Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T08:16:55.103Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 August 2019

Kenneth S. Coles
Affiliation:
Indiana University of Pennsylvania
Kenneth L. Tanaka
Affiliation:
United States Geological Survey, Arizona
Philip R. Christensen
Affiliation:
Arizona State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Atlas of Mars
Mapping its Geography and Geology
, pp. 280 - 287
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adeli, S., Hauber, E., Le Deit, L., and Jaumann, R. (2012). Sedimentary evolution of the Eridania paleolake in the Atlantis Chaos basin, Terra Sirenum. Third Conf. Early Mars, abs. 7047.Google Scholar
Agee, C. B., Wilson, N. V., McCubbin, F. M., et al. (2013). Unique meteorite from Early Amazonian Mars: Water-rich basaltic breccia northwest Africa 7034. Science, 339, 780785.Google Scholar
Aharonson, O., Schorghofer, N., and Gerstell, M. F. (2003). Slope streak formation and dust deposition rates on Mars. J. Geophys. Res., 108, 5138, doi:10.1029/2003JE002123.CrossRefGoogle Scholar
Anderson, R. C. and Dohm, J. M. (2011). Unraveling the complex history of faulting for the Terra Sirenum region, Mars. Lunar Planet. Sci. Conf., 42, abs. 2221.Google Scholar
Anderson, R. C., Dohm, J. M., Golombek, M. P., et al. (2001). Primary centers and secondary concentrations of tectonic activity through time for the western hemisphere of Mars. J. Geophys. Res., 106, 20,563–20,585, doi:10.1029/2000JE001278.Google Scholar
Anderson, R. C., Dohm, J. M., Robbins, S., Hynek, S. B., and Andrews-Hanna, J. (2012). Terra Sirenum: Window into pre-Tharsis and Tharsis phases of Mars evolution. Lunar Planet. Sci. Conf., 43, abs. 2803.Google Scholar
Andrews-Hanna, J. C. (2011). The formation of Valles Marineris, Mars. Lunar Planet. Sci. Conf., 42, abs. 2182.Google Scholar
Andrews-Hanna, J. C., Zuber, M. T., and Banerdt, W. B. (2008). The Borealis basin and the origin of the Martian crustal dichotomy. Nature, 453, 12121215, doi:10.1038/nature07011.CrossRefGoogle ScholarPubMed
Annex, A. M. and Howard, A. D. (2011). Phyllosilicates related to exposed knobs in Sirenum Fossae, Ariadnes Colles. Lunar Planet. Sci. Conf., 42, abs. 1577.Google Scholar
Ansan, V. and Mangold, N. (2006). New observations of Warrego Valles, Mars: Evidence for precipitation and surface runoff. Planet. Space Sci., 54, 219242.CrossRefGoogle Scholar
Ansan, V., Loizeau, D., Mangold, N., et al. (2011). Stratigraphy, mineralogy, and origin of layered deposits inside Terby crater, Mars. Icarus, 211, 273304.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al. (2006). Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: Landing site to Backstay Rock in the Columbia Hills. J. Geophys. Res., 111, E02S01, doi:10.1029/2005JE002499.Google Scholar
Baker, D. M. H. and Head, J. W. (2012). The Noachian to Hesperian hydrologic evolution of the Ma’adim Vallis–Eridania basin region, Mars. Third Conf. Early Mars, abs. 7058.Google Scholar
Baker, V. R. and Milton, D. J. (1974). Erosion by catastrophic floods on Mars and Earth. Icarus, 23, 2741, doi:10.1016/0019-1035(74)90101-8.CrossRefGoogle Scholar
Baker, V. R., Carr, M. H., Gulick, V. C., Williams, C. R., and Marley, M. S. (1992). Channels and valley networks. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, pp. 493522.Google Scholar
Baker, V. R., Bjornstad, B. N., Gaylord, D. R., et al. (2016). Pleistocene megaflood landscapes of the Channeled Scabland. In Lewis, R. S., and Schmidt, K. L., eds., Exploring the Geology of the Inland Northwest. Geological Society of America Field Guide 41, pp. 173, doi:10.1130/2016.0041(01).Google Scholar
Bandfield, J. L. (2002). Global mineral distributions on Mars. J. Geophys. Res., 107, doi:10.1029/2001JE001510.Google Scholar
Baptista, A. R. and Craddock, R. A. (2010). The Galapagos and Hawaii volcanoes: Two analogs of Syria Planum on Mars. Lunar Planet. Sci. Conf., 41, abs. 1768.Google Scholar
Baptista, A. R., Mangold, N., Ansan, V., et al., and HRSC team (2007). Coalesced small shield volcanoes on Syria Planum, Mars, detected by Mars Express–HRSC images. Seventh Int. Mars Conf., abs. 3128.Google Scholar
Bargar, K. E. and Jackson, E. D. (1974). Calculated volumes of individual shield volcanoes along the Hawaiian–Emperor Chain. J. Res. US Geol. Surv., 2, 545550.Google Scholar
Barlow, N.G. (2008). Mars: An Introduction to its Interior, Surface, and Atmosphere. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barlow, N. G. and Bradley, T. L. (1990). Martian impact craters: Correlations of ejecta and interior morphologies with diameter, latitude, and terrain. Icarus, 87, 156179.CrossRefGoogle Scholar
Basilevsky, A. T., Neukum, G., Werner, S. C., et al. (2009). Episodes of floods in Mangala Valles, Mars, from the analysis of HRSC, MOC and THEMIS images. Planet. Space Sci., 57, 917943.CrossRefGoogle Scholar
Basilevsky, A. T., Lorenz, C. A., Shingareva, T. V., et al. (2014). The surface geology and geomorphology of Phobos. Planet. Space Sci., 102, 95118, doi:10.1016/j.pss.2014.04.013.CrossRefGoogle Scholar
Batson, R. M., Bridges, P. M., and Inge, J. L. (1979). Atlas of Mars. NASA Special Publication SP-438, Washington, DC: Government Printing Office.Google Scholar
Bell, J. F., ed. (2008). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge: Cambridge University Press.Google Scholar
Bell, J. F., Malin, M. C., Caplinger, M. A., et al. (2013). Calibration and performance of the Mars Reconnaissance Orbiter Context Camera (CTX). MARS, 8, 114, doi:10.1555/mars.2013.0001.Google Scholar
Bergonio, J. R., Rottas, K. M., and Schorghofer, N. (2013). Properties of Martian slope streak populations. Icarus, 225, 194199, doi:10.1016/j.icarus.2013.03.023.Google Scholar
Beyer, R. A., Stack, K. M., Griffes, J. L., et al. (2012). An atlas of Mars sedimentary rocks as seen by HiRISE. In Grotzinger, J. P., and Milliken, R., E., eds., Sedimentary Geology of Mars. SEPM Special Publication 102, pp. 4995.Google Scholar
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al. (2006). Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data. Science, 312, 400404, doi:10.1126/science.1122659.CrossRefGoogle ScholarPubMed
Bottke, W. F., Vokrouhlický, D., Nesvorný, D., et al. (2010). The E-belt: A possible missing link in the Late Heavy Bombardment. Lunar Planet. Sci. Conf., 41, abs. 1269.Google Scholar
Boynton, W. V., Feldman, W. C., Mitrofanov, I. G., et al. (2004). The Mars Odyssey Gamma-Ray Spectrometer Instrument Suite. Space Sci. Rev., 110, 3783.Google Scholar
Boynton, W. V., Taylor, G. J., Evans, L. G., et al. (2007). Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J. Geophys. Res., 112, E12S99, doi:10.1029/2007JE002887.Google Scholar
Brothers, T. C., Holt, J. W., and Spiga, A. (2015). Planum Boreum basal unit topography, Mars: Irregularities and insights from SHARAD. J. Geophys. Res., 120, 13571375, doi:10.1002/2015JE004830.Google Scholar
Broz, P. and Hauber, E. (2013). Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J. Geophys. Res., 118, 16561675, doi:10.1002/jgre.20120.Google Scholar
Buhler, P. B., Ingersoll, A. P., Ehlmann, B. L., Fassett, C. I., and Head, J. W. (2017). How the Martian residual south polar cap develops quasi-circular and heart-shaped pits, troughs, and moats. Icarus, 286, 6993, doi:10.1016/j.icarus.2017.01.012.Google Scholar
Burns, J. A. (1992). Contradictory clues as to the origin of the Martian moons. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, pp. 12831301.Google Scholar
Burr, D. M., Nega, M.-T., Williams, R. M. E., et al. (2009a). Pervasive aqueous paleoflow features in the Aeolis/Zephyria Plana region, Mars. Icarus, 200, 5276, doi:10.1016/j.icarus.2008.10.014.CrossRefGoogle Scholar
Burr, D. M., Tanaka, K. L., and Yoshikawa, K. (2009b). Pingos on Earth and Mars. Planet. Space Sci., 57, 541555, doi:10.1016/j.pss.2008.11.003.Google Scholar
Caprarelli, G., Pondrelli, M., DiLorenzo, S., et al. (2007). A description of surface features in north Tyrrhena Terra, Mars: Evidence for extension and lava flooding. Icarus, 191, 524544. doi:10.1016/j.icarus.2007.05.009.Google Scholar
Carr, M. H. (1979). Formation of Martian flood features by release of water from confined aquifers. J. Geophysical Res., 84, 29953007.Google Scholar
Carr, M. H. (2006). The Surface of Mars. Cambridge: Cambridge University Press.Google Scholar
Carr, M. H. and Evans, N. (1980). Images of Mars: The Viking Extended Mission. NASA Special Publication SP-444. Washington, DC: Government Printing Office.Google Scholar
Carr, M. H. and Head, J. W. III (2010). Geologic history of Mars. Earth and Planet. Sci. Letters, 294, 185203, doi:10.1016/j.epsl.2009.06.042.Google Scholar
Carr, M. H., Greeley, R., Blasius, K. R., Guest, J. E., and Murray, J. B. (1977). Some Martian volcanic features as viewed from the Viking orbiters. J. Geophys. Res., 82, 39854015, doi:10.1029/JS082i028p03985.Google Scholar
Carter, J., Poulet, F., Bibring, J.-P., Mangold, N., and Murchie, S. (2013). Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res., 118, doi:10.1029/2012JE004145.Google Scholar
Chadwick, J. and McGovern, P. (2011). Modelling subsidence due to the Olympus Mons load using paleo-slope indicators. Lunar Planet. Sci. Conf., 42, abs. 2688.Google Scholar
Chapman, M. G. and Tanaka, K. L. (1993). Geologic map of the MTM-05152 and -10152 quadrangles, Mangala Valles region of Mars. USGS Misc. Inv. Ser. Map I-2294, scale 1:500,000.Google Scholar
