Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T18:21:55.486Z Has data issue: false hasContentIssue false

Chapter 12 - Sacrococcygeal Teratoma

from Section 3

Published online by Cambridge University Press:  19 November 2021

Olutoyin A. Olutoye
Affiliation:
Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
Get access

Summary

Sacrococcygeal teratoma (SCT) is a common tumor of the neonatal period. Prenatal diagnosis of SCT carries a high mortality rate because of the potential for high output heart failure and hydrops. Tumors can also rupture, leading to severe anemia and death. The mother’s health is also at risk if maternal mirror syndrome develops. Prenatal evaluation includes high resolution ultrasound, fetal echocardiography, and magnetic resonance imaging. Pregnancy management includes frequent assessment of the tumor size, growth, and the effects on the fetal cardiovascular system. Treatment options depend on the tumor characteristics and cardiac function, as well as maternal health and support. Fetal therapy aims to debulk or devascularize the tumor, thereby alleviating high output failure and minimizing the risk of spontaneous rupture and hemorrhage. Decisions regarding a symptomatic fetus with SCT may include prenatal intervention or early delivery. Anesthetic management of fetal treatment for SCT is tailored to the mode of therapy chosen; this may include a minimally invasive approach, in-utero surgery, or an EXIT procedure. The nuances of management of this condition center on understanding of the pathophysiology of a hydropic fetus as a result of the SCT and being prepared for resultant cardiovascular instability and massive hemorrhage.

