Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T16:50:18.590Z Has data issue: false hasContentIssue false

Modelling solids

Published online by Cambridge University Press:  02 February 2010

Peter Howell
Affiliation:
University of Oxford
Gregory Kozyreff
Affiliation:
University of Oxford
John Ockendon
Affiliation:
University of Oxford
Get access

Summary

Introduction

In everyday life we regularly encounter physical phenomena that apparently vary continuously in space and time. Examples are the bending of a paper clip, the flow of water or the propagation of sound or light waves. Such phenomena can be described mathematically, to lowest order, by a continuum model, and this book will be concerned with that class of continuum models that describes solids. Hence, at least to begin with, we will avoid all consideration of the “atomistic” structure of solids, even though these ideas lead to great practical insight and also to some beautiful mathematics. When we refer to a solid “particle”, we will be thinking of a very small region of matter but one whose dimension is nonetheless much greater than an atomic spacing.

For our purposes, the diagnostic feature of a solid is the way in which it responds to an applied system of forces and moments. There is no hard-andfast rule about this but, for most of this book, we will say that a continuum is a solid when the response consists of displacements distributed through the material. In other words, the material starts at some reference state, from which it is displaced by a distance that depends on the applied forces. This is in contrast with a fluid, which has no special rest state and responds to forces via a velocity distribution. Our modelling philosophy is straightforward. We take the most fundamental pieces of experimental evidence, for example Hooke's law, and use mathematical ideas to combine this evidence with the basic laws of mechanics to construct a model that describes the elastic deformation of a continuous solid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×