Chapman, M. G., Neukum, G., Dumke, A., et al. (2010a). Amazonian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations. Earth Planet. Sci. Lett., 294, 238255.CrossRefGoogle Scholar
Chapman, M. G., Neukum, G., Dumke, A., et al. (2010b). Noachian–Hesperian geologic history of the Echus Chasma and Kasei Valles system on Mars: New data and interpretations. Earth Planet. Sci. Lett., 294, 256271.CrossRefGoogle Scholar
Christiansen, E. H. (1989). Lahars in the Elysium region of Mars. Geology, 17, 203206.Google Scholar
Christensen, P. R. and Ruff, S. W. (2004). The formation of the hematite-bearing unit in Meridiani Planum: Evidence for deposition in standing water. J. Geophys. Res., 109, E08003, doi:10.1029/2003JE002233.Google Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al. (2001). The Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res., 106, 23,823–23,871, doi:10.1029/2000JE001370.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F. III, et al. (2003). Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science, 300, 20562061.Google Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al. (2004). The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Science Reviews, 110, 85130.Google Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al. (2005). Mars Exploration Rover candidate landing sites as viewed by THEMIS. Icarus, 187, 1243.Google Scholar
Chuang, F. C., Beyer, R. A., McEwen, A. S., and Thomson, B. J. (2007). HiRISE observations of slope streaks on Mars. Geophys. Res. Letters, 34, L20204.Google Scholar
Chuang, F. C., Crown, D. A., Berman, D. C., Skinner, J. A., and Tanaka, K. L. (2011). Martian lobate debris aprons: Compilation of a new GIS-based global map. Lunar Planet. Sci. Conf., 42, abs. 2294.Google Scholar
Citron, R. I., Genda, H., and Ida, S. (2015). Formation of Phobos and Deimos via a giant impact. Icarus, 252, 334338, doi:10.1016/j.icarus.2015.02.011.Google Scholar
Clifford, S. M. and Parker, T. J. (2001). The evolution of the Martian hydrosphere: Implications for the fate of a primordial ocean and the current state of the Northern Plains. Icarus, 154, 4079.Google Scholar
Collins, S. A. (1971). The Mariner 6 and 7 Pictures of Mars. NASA Special Publication SP-263, Washington, DC: Government Printing Office.Google Scholar
Connerney, J. E. P., Acuña, M. H., Ness, N. F., et al. (2005). Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci., 102, 1497014975, doi:10.1073/pnas.0507469102.Google Scholar
Costard, F., Séjourné, A., Kelfoun, K., et al. (2017). Modeling tsunami propagation and the emplacement of thumbprint terrain in an early Mars ocean. J. Geophys. Res., 122, 633649, doi:10.1002/2016JE005230.Google Scholar
Craddock, R. A. (2011). Are Phobos and Deimos the result of a giant impact? Icarus, 211, 11501161, doi:10.1016/j.icarus.2010.10.023.Google Scholar
Craddock, R. A. and Greeley, R. (1994). Geologic map of the MTM-20147 quadrangle, Mangala Valles region of Mars. USGS Misc. Inv. Ser. Map I-2310, scale 1:500,000.Google Scholar
Craddock, R. A. and Howard, A. D. (2002). The case for rainfall on a warm, wet early Mars. J. Geophys. Res., 107, 5111, doi:10.1029/2001JE001505.Google Scholar
Crumpler, L. S., Head, J. W., and Aubele, J. C. (1996). Calderas on Mars: Characteristics, structure, and associated flank deformation. Geol. Soc. London, Special Pub., 110, 307348, doi:10.1144/GSL.SP.1996.110.01.24.Google Scholar
Cushing, G. E. (2011). Visible evidence of cave-entrance candidates in Martian fresh-looking pit craters. Lunar Planet. Sci. Conf., 42, abs. 2494.Google Scholar
Cushing, G. E. (2012). Candidate cave entrances on Mars. J. Cave Karst Studies, 74, 3347.CrossRefGoogle Scholar
Davila, A. F., Fairén, A. G., Stokes, C. R., et al. (2013). Evidence for Hesperian glaciation along the Martian dichotomy boundary. Geology, 41, 755758, doi:10.1130/G34201.1.Google Scholar
de Pablo, M. A. and Centeno, J. D. (2012). Geomorphological map of the lower NW flank of Hecates Tholus volcano, Mars. Lunar Planet. Sci. Conf., 43, abs. 1098.Google Scholar
de Pablo, M. A., Michael, G. G., and Centeno, J. D. (2013). Age and evolution of the lower NW flank of the Hecates Tholus volcano, Mars, based on crater size–frequency distribution on CTX images. Icarus, 226, 455469, doi:10.1016/j.icarus.2013.05.012.Google Scholar
DiBiase, R. A., Limaye, A. B., Scheingross, J. S., Fischer, W. W., and Lamb, M. P. (2013). Deltaic deposits at Aeolis Dorsa: Sedimentary evidence for a standing body of water on the northern plains of Mars. J. Geophys. Res., 118, 12851302, doi:10.1002/jgre.20100.Google Scholar
Dickson, J. L. and Head, J. W. (2008). Amazonian glaciation in eastern Hellas, Mars: Evidence for high-altitude atmospheric deposition as the source for the hourglass and related deposits. Lunar Planet. Sci. Conf., 39, abs. 1660.Google Scholar
Dickson, J. L., Head, J. W., and Marchant, D. R. (2008). Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases. Geology, 36, 411414, doi:10.1130/G24382A.1.CrossRefGoogle Scholar
Dickson, J. L., Head, J. W., and Fassett, C. I. (2011). Ice accumulation and flow on Mars: Orientation trends and implications for climate in the Late Amazonian. Lunar Planet. Sci. Conf., 42, abs. 1324.Google Scholar
Diniega, S., Hansen, C. J., McElwaine, J. N., and 4 others (2013). A new dry hypothesis for the formation of Martian linear gullies. Icarus, 225, 526537, doi:10.1016/j.icarus.2013.04.006.Google Scholar
Diniega, S., McEwen, A. S., Dundas, C. M., and Ojha, L. (2014). Signs of water? A review of recent Martian slope features. Eighth Int. Mars Conf., abs. 1423.Google Scholar
Diniega, S., Hansen, C. J., Allen, A., et al. (2017). Dune–slope activity due to frost and wind throughout the north polar erg, Mars. In Conway, S. J., Carrivick, J. L., Carling, P. A., de Haas, T., and Harrison, T. N., eds., Martian Gullies and their Earth Analogues. Geological Society, London, Special Publications, 467, doi:10.1144/SP467.6.Google Scholar
Di Pietro, I., Ori, G. G., Pondrelli, M., and Salese, F. (2018). Geology of Aeolis Dorsa alluvial sedimentary basin, Mars. J. Maps, 14, 212218, doi:10.1080/17445647.2018.1454350.Google Scholar
Dohm, J. M. and Tanaka, K. L. (1999). Geology of the Thaumasia region, Mars: Plateau development, valley, and magmatic evolution. Planet. Space Sci., 47, 411431, doi:10.1016/S0032-0633(98)00141-X.Google Scholar
Dohm, J. M., Anderson, R. C., Baker, V. R., et al. (2001a). Latent outflow activity for western Tharsis, Mars: Significant flood record exposed. J. Geophys. Res., 103, 2000JE00135, 12,301–12,314.Google Scholar
Dohm, J. M., Ferris, J. C., Baker, V. R., et al. (2001b). Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 32,943–32,958, doi:10.1029/2000JE001468.Google Scholar
Dohm, J. M., Tanaka, K. L., and Hare, T. M. (2001c). Geologic map of the Thaumasia region of Mars. USGS Misc. Invest. Ser. Map I-2650, scale 1: 5,000,000.Google Scholar
Dohm, J. M., Anderson, R. C., Barlow, N. G., et al. (2008). Recent geological and hydrological activity on Mars: The Tharsis/Elysium Corridor. Planet. Space Sci., 56, 9851013, doi:10.1016/j.pss.2008.01.001.Google Scholar
Dohm, J. M., Anderson, R. C., Williams, J.-P., et al. (2009a). Claritas rise: Pre-Tharsis magmatism. J. Volcanol. Geotherm. Res., 185, 139156.Google Scholar
Dohm, J. M., Baker, V. R., Boynton, W. V., et al. (2009b). GRS evidence and the possibility of ancient oceans on Mars: Special. Planet. Space Sci., 57, 664684, doi:10.1016/j.pss.2008.10.008.Google Scholar
Dohm, J. M., Ferris, J. C., Baker, V. R., et al. (2011). Did a large Argyre lake source the Uzboi Vallis drainage system?: Post-Viking era geologic mapping investigation. Lunar Planet. Sci. Conf., 42, abs. 2255.Google Scholar
Dohm, J. M., Spagnuolo, M. G., Williams, J. P., et al. (2015). The Mars plate-tectonic-basement hypothesis. Lunar Planet. Sci. Conf., 46, abs. 1741.Google Scholar
Dundas, C. M. and Keszthelyi, L. P. (2014). Emplacement and erosive effects of lava in south Kasei Valles, Mars. J. Volcanol. Geotherm. Res., 282, 92102.Google Scholar
Dundas, C. M., Diniega, S., Hansen, C. J., Byrne, S, and McEwen, A. S. (2012). Seasonal activity and morphological changes in Martian gullies. Icarus, 220, 124143.Google Scholar
Dundas, C. M., Diniega, S., and McEwen, A. S. (2015). Long-term monitoring of Martian gully formation and evolution with MRO-HiRISE. Icarus, 251, 244263.CrossRefGoogle Scholar
Dundas, C. M., McEwen, A. S., Diniega, S., et al. (2017). The formation of gullies on Mars today. In Conway, S. J., Carrivick, J. L., Carling, P. A., de Haas, T., and Harrison, T. N., eds., Martian Gullies and their Earth Analogues. Geological Society, London, Special Publications, 467, doi:10.1144/SP467.5.Google Scholar
Duxbury, T., Kirk, R. L., Archinal, B. A., and Neumann, G. A. (2002). Mars Geodesy/Cartography Working Group Recommendations on Mars Cartographic Constants and Coordinate Systems. In Int. Soc. Photogramm. Remote Sensing, 34, GeoSpatial Theory, Processing and Applications, Ottawa, www.isprs.org/proceedings/XXXIV/part4/pdfpapers/521.pdf.Google Scholar
Ehlmann, B. L. and Edwards, C. S. (2014). Mineralogy of the Martian surface. Ann. Rev. Earth Planet. Sci., 42, 291315.Google Scholar
Ehlmann, B. L., Mustard, J. F., and Murchie, S. L. (2010). Geologic setting of serpentine-bearing rocks on Mars. Geophys. Res. Lett., 37, L06201, doi:10.1029/2010GL042596.Google Scholar