Type
Chapter
Information
Anesthesia for Maternal-Fetal Surgery
Concepts and Clinical Practice
, pp. 168 - 190
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mintz, B, Cronmiller, C, Custer, RP. Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci USA. 1978;75(6):28342838.CrossRefGoogle ScholarPubMed
Flake, AW. Fetal sacrococcygeal teratoma. Semin Pediatr Surg. 1993;2(2):113120.Google ScholarPubMed
Bale, PM, Painter, DM, Cohen, D. Teratomas in childhood. Pathology. 1975;7(3):209218.CrossRefGoogle ScholarPubMed
Altman, RP, Randolph, JG, Lilly, JR. Sacrococcygeal teratoma: American Academy of Pediatrics Surgical Section Survey–1973. J Pediatr Surg. 1974;9(3):389398.CrossRefGoogle Scholar
Bale, PM. Sacrococcygeal developmental abnormalities and tumors in children. Perspect Pediatr Pathol. 1984;8(1):956.Google ScholarPubMed
Carney, JA, Thompson, DP, Johnson, CL, Lynn, HB. Teratomas in children: clinical and pathologic aspects. J Pediatr Surg. 1972;7(3):271282.CrossRefGoogle ScholarPubMed
Noseworthy, J, Lack, EE, Kozakewich, HP, et al. Sacrococcygeal germ cell tumors in childhood: an updated experience with 118 patients. J Pediatr Surg. 1981;16(3):358364.Google Scholar
Yao, W, Li, K, Zheng, S, et al. Analysis of recurrence risks for sacrococcygeal teratoma in children. J Pediatr Surg. 2014;49(12):18391842.CrossRefGoogle ScholarPubMed
Gonzalez-Crussi, F, Winkler, RF, Mirkin, DL. Sacrococcygeal teratomas in infants and children: relationship of histology and prognosis in 40 cases. Arch Pathol Lab Med. 1978;102(8):420425.Google ScholarPubMed
Bond, SJ, Harrison, MR, Schmidt, KG, et al. Death due to high-output cardiac failure in fetal sacrococcygeal teratoma. J Pediatr Surg. 1990;25(12):12871291.Google Scholar
Partridge, EA, Canning, D, Long, C, et al. Urologic and anorectal complications of sacrococcygeal teratomas: Prenatal and postnatal predictors. J Pediatr Surg. 2014;49(1):139143.Google Scholar
Tanaree, P. Delivery obstructed by sacrococcygeal teratoma. Am J Obstet Gynecol. 1982;142(2):239.Google Scholar
Weiss, DB, Wajntraub, G, Abulafia, Y, Schiller, M. Vaginal surgical intervention for a sacro-coccygeal teratoma obstructing labor. Acta Obstet Gynecol Scand. 1976;55(2):183185.CrossRefGoogle ScholarPubMed
Johnson, JW, Porter, J, Kellner, KR, et al. Abdominal rescue after incomplete delivery secondary to large fetal sacrococcygeal teratoma. Obstet Gynecol. 1988;71(6 Pt 2):981984.Google ScholarPubMed
Gucciardo, L, Uyttebroek, A, De Wever, I, et al. Prenatal assessment and management of sacrococcygeal teratoma. Prenat Diagn. 2011;31(7):678688.Google Scholar
Calenda, E, Bachy, B, et al. Sacrococcygeal teratoma and venous shunting through a tumor: biological evidence. Anesth Analg. 1992;74(1):165166.CrossRefGoogle ScholarPubMed
Braun, T, Brauer, M, Fuchs, I, et al. Mirror syndrome: a systematic review of fetal associated conditions, maternal presentation and perinatal outcome. Fetal Diagn Ther. 2010;27(4):191203.Google Scholar
van Selm, M, Kanhai, HH, Gravenhorst, JB. Maternal hydrops syndrome: a review. Obstet Gynecol Surv. 1991;46(12):785788.Google Scholar
Wilson, RD, Hedrick, H, Flake, AW, et al. Sacrococcygeal teratomas: prenatal surveillance, growth and pregnancy outcome. Fetal Diagn Ther. 2009;25(1):1520.CrossRefGoogle ScholarPubMed
Ayed, A, Tonks, AM, Lander, A, Kilby, MD. A review of pregnancies complicated by congenital sacrococcygeal teratoma in the West Midlands region over an 18-year period: population-based, cohort study. Prenat Diagn. 2015;35(11):10371047.Google Scholar
Akinkuotu, AC, Coleman, A, Shue, E, et al. Predictors of poor prognosis in prenatally diagnosed sacrococcygeal teratoma: A multiinstitutional review. J Pediatr Surg. 2015;50(5):771774.Google Scholar
