122(Pt 1): 61–73.CrossRefGoogle ScholarPubMed
Hodges, J. R. and Patterson, K.. Nonfluent progressive aphasia and semantic dementia: a comparative neuropsychological study. J Int Neuropsychol Soc, 1996; 2(6): 511–24.CrossRefGoogle ScholarPubMed
Rosen, H. J., Kramer, J. H., Gorno-Tempini, M. L.et al. Patterns of cerebral atrophy in primary progressive aphasia. Am J Geriatr Psychiatry, 2002; 10(1): 89–97.CrossRefGoogle ScholarPubMed
Swartz, J. R., Miller, B. L., Lesser, I. M. and Darby, A. L.. Frontotemporal dementia: treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry, 1997; 58(5): 212–16.CrossRefGoogle ScholarPubMed
Pasquier, F., Fukui, T., Sarazin, M.et al. Laboratory investigations and treatment in frontotemporal dementia. Ann Neurol, 2003; 54(Suppl 5): S32–5.CrossRefGoogle ScholarPubMed
Litvan, I.Therapy and management of frontal lobe dementia patients. Neurology, 2001; 56(Suppl 4): S41–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×