El Maarry, M. R., Dohm, J. M., Marzo, G. A., et al. (2012). Searching for evidence of hydrothermal activity at Apollinaris Mons, Mars. Icarus, 217, 297314.Google Scholar
El Maarry, M. R., Dohm, J. M., Michael, G., Thomas, N., and Maruyama, S. (2013). Morphology and evolution of the ejecta of Hale crater in Argyre basin, Mars: Results from high resolution mapping. Icarus, 226, 905922.Google Scholar
Erkeling, G., Hiesinger, H., Reiss, D., Hielscher, F. J., and Ivanov, M. A. (2011). The stratigraphy of the Amenthes region, Mars: Time limits for the formation of fluvial, volcanic and tectonic landforms. Icarus, 215, 128152, doi:10.1016/j.icarus.2011.06.041.Google Scholar
European Space Agency (2012). The pit-chains of Mars: possible place for life? www.esa.int/Our_Activities/Space_Science/Mars_Express/The_pit-chains_of_Mars_a_possible_place_for_life.Google Scholar
Fairén, A. G., Davila, A. F., Gago-Duport, L., et al. (2011). Cold glacial oceans would have inhibited phyllosilicate sedimentation on early Mars. Nature Geosci. 4, 667670.Google Scholar
Farmer, J. D. (2000). Hydrothermal systems: Doorways to early biosphere evolution. GSA Today, 10, 19.Google Scholar
Farmer, J.,D. and Landheim, R. (1995). Site 144: Diacria southeast. In Greeley, R., and Thomas, P. E., eds., Mars Landing Site Catalog, second edition. NASA Reference Publication 1238, http://cmex.ihmc.us/marstools/mars_cat/Mars_Cat.html.Google Scholar
Fassett, C. I. and Head, J.W. III (2006). Valleys on Hecates Tholus, Mars: origin by basal melting of summit snowpack. Planet. Space Sci., 54, 370378, doi:10.1016/j.pss.2005.12.011.Google Scholar
Fassett, C. I. and Head, J. W. III (2008). Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus, 198, 3756, doi:10.1016/j.icarus.2008.06.016.Google Scholar
Fastook, J. L., Head, J. W., Marchant, D. R., and Forget, F. (2008). Tropical mountain glaciers on Mars: Altitude-dependence of ice accumulation, accumulation conditions, formation times, glacier dynamics, and implications for planetary spin-axis/orbital history. Icarus, 198, 305317, doi:10.1016/j.icarus.2008.08.008.Google Scholar
Fawdon, P., Skok, J. R., Balme, M. R., et al. (2015). The geological history of Nili Patera, Mars. J. Geophys. Res., 120, 951977, doi:10.1002/2015JE004795.Google Scholar
Feldman, W. C., Prettyman, T. H., Maurice, S., et al. (2004). Global distribution of near-surface hydrogen on Mars. J. Geophys. Res., 109, E09006, doi:10.1029/2003JE002160.Google Scholar
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W. (2006). Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science, 311, 368371.Google Scholar
Fortezzo, C. M. and Skinner, J. A. Jr. (2012). Geologic evolution of the Runanga–Jörn basin, northeast Hellas, Mars. Lunar Planet. Sci. Conf., 43, abs. 2681.Google Scholar
Fortezzo, C. M. and Tanaka, K. L. (2010). Mapping Planum Boreum unconformities using Context Camera mosaics. Lunar Planet. Sci. Conf., 41, abs. 2554.Google Scholar
Frey, H. (1979). Thaumasia: A fossilized early forming Tharsis uplift. J. Geophys. Res., 84, 10091023, doi:10.1029/JB084iB03p01009.Google Scholar
Frey, H. V. (2006). Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res., 111, E08S91, doi:10.1029/2005JE002449.Google Scholar
Frey, H. V., Roark, J. H., Shockey, K. M., Frey, E. L., and Sakimoto, S. E. H. (2002). Ancient lowlands on Mars. Geophys. Res. Lett., 29, doi:10.1029/2001GL013832.Google Scholar
Fuller, E. R. and Head, J. W. III (2002). Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars. J. Geophys. Res., 107, doi:10.1029/2002JE001842.Google Scholar
Gardin, E., Allemand, P., Quantin, C., and Thollot, P. (2010). Defrosting, dark flow features, and dune activity on Mars: Example in Russell crater. J. Geophys. Res., 115, E06016, doi:10.1029/2009JE003515.Google Scholar
Genova, A., Boossens, S., Lemoine, F. G., et al. (2016). Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus, 272, 228245, doi:10.1016/j.icarus.2016.02.050.Google Scholar
Ghatan, G. J. and Head, J. W. III (2002). Candidate subglacial volcanoes in the south polar region of Mars: Morphology, morphometry, and eruption conditions. J. Geophys. Res., 107, doi:10.1029/2001JE001519.Google Scholar
Glotch, T. D. and Christensen, P. R. (2005). Geologic and mineralogic mapping of Aram Chaos: Evidence for a water-rich history. J. Geophys. Res., 110, E09006, doi:10.1029/2004JE002389.Google Scholar
Golder, K. B. and Gilmore, M. S. (2012). Evolution of chaos terrain in the Eridania basin, Mars. Lunar Planet. Sci. Conf., 43, abs. 2796.Google Scholar
Golder, K. B., and Gilmore, M. S. (2013). Eridania basin, Mars: Evolution of Electris terrain, chaos, and paleolake. Lunar Planet. Sci. Conf., 44, abs. 2995.Google Scholar
Golombek, M. P., Cook, R. A., Economou, T., and 11 others (1997). Overview of the Mars Pathfinder Mission and assessment of landing site predictions. Science, 278, 17431748.Google Scholar
Golombek, M. P., Anderson, F. S., and Zuber, M. T. (2001). Martian wrinkle ridge topography: Evidence for subsurface faults from MOLA. J. Geophys. Res., 106, 23,811–23,821, doi:10.1029/2000JE001308.Google Scholar
Golombek, M., Grant, J., Kipp, D., et al. (2012). Selection of the Mars Science Laboratory landing site. Space Sci. Rev., 170, 641737, doi:10.1007/s11214-012-9916-y.Google Scholar
Gomes, R., Levison, H. F., Tsiganis, K., and Morbidelli, A. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466469, doi:10.1038/nature03676.Google Scholar
Grant, J. A. and Parker, T. J. (2002). Drainage evolution of the Margaritifer Sinus region, Mars. J. Geophys. Res., 107, 5066, doi:10.1029/2001JE001678.Google Scholar
Grant, J. A., Wilson, S. A., Fortezzo, C. M., and Clark, D. A. (2009). Geologic map of MTM-20012 and -25012 quadrangles, Margaritifer Terra region of Mars. USGS Sci. Inv. Map 3041, scale 1:500,000.Google Scholar
Greeley, R. and Crown, D. A. (1990). Volcanic geology of Tyrrhena Patera, Mars. J. Geophys. Res., 95, 71337149.Google Scholar
Greeley, R. and Guest, J. E. (1987). Geologic map of the eastern equatorial region of Mars. USGS Misc. Inv. Ser. Map I–1802–B, scale 1:15,000,000.Google Scholar
Greeley, R., Bernard, F. H., McSween, H. Y., et al. (2005). Fluid lava flows in Gusev crater, Mars. J. Geophys. Res., 110, E05008, doi:10.1029/2005JE002401.Google Scholar
Greeley, R., Williams, D. A., Fergason, R. L., et al., and the HRSC Co-Investigator Team (2007). Amphitrites and Peneus: New insight into highlands paterae. Lunar Planet. Sci. Conf., 38, abs. 1373.Google Scholar
Gregg, T. K. P., Crown, D.A., and Greeley, R. (1998). Geologic map of MTM quadrangle -20252, Tyrrhena Patera region of Mars. USGS Misc. Inv. Ser. Map I-2556, scale 1:500,000.Google Scholar
Grimm, R. E., Harrison, K. P., and Stillman, D. E. (2014). Water budgets of Martian recurring slope lineae. Icarus, 233, 316327.Google Scholar
Grosfils, E. B. and Head, J. W. (1994). The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state. Geophys. Res. Letters, 21, 701704.Google Scholar
Grotzinger, J., Beaty, D., Dromart, G., et al. (2011). Mars sedimentary geology: Key concepts and outstanding questions. Astrobiology, 11, 7787, doi:10.1089/ast.2010.0571.Google Scholar
Grotzinger, J. P., Crisp, J., Vasavada, A. R., et al. (2012). Mars Science Laboratory mission and science investigation. Space Sci. Rev., 170, 556, doi:10.1007/s11214-012-9892-2.Google Scholar
Gwinner, K., Jaumann, R., Bostelmann, J., et al. (2015). The first quadrangle of the Mars Express HRSC multi-orbit data products (MC-11-E). Eur. Planet. Sci. Congress, 10, abs. 672.Google Scholar
Gwinner, K., Jaumann, R., Hauber, E., et al. (2016). The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci., 126, 93138, doi:10.1016/j.pss.2016.02.014.Google Scholar
Haberle, R. M., Clancy, R. T., Forget, F., Smith, M. D., and Zurek, R. W., eds. (2017). The Atmosphere and Climate of Mars. Cambridge: Cambridge University Press.Google Scholar
Hansen, C. J., McEwan, A, and the HiRISE team (2007a). Spring at the south pole of Mars. American Geophysical Union Press Conference, http://hirise.lpl.arizona.edu/pdf/agu_press_conf_dec07.pdf.Google Scholar
Hansen, C. J., McEwen, A. S., Okubo, C., et al. (2007b). HiRISE images of the sublimation of the southern seasonal polar cap of Mars. Eos Trans. AGU, 88, Fall Meet. Suppl., Abstract P24A-04.Google Scholar
Hansen, C. J., Bourke, M, Bridges, N. T., et al. (2011). Seasonal erosion of restoration of Mars’ northern polar dunes. Science, 331, 575578.Google Scholar
Hansen, C. J., Byrne, S., Portyankina, G., et al. (2013). Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus, 225, 881897.Google Scholar
Hansen, C. J., Diniega, S., Bridges, N., et al. (2015). Agents of change on Mars’ northern dunes: CO2 ice and wind. Icarus, 251, 264274, doi:10.1016/j.icarus.2014.11.015.Google Scholar
Hargitai, H. and Kereszturi, Á. (2010). Towards the development of supplements to the Gazetteer of Planetary Nomenclature. Eur. Planet. Sci. Congress, 5, 865, EPSC2010–865.Google Scholar
Harrison, T. N., Osinski, G. R., and Tornabene, L. L. (2012). Global documentation of gullies with the Mars Reconnaissance Orbiter (MRO) Context Camera (CTX). 2012 Canadian Space Summit, Nov. 14–16, abstract.Google Scholar
Harrison, T. N., Osinski, G. R., Tornabene, L. L., and Jones, E. (2015). Global documentation of gullies with the Mars Reconnaissance Orbiter Context Camera and implications for their formation. Icarus, 252, 236254, doi: 10.1016/j.icarus.2015.01.022.Google Scholar