Shue, E, Bolouri, M, Jelin, EB, et al. Tumor metrics and morphology predict poor prognosis in prenatally diagnosed sacrococcygeal teratoma: a 25-year experience at a single institution. J Pediatr Surg. 2013;48(6):12251231.CrossRefGoogle ScholarPubMed
Usui, N, Kitano, Y, Sago, H, et al. Outcomes of prenatally diagnosed sacrococcygeal teratomas: the results of a Japanese nationwide survey. J Pediatr Surg. 2012;47(3):441447.Google Scholar
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39(3):430438.CrossRefGoogle ScholarPubMed
Rodriguez, MA, Cass, DL, Lazar, DA, et al. Tumor volume to fetal weight ratio as an early prognostic classification for fetal sacrococcygeal teratoma. J Pediatr Surg. 2011;46(6):11821185.Google Scholar
Flake, AW, Harrison, MR, Adzick, NS, et al. Fetal sacrococcygeal teratoma. J Pediatr Surg. 1986;21(7):563566.Google Scholar
Statile, CJ, Cnota, JF, Gomien, S, et al. Estimated cardiac output and cardiovascular profile score in fetuses with high cardiac output lesions. Ultrasound Obstet Gynecol. 2012;41(1):5458.Google Scholar
Rychik, J. Fetal cardiovascular physiology. Pediatr Cardiol. 2004;25(3):19.CrossRefGoogle ScholarPubMed
Coleman, A, Kline-Fath, B, Keswani, S, Lim, F-Y. Prenatal solid tumor volume index: novel prenatal predictor of adverse outcome in sacrococcygeal teratoma. J Surg Res. 2013;184(1):330336.CrossRefGoogle ScholarPubMed
Danzer, E, Hubbard, AM, Hedrick, HL, et al. Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI. AJR Am J Roentgenol. 2006;187(4):W350356.CrossRefGoogle ScholarPubMed
Van Mieghem, T, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611619.Google Scholar
Sananes, N, Javadian, P, Schwach Werneck Britto, I, et al. Technical aspects and effectiveness of percutaneous fetal therapies for large sacrococcygeal teratomas: cohort study and literature review. Ultrasound Obstet Gynecol. 2016;47(6):712719.Google Scholar
Makin, EC, Hyett, J, Ade-Ajayi, N, et al. Outcome of antenatally diagnosed sacrococcygeal teratomas: single-center experience (1993–2004). J Pediatr Surg. 2006;41(2):388393.CrossRefGoogle ScholarPubMed
Ibrahim, D, Ho, E, Scherl, SA, Sullivan, CM. Newborn with an open posterior hip dislocation and sciatic nerve injury after intrauterine radiofrequency ablation of a sacrococcygeal teratoma. J Pediatr Surg. 2003;38(2):248250.Google Scholar
Paek, BW, Jennings, RW, Harrison, MR, et al. Radiofrequency ablation of human fetal sacrococcygeal teratoma. Am J Obstet Gynecol. 2001;184(3):503507.Google Scholar
Benachi, A, Durin, L, Vasseur Maurer, S, et al. Prenatally diagnosed sacrococcygeal teratoma: a prognostic classification. J Pediatr Surg. 2006;41(9):15171521.CrossRefGoogle ScholarPubMed
Ruano, R, da Silva, MM, Salustiano, EMA, et al. Percutaneous laser ablation under ultrasound guidance for fetal hyperechogenic microcystic lung lesions with hydrops: a single center cohort and a literature review. Prenat Diagn. 2012;32(12):11271132.CrossRefGoogle ScholarPubMed
Gucciardo, L, Deprest, J, Done, E, et al. Prediction of outcome in isolated congenital diaphragmatic hernia and its consequences for fetal therapy. Best Pract Res Clin Obstet Gynaecol. 2008;22(1):123138.CrossRefGoogle ScholarPubMed
Van Mieghem, T, Al-Ibrahim, A, Deprest, J, et al. Minimally invasive therapy for fetal sacrococcygeal teratoma: case series and systematic review of the literature. Ultrasound Obstet Gynecol. 2014;43(6):611619.CrossRefGoogle ScholarPubMed
Ruano, R, Duarte, S, Zugaib, M. Percutaneous laser ablation of sacrococcygeal teratoma in a hydropic fetus with severe heart failure–too late for a surgical procedure? Fetal Diagn Ther. 2009;25(1):2630.CrossRefGoogle Scholar
Adzick, NS, Crombleholme, TM, Morgan, MA, Quinn, TM. A rapidly growing fetal teratoma. Lancet. 1997;349(9051):538–531.CrossRefGoogle ScholarPubMed