Hartmann, W. K. (2003). A Traveler’s Guide to Mars: The Mysterious Landscapes of the Red Planet. New York, NY: Workman Publishing.Google Scholar
Hartmann, W. K. and Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Sci. Rev., 96, 165194.Google Scholar
Hartmann, W. K. and Raper, O. (1974). The New Mars: The Discoveries of Mariner 9. NASA Special Publication SP-337, Washington, DC, Government Printing Office.Google Scholar
Hauber, E., Grott, M., and Kronberg, P. (2010). Martian rifts: Structural geology and geophysics. Earth Planet. Sci. Lett., 294, 393410, doi:10.1016/j.epsl.2009.11.005.Google Scholar
Hayward, R. K., Mullins, K. F., Fenton, L. K., et al. (2007a). Mars Global Digital Dune Database and initial science results. J. Geophys. Res., 112, E11007, doi:10.1029/2007JE002943.Google Scholar
Hayward, R. K., Mullins, K. F., Fenton, L. K., et al. (2007b). Mars Global Digital Dune Database: MC2– MC29. US Geological Survey Open-File Report 2007–1158, http://pubs.usgs.gov/of/2007/1158/.CrossRefGoogle Scholar
Head, J. W. III and Pratt, S. (2001). Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and ponding of melt-water. J. Geophys. Res., 106, 12,275–12,299.Google Scholar
Head, J. W. III, Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R. (2003). Recent ice ages on Mars. Nature, 426, 797802.Google Scholar
Head, J. W. III, Neukum, G., Jaumann, R., et al., and the HRSC Co-Investigator Team (2005). Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature, 434, 346351.Google Scholar
Head, J. W. III, Marchant, D. R., and Kreslavsky, M. A. (2008). Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin. Proc. Natl. Acad. Sci., 105, 1325813263, doi:10.1073/pnas.0803760105.Google Scholar
Heldmann, J. L., Toon, O. B., Pollard, W. H., et al. (2005). Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions. J. Geophys. Res., 110, E05004, doi:10.1029/2004JE002261.Google Scholar
Hiesinger, H. and Head, J. W. III (2002). Topography and morphology of the Argyre basin, Mars: Implications for its geologic and hydrologic history. Planet. Space Sci., 50, 939981.Google Scholar
Hiesinger, H. and Head, J. W. III (2004). The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data. J. Geophys. Res., 109, E01004, doi:10.1029/2003JE002143.Google Scholar
Hill, J. R., and Christensen, P. R. (2016). A quality constrained THEMIS daytime infrared global mosaic. Lunar Planet. Sci. Conf., 47, abs. 2326.Google Scholar
Hill, J. R., Edwards, C. S, and Christensen, P. R. (2014). Mapping the Martian surface with THEMIS global infrared mosaics. Eighth Int. Mars Conf., abs. 1141.Google Scholar
Holt, J. W., Safaeinili, A., Plaut, J. J., et al. (2008). Radar sounding evidence for buried glaciers in the southern mid-latitudes of Mars. Science, 322, 12351238, doi:10.1126/science.1164246.Google Scholar
Horgan, B. H. N. and Bell, J. F. III (2012). Seasonally active slipface avalanches in the north polar sand sea of Mars; evidence for a wind-related origin. Geophys. Res. Letters, 39, L09201.Google Scholar
Howard, A. D. (1978). Origin of the stepped topography of the Martian poles. Icarus, 34, 581599.Google Scholar
Howard, A. D. (2000). The role of eolian processes in forming surface features of the Martian polar layered deposits. Icarus, 144, 267288.Google Scholar
Howard, A. D., Moore, J. M., and Irwin, R. P. III (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. J. Geophys. Res., 110, E12S14, doi:10.1029/2005JE002459.Google Scholar
HRSC (2004a). Dao Vallis (orbit 0528). Press Release #067, www.planet.geo.fu-berlin.de/eng/projects/mars/hrsc067-DaoVallis.php.Google Scholar
HRSC (2004b). Reull Vallis (orbit 0451). Press Release #138, www.planet.geo.fu-berlin.de/eng/projects/mars/hrsc138-ReullVallis.php.Google Scholar
HRSC (2005). Hour glass (orbit 0451). Press Release #178, www.planet.geo.fu-berlin.de/eng/projects/mars/hrsc178-HourGlass.php.Google Scholar
HRSC (2006). Hour glass movies (orbit 0451). Press Release #242, www.planet.geo.fu-berlin.de/eng/projects/mars/hrsc242-HourGlassMovies.php.Google Scholar
HRSC (2013). Upper Reull Vallis (orbit 10657). Press Release #582: www.planet.geo.fu-berlin.de/eng/projects/mars/hrsc582-UpperReullVallis.php.Google Scholar
Hubbard, S. (2011). Exploring Mars: Chronicle from a Decade of Discovery. Tucson, AZ: University of Arizona Press.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013). Origin and age of the earliest Martian crust from meteorite NWA7533. Nature, 503, 513516.Google Scholar
Hynek, B. M., Phillips, R. J., and Arvidson, R. E. (2003). Explosive volcanism in the Tharsis region: Global evidence in the Martian geologic record. J. Geophys. Res., 111, 5111, doi:10.1029/2003JE002062.Google Scholar
Hynek, B. M., Beach, M., and Hoke, M. R. T. (2010). Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res., 115, E09008, doi:10.1029/2009JE003548.Google Scholar
Irwin, R. P. III and Grant, J. A. (2013). Geologic map of MTM-15027, -20027, -25027, and -25032 quadrangles, Margaritifer Terra region of Mars. USGS Sci. Inv. Map SIM-3209, scale 1:1,000,000.Google Scholar
Irwin, R. P. III, Maxwell, T. A., Howard, A. D., Craddock, R. A., and Leverington, D. W. (2002). A large paleolake basin at the head of Ma’adim Vallis, Mars. Science, 296, 22092212.Google Scholar
Irwin, R. P. III, Howard, A. D., and Maxwell, T. A. (2004). Geomorphology of Ma’adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res., 109, E12009, doi:10.1029/2004JE002287.Google Scholar
Irwin, R. P. III, Howard, A. D., Craddock, R. A., and Moore, J. M. (2005). An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. J. Geophys. Res., 110, E12S15, doi:10.1029/2005JE002460.Google Scholar
Irwin, R. P. III, Tanaka, K. L., and Robbins, S. J. (2013). Distribution of Early, Middle, and Late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes. J. Geophys. Res., 118, 114, doi:10.1002/jgre.20053.Google Scholar
Isherwood, R. J., Jozwiak, L. M., Jansen, J. C., and Andrews-Hanna, J. C. (2013). The volcanic history of Olympus Mons from paleo-topography and flexural modeling. Earth Planet. Sci. Lett., 363, 8896.Google Scholar
Ivanov, M. A., Hiesinger, H., Erkeling, G., Hielscher, F. J., and Reiss, D. (2012). Major episodes of geologic history of Isidis Planitia on Mars. Icarus, 218, 2446, doi:10.1016/j.icarus.2011.11.029.Google Scholar
Jacobsen, R. E. and Burr, D. M. (2017). Dichotomies in the fluvial and alluvial fan deposits of the Aeolis Dorsa, Mars: Implications for weathered sediment and paleoclimate. Geosphere, 13, 21542168, doi:10.1130/GES01330.1.Google Scholar
Jaumann, R., Neukum, G., Behnke, T., et al., and the HRSC Co-Investigator Team (2007). The High-Resolution Stereo Camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci., 55, 928952.Google Scholar
Jaumann, R., Tirsch, D., Hauber, E., et al. (2015). Quantifying geologic processes on Mars: Results of the High Resolution Stereo Camera (HRSC) on Mars Express. Planet. Space Sci., 112, 5397, doi:10.1016/j.pss.2014.11.029.Google Scholar
Johnsson, A., Reiss, D., Hauber, E, Hiesinger, H., and Zanetti, M. (2014). Evidence for very recent melt-water and debris flow activity in gullies in a young mid-latitude crater on Mars. Icarus, 235, 3754.Google Scholar
Jouannic, G., Gargani, J., Costard, F., et al. (2012). Morphological and mechanical characterization of gullies in a periglacial environment: The case of the Russell crater dune (Mars). Planet. Space Sci., 71, 3854, doi:10.1016/j.pss.2012.07.005.Google Scholar
JPL (Jet Propulsion Laboratory) (2011). PIA15098: Chemical alteration by water, Mawrth Vallis. http://photojournal.jpl.nasa.gov/catalog/PIA15098.Google Scholar
Kadish, S. J., Head, J. W., Parsons, R. L., and Marchant, D. R. (2008). The Ascraeus Mons fan-shaped deposit: Volcano–ice interactions and the climatic implications of cold-based tropical mountain glaciation. Icarus, 197, 84109.Google Scholar
Karasozen, E., Andrews-Hanna, J. C., Dohm, J. M., and Anderson, R. C. (2012). The formation mechanism of the south ridge belt, Mars. Lunar Planet. Sci. Conf., 43, abs. 2592.Google Scholar
Kargel, J. S. and Strom, R. G. (1992). Ancient glaciation on Mars. Geology, 20, 37.Google Scholar
Kargel, J. S., Baker, V. R., Begét, J. E., et al. (1995). Evidence of continental glaciation in the Martian northern plains. J. Geophys. Res., 100, 53515368, doi:10.1029/94JE02447.Google Scholar
Kerber, L. and Head, J. W. (2010). The age of the Medusae Fossae Formation: Evidence of Hesperian emplacement from crater morphology, stratigraphy, and ancient lava contacts. Icarus, 206, 669684.Google Scholar
Kerber, L., Head, J.W., Madeleine, J.-B., Forget, F., and Wilson, L. (2011). The dispersal of pyroclasts from Apollinaris Patera, Mars: Implications for the origin of the Medusae Fossae Formation. Icarus, 216, 212220, doi:10.1016/j.icarus.2011.07.035.Google Scholar
Kereszturi, A. (2012). Review of wet environment types on Mars with focus on duration and volumetric issues. Astrobiology, 12, 586600, doi:10.1089/ast.2011.0686.Google Scholar
Kereszturi, A., Möhlmann, D., Berczi, S., et al. (2011). Possible role of brines in the darkening and flow-like features on the Martian polar dunes based on HiRISE images. Planet. Space Sci., 59, 1413–27, doi:10.1016/j.pss.2011.05.012.Google Scholar
Kieffer, H. H., Jakosky, B. M., and Snyder, C. W. (1992a). The planet Mars: From antiquity to the present. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 133.Google Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds. (1992b). Mars. Tucson, AZ: University of Arizona Press, Space Science Series, 1455 pp.Google Scholar
Kieffer, H. H., Christensen, P. R., and Titus, T. N. (2006). CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature, 442, 793796, doi:10.1038/nature04945.Google Scholar
Kite, E. S. and Hindmarsh, R. C. A. (2007). Did ice streams shape the largest channels on Mars? Geophys. Res. Lett., 34, L19202, doi:10.1029/2007GL030530.Google Scholar
Kite, E. S., Lewis, K. W., Lamb, M. P., Newman, C. E., and Richardson, M. I. (2013). Growth and form of the mound in Gale crater, Mars: Slope wind enhanced erosion and transport. Geology, 41, 543546, doi:10.1130/G33909.1.Google Scholar
Klein, H. P., Horowitz, N. H., and Biemann, K. (1992). The search for extant life on Mars. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 12211245.Google Scholar
Kleine, T., Münker, C., Mezger, K., and Palme, H. (2002). Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952955.Google Scholar
Koeppen, W. C. and Hamilton, V. E. (2008). Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data. J. Geophys. Res., 113, E05001, doi:10.1029/2007JE002984.Google Scholar
Kopparapu, R. K., Ramirez, R., Kasting, J. F., and 7 others (2013). Habitable zones around main-sequence stars: New estimates. Astroph. J., 265, 131, doi:10.1088/0004-637X/765/2/131.Google Scholar
Kreslavsky, M. A. and Head, J. W. III (2000). Kilometer-scale roughness of Mars: Results from MOLA data analysis. J. Geophys. Res., 105, 26,695–26,711, doi:10.1029/2000JE001259.Google Scholar
Kreslavsky, M. A. and Head, J. W. III (2009). Slope streaks on Mars: A new “wet” mechanism. Icarus, 201, 517527, doi:10.1016/j.icarus.2009.01.026.Google Scholar
Laskar, J., Levrard, B., and Mustard, J. F. (2002). Orbital forcing of the Martian polar layered deposits. Nature, 419, 375377.Google Scholar
Laskar, J., Correia, A. C. M., Gastineau, M., et al. (2004). Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus, 170, 343364, doi:10.1016/j.icarus.2004.04.005.Google Scholar
Leighton, R. B., Murray, B. C., Sharp, R. P., Allen, J. D., and Sloan, R. K. (1965). Mariner IV photography of Mars: Initial results. Science, 149, 627630.Google Scholar
Leighton, R. B., Horowitz, N. H., Murray, B. C., et al. (1969). Mariner 6 and 7 television pictures: Preliminary analysis. Science, 166, 4967.Google Scholar
Leonard, G. J. and Tanaka, K. L. (2001). Geologic map of the Hellas region of Mars. USGS Misc. Inv. Ser. Map I-2694, scale 1:5,000,000.Google Scholar
Leone, G. (2016). Alignments of volcanic features in the southern hemisphere of Mars produced by migrating mantle plumes. J. Volcanol. Geotherm. Res., 309, 7895, doi:10.1016/j.jvolgeores.2015.10.028.Google Scholar
Leone, G., Tackley, P. J., Gerya, T. V., May, D. A., and Zhu, G. (2014). Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys. Res. Letters, 41, 87368743, doi:10.1002/2014GL062261.Google Scholar
Leverington, D. W. (2007). Was the Mangala Valles system incised by volcanic flows? J. Geophys. Res., 112, E11005, doi:10.1029/2007JE002896.Google Scholar
Leverington, D. W. (2011). A volcanic origin for the outflow channels of Mars: Key evidence and major implications. Geomorphology, 132, 5175, doi:10.1016/j.geomorph.2011.05.022.Google Scholar
Levinthal, E. C., Green, W. G., Cutts, J. A., et al. (1973). Mariner 9: Image processing and products. Icarus, 18, 75101.Google Scholar
Levy, J. S. and Head, J. W. III (2005). Evidence for remnants of ice-rich deposits: Mangala Valles outflow channel, Mars. Terra Nova, 17, 503509.Google Scholar
Li., H., Robinson, M. S., and Jurdy, D. M. (2006). Martian southern hemisphere debris aprons. Lunar Planet. Sci. Conf., 37, abs. 2390.Google Scholar
Lias, J. H., Dohm, J. M., and Tanaka, J. M. (1997). Geologic history of Lowell impact. Lunar Planet. Sci. Conf., 28, abs. 1650, 813814.Google Scholar
Lias, J. H., Tanaka, K. L., and Hare, T. M. (1999). Geologic, tectonic, and fluvial histories of the Eridania region of Mars. Lunar Planet. Sci. Conf., 30, abs. 1074.Google Scholar
Loizeau, D., Mangold, N., Poulet, F., et al. (2010). Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM. Icarus, 205, 396418, doi:10.1016/j.icarus.2009.04.018.Google Scholar
Lopes, R. M. C., Guest, J. E., Hiller, K. H., and Neukum, G. P. O. (1982). Further evidence for a mass movement origin of the Olympus Mons aureole. J. Geophys. Res., 87, 99179928, doi:10.1029/JB087iB12p09917.Google Scholar
Lucchitta, B. K. (1981). Mars and Earth: Comparison of cold-climate features. Icarus, 45, 264303.Google Scholar
Lucchitta, B. K. (1982). Ice sculpture in the Martian outflow channels. J. Geophys. Res., 87, 99519973.Google Scholar
Malin, M. C. (1979). Mars: Evidence of indurated deposits of fine materials. NASA Conf. Pub., 2072, 54.Google Scholar
Malin, M. C. and Edgett, K. S. (2000a). Evidence for recent groundwater seepage and surface runoff on Mars. Science, 288, 23302335.Google Scholar
Malin, M. C. and Edgett, K. S. (2000b). Sedimentary rocks of early Mars. Science, 290, 1927–37.Google Scholar
Malin, M. C. and Edgett, K. S. (2003). Evidence for persistent flow and aqueous sedimentation on early Mars. Science, 302, 19311934. doi:10.1126/science.1090544.Google Scholar
Malin, M. C., Danielson, G. E., Ravine, M. A., and Soulanille, T. A. (1991). Design and development of the Mars observer camera. Int. J. Imag. Syst.Tech., 3, 7691.Google Scholar
Malin, M. C., Edgett, K. S., Posiolova, L. V., McColley, S. M., and Noe Dobrea, E. Z. (2006). Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 15731577.Google Scholar
Malin, M. C., Bell, J. F. III, Cantor, B. A., et al. (2007). Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res., 112, E05S04, doi:10.1029/2006JE002808.Google Scholar
Malin, M. C., Edgett, K. S., Cantor, B. C., et al. (2010). An overview of the 1985–2006 Mars Orbiter Camera science investigation. MARS, 5, 160, doi:10.1555/mars2010.0001.Google Scholar
Malin Space Science Systems (MSSS) (2003). Schiaparelli sedimentary rocks. MGS MOC Release no. MOC2–403, www.msss.com/mars_images/moc/2003/06/26/.Google Scholar
Mandt, K. E., de Silva, S. L., Zimbelman, J. R., and Crown, D. A. (2008). Origin of the Medusae Fossae Formation, Mars: Insights from a synoptic approach. J. Geophys. Res., 113, E12011, doi:10.1029/2008JE003076.Google Scholar
Manfredi, L. and Greeley, R. (2012). Origin of ridges seen in Tempe Terra, Mars. Lunar Planet. Sci. Conf., 43, abs. 2599.Google Scholar
Mangold, N. and Howard, A. D. (2013). Outflow channels with deltaic deposits in Ismenius Lacus, Mars. Icarus, 226, 385401.Google Scholar
Mangold, N., Costard, F., and Forget, F. (2003). Debris flows over sand dunes on Mars: Evidence for liquid water. J. Geophys. Res., 108, E4, 5027, doi:10.1029/2002JE001958.Google Scholar
Mangold, N., Mangeney, A., Migeon, V., et al. (2010). Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties. J. Geophys. Res., 115, E11001, doi:10.1029/2009JE003540.Google Scholar
Marshak, S. (2012). Earth: Portrait of a Planet, 4th edition. New York, NY: Norton.Google Scholar
Martin, L. J., James, P. B., Dollfus, A., Iwasaki, K., and Beish, J. D. (1992). Telescope observations: Visual, photographic, polarimetric. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds. Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 3470.Google Scholar
Masursky, H. (1973). An overview of geological results from Mariner 9. J. Geophys. Res., 78, 40094030.Google Scholar
Masursky, H., Batson, R., Borgeson, W, et al. (1970). Television experiment for Mariner Mars 1971. Icarus, 12, 1045.Google Scholar
McEwen, A. (2012). Lava lamp terrain on the floor of Hellas basin (HiRISE image caption). www.uahirise.org/ESP_025780_1415.Google Scholar
McEwen, A. S., Malin, M. C., Carr, M. H., and Hartmann, W. K. (1999). Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397, 584586, doi:10.1038/17539.Google Scholar
McEwen, A. S., Eliason, E. M., Bergstrom, J. W., et al. (2007a). Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., 112, E05, doi:10.1029/2005JE002605.Google Scholar
McEwen, A. S., Hansen, C. J., Delamere, W. A., et al. (2007b). A closer look at water-related activity on Mars. Science, 317, 17061709.Google Scholar
McEwen, A. S., Keszthelyi, L. P., and Grant, J. A. (2012). Have there been large, recent (Mid-Late Amazonian) water floods on Mars? Lunar Planet. Sci. Conf., 43, abs. 1612.Google Scholar
McEwen, A. S., Dundas, C. M., Mattson, S. S., and 7 others (2013). Recurring slope lineae in equatorial regions of Mars. Nature Geosci., 7, 5358, doi:10.1038/ngeo2014.Google Scholar
McGovern, P. J. and Morgan, J. K. (2009). Volcanic spreading and lateral variations in the structure of Olympus Mons, Mars. Geology, 37, 139142, doi:10.1130/G25180A.1.Google Scholar
McGovern, P. J., Smith, J. R., Morgan, J. K., and Bulmer, M. H. (2004). The Olympus Mons aureole deposits: New evidence for a flank failure origin. J. Geophys. Res., 109, E08008, doi:10.1029/2004JE002258.Google Scholar
McKee, E. D. (1979). Introduction to a study of global sand seas. In McKee, E. D., ed., A Study of Global Sand Seas, US Geological Survey Professional Paper 1052, pp. 3–17.Google Scholar
McSween, H. Y. Jr. (2008). Martian meteorites as crustal samples. In Bell, J. F. III, ed., The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge: Cambridge University Press, pp. 383395.Google Scholar
Mellon, M. and Byrne, S. (2010). Glacier? (HiRISE image caption). See www.uahirise.org/ESP_018857_2225.Google Scholar
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R. (2000). High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus, 148, 437455.Google Scholar
Michalski, J. R. and Bleacher, J. E. (2013). Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature, 502, 4752, doi:10.1038/nature12482.Google Scholar
Mishkin, A. (2003). Sojourner: An Insider’s View of the Mars Pathfinder mission. New York, NY: Berkley Publishing.Google Scholar
Mitchell, D. P. (2004). Soviet Mars Images. http://www.mentallandscape.com/C_CatalogMars.htm.Google Scholar
Montgomery, D. R., Som, S. M., Jackson, M. P. A., et al. (2009). Continental-scale salt tectonics on Mars and the origin of Valles Marineris and associated outflow channels. Geol. Soc. Amer. Bull., 121, 117133, doi:10.1130/B26307.1.Google Scholar
Moore, H. J. (2001). Geologic map of the Tempe-Mareotis region of Mars. USGS Misc. Inv. Ser. Map I-1277, scale 1:1,000,000.Google Scholar
Moore, J. M. and Edgett, K. S. (1993). Hellas Planitia, Mars: Site of net dust erosion and implications for the nature of basin floor deposits. Geophys. Res. Lett. 20, 15991602.Google Scholar
Moore, J. M. and Howard, A. D. (2003). Ariadnes–Gorgonum knob fields of north-western Terra Serenum, Mars. Lunar Planet. Sci. Conf., 34, abs. 1402.Google Scholar
Moore, J. M. and Wilhelms, D. E. (2001). Hellas as possible site of ancient ice-covered lakes on Mars. Icarus, 154, 258276.Google Scholar
Moore, P. (1977). Guide to Mars. New York, NY: W. W. Norton.Google Scholar
Morris, E. C. (1982). Aureole deposits of the Martian volcano Olympus Mons. J. Geophys. Res., 87, 11641178, doi:10.1029/JB087iB02p01164.Google Scholar
Morton, O. (2002). Mapping Mars: Science, Imagination, and the Birth of a World. New York, NY: Picador.Google Scholar
Moscardelli, L. and Wood, L. (2011). Deep-water erosional remnants in eastern offshore Trinidad as terrestrial analogs for teardrop-shaped islands on Mars: Implication for outflow channel formation. Geology, 39, 699702.Google Scholar
Mouginis-Mark, P. J. (2015). Geologic map of Tooting Crater, Amazonis Planitia region of Mars. USGS Sci. Inv. Map SIM-3297, scale 1:200,000.Google Scholar
Mouginis-Mark, P. J., Wilson, L, and Zuber, M. T. (1992). The physical volcanology of Mars. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 424452.Google Scholar
Mouginis-Mark, P. J., Harris, A. J. L., and Rowland, S. K. (2007). Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. In Chapman, M., ed., The Geology of Mars: Evidence from Earth-Based Analogs. Cambridge: Cambridge University Press, pp. 7194.Google Scholar
Murchie, S., Roach, L., Seelos, F., et al. (2009). Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res., 114, E00D05, doi:10.1029/2009JE003343.Google Scholar
Murray, J. B. and Heggie, D. C. (2014). Character and origin of Phobos’ grooves. Planet. Space Sci., 102, 119143.Google Scholar
Murray, J. B. and the HRSC co-investigator team (2005). Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars’ equator. Nature, 434, 352356, doi:10.1038/nature03379.Google Scholar
Musiol, S. and Neukum, G. (2012). Finite element models of lithospheric flexure and volcanic spreading at Olympus Mons, Mars. Lunar Planet. Sci. Conf., 43, abs. 1772.Google Scholar
NASA (1967). Mariner Mars 1964: Final Project Report. NASA Special Publication SP-139, Washington, DC: Government Printing Office.Google Scholar
NASA (1969). Mariner- Mars 1969, A Preliminary Report. NASA Special Publication SP-225, Washington DC: Government Printing Office.Google Scholar
NASA (1974). Mars as Viewed by Mariner 9. NASA Special Publication SP-329, Washington DC: Government Printing Office.Google Scholar
NASA (1978). Apollo Over the Moon: A View from Orbit. NASA Special Publication SP-362, Washington DC: Government Printing Office.Google Scholar
NASA (1997). Exploring the Moon: A Teacher’s Guide with Activities. NASA Publication EG-1997–10-116-HQ.Google Scholar
NASA (1998). Planetary Geology: A Teacher’s Guide with Activities in the Physical and Earth Sciences. NASA publication EG-1998–03-109-HQ.Google Scholar
NASA (2017). Prolific Mars Orbiter completes 50,000 orbits. https://mars.nasa.gov/news/prolific-mars-orbiter-completes-50000-orbits/.Google Scholar
Nayak, M. and Asphaug, E. (2016). Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta. Nature Commun., 7, doi:10.1038/ncomms12591.Google Scholar
Neesemann, A., van Gasselt, S., Walter, S. (2014). Detailed geomorphologic–tectonic mapping of the Tempe Terra region, Mars under consideration of chronostratigraphic aspects. Lunar Planet. Sci. Conf., 45, abs. 2313.Google Scholar
Neuendorf, K. K. E., Mehl, J. P. Jr., and Jackson, J. A., eds. (2005). Glossary of Geology, 5th edition. Alexandria: American Geological Institute.Google Scholar
Neukum, G., Jaumann, R., Hoffmann, H., et al., and HRSC team (2004). Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 432, 971979.CrossRefGoogle ScholarPubMed
Neumann, G. A., Zuber, M. T., Wieczorek, M. A., et al. (2004). Crustal structure of Mars from gravity and topography. J. Geophys. Res., 109, E08002, doi:10.1029/2004JE002262.Google Scholar
Nimmo, F. and Tanaka, K. (2005). Early crustal evolution of Mars. Ann. Rev. Earth Planet. Sci., 33, 133161, doi:10.1146/annurev.earth.33.092203.122637.Google Scholar
Nummedal, D. and Prior, D. B. (1981). Generation of Martian chaos and channels by debris flows. Icarus, 45, 7786.Google Scholar
Nussbaumer, J. (2008). The Granicus and Tinjar Valles channel system. Lunar Planet. Sci. Conf., 39, abs. 1724.Google Scholar
Ody, A., Poulet, F., Langevin, Y., et al. (2012). Global maps of anhydrous minerals at the surface of Mars from OMEGA/MEx. J. Geophys. Res., 117, E00J14, doi:10.1029/2012JE004117.Google Scholar
Oehler, D. Z. and Allen, C. C. (2012). Giant polygons and mounds in the lowlands of Mars: Signatures of an ancient ocean? Astrobiology, 12, 601615, doi:10.1089/ast.2011.0803.Google Scholar
Ojha, L., Wilhelm, M. B., Murchie, S. L., et al. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geosci., 8, 829832, doi:10.1038/ngeo2546.Google Scholar
Parker, T. J., Clifford, S. M., and Banerdt, W. B. (2000). Argyre Planitia and the Mars global hydrologic cycle. Lunar Planet. Sci. Conf., 31, abs. 2033.Google Scholar
Pasquon, K, Gargani, J., Massé, M., and Conway, S. J. (2016). Present-day formation and seasonal evolution of linear dune gullies on Mars. Icarus, 274, 195210, doi: 0.1016/j.icarus.2016.03.024.Google Scholar
Pelletier, J. D., Kolb, K. J., McEwen, A. S., and Kirk, R. L. (2008). Recent bright gully deposits on Mars; wet or dry flow? Geology, 36, 211–14, doi:10.1130/G24346A.1.Google Scholar
Perminov, V. G. (1999). The Difficult Road to Mars: A Brief History of Mars Exploration in the Soviet Union. NASA Monographs in Aerospace History number 15, NP-1999–06-251-HQ.Google Scholar
Phillips, R. J., Davis, B. J., Tanaka, K. L., et al. (2011). Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science, 332, 838841.Google Scholar
Pierce, T. L. and Crown, D. A. (2003). Morphologic and topographic analyses of debris aprons in the eastern Hellas region, Mars. Icarus, 163, 4665.Google Scholar
Planetary Data System (2009). PDS Standards Reference, version 3.8, http://pds.nasa.gov/tools/standards-reference.shtml.Google Scholar
Plaut, J. J., Safaeinili, A., Holt, J. W., et al. (2009). Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars. Geophys. Res. Letters, 36, L02203, doi:10.1029/2008GL036379.Google Scholar
Plescia, J. B (1990). Recent flood lavas in the Elysium region of Mars. Icarus, 88, 465490, doi:10.1016/0019-1035(90)90095-Q.Google Scholar
Plescia, J. B. (2004). Morphometric properties of Martian volcanoes. J. Geophys. Res., 109, doi:10.1029/2002JE002031.Google Scholar
Plescia, J. B. (2013). Olympica Fossae Valles: Newly recognized fluvial-volcanic system. Lunar Planet. Sci. Conf., 44, abs. 2478.Google Scholar
Putzig, N. E., Phillips, R. J., Campbell, B. A., et al. (2009). Subsurface structure of Planum Boreum from Mars Reconnaissance Orbiter shallow radar soundings. Icarus, 204, 443457.Google Scholar
Putzig, N. E., Foss, F. J. II, Campbell, B. A., and Phillips, R. J. (2014). New views of Planum Boreum interior in a migrated 3-D volume of SHARAD data. Eighth Int. Mars Conf., abs. 1336.Google Scholar
Quantin, C., Mangold, N., Hartmann, W. K., and Allemand, P. (2007). Possible long-term decline in impact rates: 1. Martian geological data. Icarus, 186, 110, doi:10.1016/j.icarus.2006.07.008.Google Scholar
Reiss, D., Erkeling, G., Bauch, K. E., and Hiesinger, H. (2010). Evidence for present day gully activity on the Russell Crater dune field, Mars. Geophys. Res. Lett, 37, L06203.Google Scholar
Robbins, S. J. and Hynek, B. M. (2012). A new global database of Mars impact craters ≥1 km: 1. Database creation, properties, and parameters. J. Geophys. Res., 117, E05004, doi:10.1029/2011JE003966.Google Scholar
Robbins, S. J., Di Achille, G., and Hynek, B. M. (2010). Dating the most recent episodes of volcanic activity from Mars’ main volcanic calderae. Lunar Planet. Sci. Conf., 41, abs. 2252.Google Scholar
Robbins, S. J., Hynek, B. M., Lillis, R. J., and Bottke, W. F. (2013). Large impact crater histories of Mars: The effect of different model crater age techniques. Icarus, 225, 173184, doi:10.1016/j.icarus.2013.03.019.Google Scholar
Robinson, M. S., Mouginis-Mark, P. J., Zimbelman, J. R., et al. (1993). Chronology, eruption duration, and atmospheric contribution of the Martian volcano Apollinaris Patera. Icarus, 104, 301323, doi:10.1006/icar.1993.1103.Google Scholar
Rodriguez, J. A. P. and Tanaka, K. L. (2006). Sisyphi Montes and southwest Hellas Paterae: Possible impact, cryotectonic, volcanic, and mantle tectonic processes along Hellas basin rings. Fourth Mars Polar Sci. Conf., abs. 8066.Google Scholar
Rodriguez, J. A. P., Tanaka, K. L., Yamamoto, A., et al. (2010). The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina. Geomorphology, 121, 3054, doi:10.1016/j.geomorph.2009.07.020.Google Scholar
Rodriguez, J. A. P., Fairén, A. G., Tanaka, K. L., et al. (2016). Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports, 6, 25106; doi:10.1038/srep25106.Google Scholar
Rogers, A. D. and Christensen, P. R. (2007). Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. J. Geophys. Res., 112, E01003, doi:10.1029/2006JE002727.Google Scholar
Rotto, S. and Tanaka, K. L. (1995). Geologic/geomorphologic map of the Chryse Planitia region of Mars. USGS Misc. Inv. Ser. Map I-2441, scale 1:5,000,000.Google Scholar
Ruff, S. W. and Christensen, P. R. (2002). Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res., 107, 5127, doi:10.1029/2001JE001580.Google Scholar
Rummel, J. D., Beaty, D. W., Jones, M. A., et al. (2014). A new analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology, 14, 887968, doi:10.1089/ast.2014.1227.Google Scholar
Russell, J. F., Snyder, C. W., and Keiffer, H. H. (1992). Appendix: Origin and use of Martian nomenclature. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds. Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 13051314.Google Scholar
Ryan, A. J. and Christensen, P. R. (2012). Coils and polygonal crust in the Athabasca Valles region, Mars, as evidence for a volcanic history. Science, 336, 449452.Google Scholar
Sagdeev, R. Z. and Zakharov, A. V. (1989). Brief history of the Phobos mission. Nature, 341, 581585.Google Scholar
Sakimoto, S. E. H., Gregg, T. K. P., Hughes, S. S., and Chadwick, J. (2003). Martian plains volcanism in Syria Planum and Tempe Mareotis as analogs to the eastern Snake River Plains, Idaho: Similarities and possible petrologic contributions to topography. Lunar Planet. Sci. Conf., 34, abs. 1740.Google Scholar
Salvatore, M. and Christensen, P. (2014). Evidence for widespread aqueous sedimentation in the northern plains of Mars. Geology, 42, 423426, doi:10.1130/G35319.1.Google Scholar
Sautter, V., Toplis, M. J., Wiens, R. C., et al. (2015). In situ evidence for continental crust on early Mars. Nature Geosci., 8, 605609, doi:10.1038/NGEO2474.Google Scholar
Scanlon, K. E. and Head, J. W. III (2014). Insights into the Late Noachian–Early Hesperian Martian climate change from fluvial features in the Dorsa Argentea Formation. Eighth Int. Mars Conf., abs. 1357.Google Scholar
Schorghofer, N. and King, C. M. (2011). Sporadic formation of slope streaks on Mars. Icarus, 216, 159168.Google Scholar
Schorghofer, N., Aharonson, O., Gerstell, M. F., and Tatsumi, L. (2007). Three decades of slope streak activity on Mars. Icarus, 191, 132140.Google Scholar
Schultz, P. H. and Lutz, A. B. (1988). Polar wandering on Mars. Icarus, 73, 91141.Google Scholar
Schultz, P. H., Schultz, R. A., and Rogers, J. (1982). Structure and evolution of ancient impact basins on Mars. J. Geophys. Res., 87, 98039820.Google Scholar
Schultz, R. A. (2003). Seismotectonics of the Amenthes Rupes thrust fault population, Mars. Geophys. Res. Letters, 30, 1303. doi:10.1029/2002GL016475.Google Scholar
Schultz, R. A. and Tanaka, K. L. (1994). Lithospheric-scale buckling and thrust structures on Mars: The Coprates rise and south Tharsis ridge belt. J. Geophys. Res., 99, 83718385.Google Scholar
Schultz, R. A., Moore, J. M., Grosfils, E. B., Tanaka, K.L., and Mège, D. (2007). The Canyonlands model for planetary grabens: Revised physical basis and implications. In Chapman, M. G. (ed.), The Geology of Mars: Evidence from Earth-based Analogs. Cambridge, Cambridge University Press, pp. 371399.Google Scholar
Schulze-Makuch, D., Dohm, J. M., Fan, C., et al. (2007). Exploration of hydrothermal targets on Mars. Icarus, 189, 308324, doi:10.1016/j.icarus.2007.02.007.Google Scholar
Scott, D. H. and Carr, M. H. (1978). Geologic map of Mars. USGS Misc. Inv. Ser. Map I-1083, scale 1:25,000,000.Google Scholar
Scott, D. H. and Chapman, M. G. (1991). Geologic map of science study area 6, Memnonia region of Mars (MTM-10172). USGS Misc. Inv. Ser. Map I-2084, scale 1:500,000.Google Scholar
Scott, D. H. and Tanaka, K. L. (1982). Ignimbrites of the Amazonis Planitia region of Mars. J. Geophys. Res., 87, 11791190.Google Scholar
Scott, D. H. and Tanaka, K. L. (1986). Geologic map of the western equatorial region of Mars. USGS Misc. Inv. Ser. Map I-1802–A, scale 1:15,000,000.Google Scholar
Scott, D. H. and Zimbelman, J. R. (1995). Geologic map of Arsia Mons volcano, Mars. USGS Misc. Inv. Ser. Map I-2480, scale 1:1,000,000.Google Scholar
Scott, D. H., Dohm, J. M., and Applebee, D. (1993). Geologic map of science study area 8, Apollinaris Patera region of Mars. USGS Misc. Inv. Ser. Map I-2351, scale 1:502,000.Google Scholar
Scott, D. H., Dohm, J. M., and Zimbelman, J. R. (1998). Geologic map of Pavonis Mons volcano, Mars. USGS Misc. Inv. Ser. Map I-2561, scale 1:1,000,000.Google Scholar
Seidelmann, P. K., Abalakin, V. K., Bursa, M., et al. (2002). Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets, and Satellites: 2000. Celest. Mechan. Dynam. Astron., 82, 83110.Google Scholar
Shean, D. E., Head, J. W. III, and Marchant, D. R. (2005). Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit. J. Geophys. Res. 110, E05001, doi:10.1029/2004JE002360.Google Scholar
Sheehan, W. (1996). The Planet Mars: A History of Observation and Discovery. Tucson, AZ: University of Arizona Press.Google Scholar
Skinner, J. A. Jr. and Tanaka, K. L. (2007). Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland–lowland boundary plain, Mars. Icarus, 186, 4159, doi:10.1016/j.icarus.2006.08.013.Google Scholar
Skinner, J. A. Jr. and Fortezzo, C. M. (2012). Efficiency of scale in photogeologic mapping using the Runanga-Jörn basin, Mars and the Verde basin, Arizona: Project introduction and technical approach. In Skinner, J. A. Jr., Tanaka, K. L., and Kelley, M. S., eds., Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, June 18–20, NASA Conference Paper, pp. 29–30.Google Scholar
Skinner, J. A. Jr., Tanaka, K. L., Hare, T. M., et al. (2004). Mass-wasting of the circum-Utopia highland/lowland boundary: Processes and controls. Workshop on Hemispheres Apart: The Origin and Modification of the Martian Crustal Dichotomy, abs. 4031.Google Scholar
Skinner, J. A. Jr., Tanaka, K. L., and Platz, T. (2012). Widespread loess-like deposit in the Martian northern lowlands identifies Middle Amazonian climate change. Geology, 40, 11271130, doi:10.1130/G33513.1.Google Scholar
Skok, J. R., Mustard, J. F., Ehlmann, B. L., Milliken, R. E., and Murchie, S. L. (2010). Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nature Geosci., 3, 838841, doi:10.1038/ngeo990.Google Scholar
Sleep, N. H. (1994). Martian plate tectonics. J. Geophys. Res., 99, 56395655.Google Scholar
Slipher, E. C. (1962). The Photographic Story of Mars. Cambridge, MA: Sky Publishing Corp.Google Scholar
Smith, D. E., Zuber, M. T., Solomon, S. C., et al. (1999). The global topography of Mars and implications for surface evolution. Science, 284, 14951503.Google Scholar
Smith, D. E., Zuber, M. T., Frey, H. V., et al. (2001). Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. J. Geophys. Res., 106, 2368923722, doi:10.1029/2000JE001364.Google Scholar
Smith, I. B. and Holt, J. W. (2010). Onset and migration of spiral troughs on Mars revealed by orbital radar. Nature, 465, 450453, doi:10.1038/nature09049.Google Scholar
Smith, P. H., Tamppari, L. K., Arvidson, R. E., et al. (2009). H2O at the Phoenix landing site. Science, 325, 5861, doi:10.1126/science.1172339.Google Scholar
Snyder, C. W. and Moroz, V. I. (1992). Spacecraft exploration of Mars. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds. Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 71119.Google Scholar
Snyder, J. P. (1987). Map projections: A working manual. US Geol. Surv. Prof. Paper 1395.Google Scholar
Soare, R. J., Conway, S. J., Dohm, J. M., and El-Maary, M. R. (2014). Possible hydraulic (open-system) pingos in and around the Argyre impact basin, Mars. Lunar Planet. Sci. Conf., 45, abs. 1121.Google Scholar
Souness, C. J. and Hubbard, B. (2012). Crevasse-like openings as indicators of flow in Martian glacier-like forms. Lunar Planet. Sci. Conf., 43, abs. 1070.Google Scholar
Souness, C. J., Hubbard, B., Quincey, D. J., and Milliken, R. (2011). Geographical controls on the distribution of glacier-like forms in Mars’ mid-latitudes: Observations from a survey of MRO CTX camera data. Lunar Planet. Sci. Conf., 42, abs. 1021.Google Scholar
Souness, C. J., Hubbard, B., Milliken, R., and Quincey, D. J. (2012). An inventory and population-scale analysis of Martian glacier-like forms. Icarus, 217, 243255.Google Scholar
Spitzer, C. R., ed. (1980). Viking Orbiter Views of Mars. NASA Special Publication SP-441, Washington, DC: Government Printing Office.Google Scholar
Spudis, P. (1993). The Geology of Multi-Ring Impact Basins: The Moon and Outer Planets. Cambridge: Cambridge University Press.Google Scholar
Squyres, S. W. (1989). Urey Prize Lecture: Water on Mars. Icarus, 79, 229288.Google Scholar
Squyres, S. W. (2005). Roving Mars: Spirit, Opportunity, and the Exploration of the Red Planet. New York, NY: Hyperion.Google Scholar
Squyres, S.W., Arvidson, R. E., Bell, J. F. III, et al. (2004). The Spirit Rover’s Athena science investigation at Gusev crater, Mars. Science, 305, 794799.Google Scholar
Stillman, D. E., Michaels, T. I., Grimm, R. E., and Harrison, K. P. (2014). New observations of Martian southern mid-latitude recurring slope lineae (RSL) imply formation by freshwater subsurface flows. Icarus, 233, 328341.Google Scholar
Stooke, P. J. (2012). The International Atlas of Mars Exploration: Volume 1, 1953 to 2003: The first five decades. Cambridge: Cambridge University Press.Google Scholar
Stooke, P. J. (2016). The International Atlas of Mars Exploration: Volume 2, 2004 to 2014: From Spirit to Curiosity. Cambridge: Cambridge University Press.Google Scholar
Sullivan, R., Thomas, P., Veverka, J., Malin, M., and Edgett, K. S. (2001). Mass movement slope streaks imaged by the Mars Orbiter Camera. J. Geophys. Res., 106, 2360723633, doi:10.1029/2000JE001296.Google Scholar
Tanaka, K. L. (1985). Ice-lubricated gravity spreading of the Olympus Mons aureole deposits. Icarus, 62, 191206.Google Scholar
Tanaka, K. L. (1990). Tectonic history of the Alba Patera–Ceraunius Fossae region of Mars. Lunar Planet. Sci. Conf., 20, 515523.Google Scholar
Tanaka, K. L. (2000). Dust and ice depostion in the Martian geologic record. Icarus, 144, 254266, doi:10.1006/icar.1999.6297.Google Scholar
Tanaka, K. L. and Chapman, M. G. (1992). Kasei Valles, Mars: Interpretation of canyon materials and flood sources. Proc. Lunar Planet. Sci. Conf., 22, 7383.Google Scholar
Tanaka, K. L. and Davis, P. A. (1988). Tectonic history of the Syria Planum province of Mars. J. Geophys. Res., 93, 1489314917.Google Scholar
Tanaka, K. L. and Fortezzo, C. M. (2012). Geologic map of the north polar region of Mars. USGS Sci. Invest. Map SIM-3177, scale 1:2,000,000.Google Scholar
Tanaka, K. L. and Kolb, E. J. (2001). Geologic history of the polar regions of Mars based on Mars Global Surveyor data: 1. Noachian and Hesperian Periods. Icarus, 154, 321, doi:10.1006/icar.2001.6675.Google Scholar
Tanaka, K. L. and Leonard, G. J. (1995). Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res, 100, 54075432.Google Scholar
Tanaka, K. L. and Schultz, R. A. (1993). Large, ancient, compressional structures on Mars. Lunar Planet. Sci. Conf., 24, abs. 1702.Google Scholar
Tanaka, K. L. and Scott, D. H. (1987). Geologic map of the polar regions of Mars. USGS Misc. Inv. Ser. Map I-802–C, scale 1:15,000,000.Google Scholar
Tanaka, K. L., Golombek, M. P., and Banerdt, W. B. (1991). Reconciliation of stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., 96, 15,617–15,633.Google Scholar
Tanaka, K. L., Scott, D. H., and Greeley, R. (1992). Global stratigraphy. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds. Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 345382.Google Scholar
Tanaka, K. L., Dohm, J. M., and Watters, T. R. (1996). Possible coronae structures in the Tharsis region of Mars. Lunar Planet. Sci. Conf., 27, abs. 1658.Google Scholar
Tanaka, K. L., Dohm, J. M., Lias, J. H., and Hare, T. M. (1998). Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins. J. Geophys. Res., 103, 31,407–31,419, doi:10.1029/98JE01599.Google Scholar
Tanaka, K. L., Skinner, J. A. Jr., and Hare, T. M. (2005). Geologic map of the northern plains of Mars. USGS Sci. Invest. Map SIM-2888, scale 1:15,000,000.Google Scholar
Tanaka, K. L., Rodriguez, J. A. P., Skinner, J. A. Jr., et al. (2008). North polar region of Mars: Advances in stratigraphy, structure, and erosional modification. Icarus, 196, 318358.Google Scholar
Tanaka, K. L., Rodriguez, J. A. P., Fortezzo, C. M., Hayward, R. K., and Skinner, J. A. Jr. (2010). Nature of Hesperian resurfacing in the Scandia–north polar region of Mars. Lunar Planet. Sci. Conf., 41, abs. 2323.Google Scholar
Tanaka, K. L., Fortezzo, C. M., Hayward, R. K., Rodriguez, J. A. P., and Skinner, J. A. Jr. (2011). History of plains resurfacing in the Scandia region of Mars. Planet. Space Sci., 59, 11281142.Google Scholar
Tanaka, K. L., Skinner, J. A. Jr., Dohm, J. M., et al. (2014). Geologic map of Mars. USGS Sci. Inv. Map SIM-3292, scale 1:20,000,000.Google Scholar
Tauxe, L. (2010). Essentials of Paleomagnetism. Cambridge: Cambridge University Press.Google Scholar
Thelin, G. P. and Pike, R. J. (1991). Landforms of the conterminous United States: A digital shaded-relief portrayal. USGS Misc. Inv. Ser. Map I-2206, scale 1:3,500,000.Google Scholar
Thomas, P., Veverka, J., Bell, J., Lunine, J., and Cruikshank, D. (1992). Satellites of Mars: Geologic history. In Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S., eds., Mars. Tucson, AZ: University of Arizona Press, Space Science Series, pp. 12571282.Google Scholar
Thompson, A. and Taylor, B. N. (2008). The National Institute of Standards and Technology (NIST) Guide for the Use of the International System of Units. NIST Special Publication 811, www.nist.gov/pml/pubs/sp811/index.cfm.Google Scholar
Treiman, A. H. (2003). Geologic settings of Martian gullies: Implications for their origins. J. Geophys. Res., 108, 8031, doi:10.1029/2002JE001900.Google Scholar
van der Kolk, D. A., Tribbett, K. L., Grosfils, E. B., et al. (2001). Orcus Patera, Mars: Impact crater or volcanic caldera? Lunar Planet. Sci. Conf., 32, abs. 1085.Google Scholar
van Gasselt, S., Hauber, E., Rossi, A.-P., Dumke, A., and Neukum, G. (2010). Geomorphology of the Tempe Terra lobate debris aprons. Lunar Planet. Sci. Conf., 41, abs. 2324.Google Scholar
Vaucher, J., Baratoux, D., Mangold, N., et al. (2009). The volcanic history of central Elysium Planitia: Implications for Martian magmatism. Icarus, 204, 418442, doi:10.1016/j.icarus.2009.06.032.Google Scholar
Voelker, M., Platz, T., Tanaka, K. L., et al. (2012). Geological mapping of Havel Vallis, Xanthe Terra, Mars: Stratigraphy and reconstruction of valley formation. Lunar Planet. Sci. Conf., 43, abs. 2738.Google Scholar
Voelker, M., Platz, T., Tanaka, K. L., et al. (2013). Hyperconcentrated flow deposits and valley formation of Havel Valles, Xanthe Terra, Mars. Lunar Planet. Sci. Conf., 44, abs. 2886.Google Scholar
Watters, T. R. (1993). Compressional tectonism on Mars. J. Geophys. Res., 98, 17,049–17,060.Google Scholar
Watters, T. R. (2003). Thrust faults along the dichotomy boundary in the eastern hemisphere of Mars. J. Geophys. Res., 108, 5054, doi:10.1029/2002JE001934.Google Scholar
Watters, T. R. and Janes, D. M. (1995). Coronae on Venus and Mars: Implications for similar structures on Earth. Geology, 23, 200204.Google Scholar
Watts, A. B. (2001). Isostasy and Flexure of the Lithosphere. Cambridge: Cambridge University Press.Google Scholar
Wendt, L., Gasselt, S. V., and Neukum, G. (2008). Possible salt tectonics in Ariadnes Colles? Third Eur. Planet. Sci. Congress, abs. EPSC2008-A-00345.Google Scholar
Wendt, L., Bishop, J. L., and Neukum, G. (2012). Knob fields in the Terra Cimmeria/Terra Sirenum region of Mars: Stratigraphy, mineralogy, and morphology. Lunar Planet. Sci. Conf., 43, abs. 2024.Google Scholar
Wichman, R. and Schultz, P. (1989), Sequence and mechanisms of deformation around the Hellas and Isidis impact basins on Mars. J. Geophys. Res., 94, 17,333–17,357, doi:10.1029/JB094iB12p17333.Google Scholar
Williams, R. M. E. and Malin, M. C. (2004), Evidence for late stage fluvial activity in Kasei Valles, Mars. J. Geophys. Res., 109, E06001, doi:10.1029/2003JE002178.Google Scholar
Wilson, S. A., Howard, A. D., Moore, J. M., and Grant, J. A. (2007). Geomorphic and stratigraphic analysis of Crater Terby and layered deposits north of Hellas basin, Mars. J. Geophys. Res. 112, E08009. doi:10.1029/2006JE002830.Google Scholar
Witbeck, N. E., Tanaka, K. L., and Scott, D. H. (1991). Geologic map of the Valles Marineris region of Mars. USGS Misc. Inv. Ser. Map I-2010, scale 1:2,000,000.Google Scholar
Wood, L. J. (2006). Quantitative geomorphology of the Mars Eberswalde delta. Geol. Soc. Amer. Bull., 118, 557566, doi:10.1130/B25822.1.Google Scholar
Wray, J. and Squyers, S (2010). Layers exposed in crater near Mawrth Vallis (image caption), http://hirise.lpl.arizona.edu/PSP_004052_2045.Google Scholar
Wray, J. J., Ehlmann, B. L., Squyres, S. W., Mustard, J. F., and Kirk, R. L. (2008). Compositional stratigraphy of clay-bearing layered deposits at Mawrth Vallis, Mars. Geophys. Res. Letters, 35, doi:10.1029/2008GL034385.Google Scholar
Wray, J. J., Murchie, S. L., Ehlmann, B. L., et al. (2011) Evidence for regional deeply buried carbonate-bearing rocks on Mars. Lunar Planet. Sci. Conf. 42, abs. 2635.Google Scholar
Yin, A. (2012). An episodic slab–rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 4, 553593.Google Scholar
Zhong, S. and Zuber, M. T. (2001). Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett., 189, 7584.Google Scholar
Zimbelman, J. R., Craddock, R. A., and Greeley, R. (1994). Geologic map of the MTM-15147 quadrangle, Mangala Valles region of Mars. USGS Misc. Inv. Ser. Map I-2402, scale 1:500,000.Google Scholar
Zubrin, R. (2011). The Case for Mars: The Plan to Settle the Red Planet and Why We Must (revised edition). New York, NY: Free Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×