Langer, JC, Harrison, MR, Schmidt, KG, et al. Fetal hydrops and death from sacrococcygeal teratoma: rationale for fetal surgery. Am J Obstet Gynecol. 1989;160(5 Pt 1):11451150.CrossRefGoogle ScholarPubMed
Graf, JL, Albanese, CT, Jennings, RW, et al. Successful fetal sacrococcygeal teratoma resection in a hydropic fetus. J Pediatr Surg. 2000;35(10):14891491.CrossRefGoogle Scholar
Grethel, EJ, Wagner, AJ, Clifton, MS, et al. Fetal intervention for mass lesions and hydrops improves outcome: a 15-year experience. J Pediatr Surg. 2007;42(1):117123.CrossRefGoogle Scholar
Roybal, JL, Moldenhauer, JS, Khalek, N, et al. Early delivery as an alternative management strategy for selected high-risk fetal sacrococcygeal teratomas. J Pediatr Surg. 2011;46(7):13251332.CrossRefGoogle ScholarPubMed
Laje, P, Peranteau, WH, Hedrick, HL, et al. Ex utero intrapartum treatment (EXIT) in the management of cervical lymphatic malformation. J Pediatr Surg. 2015;50(2):311314.Google Scholar
Hedrick, HL. Ex utero intrapartum therapy. Semin Pediatr Surg. 2003;12(3):190195.CrossRefGoogle ScholarPubMed
Hedrick, HL, Flake, AW, Crombleholme, TM, et al. The ex utero intrapartum therapy procedure for high-risk fetal lung lesions. J Pediatr Surg. 2005;40(6):10381044.CrossRefGoogle ScholarPubMed
Lin, EE, Tran, KM. Anesthesia for fetal surgery. Semin Pediatr Surg. 2013;22(1):5055.CrossRefGoogle ScholarPubMed
Rychik, J. Acute cardiovascular effects of fetal surgery in the human. Circulation. 2004;110(12):15491556.Google Scholar
Klaritsch, P, Albert, K, Van Mieghem, T, et al. Instrumental requirements for minimal invasive fetal surgery. BJOG. 2008;116(2):188197.Google Scholar
Van de Velde, M, Van Schoubroeck, D, Lewi, LE, et al. Remifentanil for fetal immobilization and maternal sedation during fetoscopic surgery: a randomized, double-blind comparison with diazepam. Anesth Analg. 2005;101(1):251258.CrossRefGoogle ScholarPubMed
Erkkola, R, Kangas, L, Pekkarinen, A. The transfer of diazepam across the placenta during labour. Acta Obstet Gynecol Scand. 1973;52(2):167170.CrossRefGoogle ScholarPubMed
Kopecky, EA, Simone, C, Knie, B, Koren, G. Transfer of morphine across the human placenta and its interaction with naloxone. Life Sci. 1999;65(22):23592371.CrossRefGoogle ScholarPubMed
Kan, RE, Hughes, SC, Rosen, MA, et al. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology. 1998;88(6):14671474.CrossRefGoogle ScholarPubMed
Sia, AT, Sng, BL. Intravenous dexmedetomidine for obstetric anaesthesia and analgesia: converting a challenge into an opportunity? Int J Obstet Anesth. 2009;18(3):204206.CrossRefGoogle ScholarPubMed
Cooper, J, Jauniaux, E, Gulbis, B, et al. Placental transfer of fentanyl in early human pregnancy and its detection in fetal brain. Br J Anaesth. 1999;82(6):929931.Google Scholar
Koren, G, Pastuszak, A, Ito, S. Drugs in pregnancy. N Engl J Med. 1998;338(16):11281137.CrossRefGoogle ScholarPubMed
Wu, P-Y, Huang, M-L, Lee, W-P, et al. Effects of music listening on anxiety and physiological responses in patients undergoing awake craniotomy. Complement Ther Med. 2017;32:5660.Google Scholar
Vetter, D, Barth, J, Uyulmaz, S, et al. Effects of art on surgical patients. Ann Surg. 2015;262(5):704713.Google Scholar
Robinson, MB, Crombleholme, TM, Kurth, CD. Maternal pulmonary edema during fetoscopic surgery. Anesth Analg. 2008;107(6):19781980.Google Scholar
Barrett, JM. Fetal resuscitation with terbutaline during eclampsia-induced uterine hypertonus. Am J Obstet Gynecol. 1984;150(7):895.CrossRefGoogle ScholarPubMed
Patriarco, MS, Viechnicki, BM, Hutchinson, TA, et al. A study on intrauterine fetal resuscitation with terbutaline. Am J Obstet Gynecol. 1987;157(2):384387.Google Scholar
Arias, F. Intrauterine resuscitation with terbutaline: a method for the management of acute intrapartum fetal distress. Am J Obstet Gynecol. 1978;131(1):3943.Google Scholar
Tran, KM. Anesthesia for fetal surgery. Semin Fetal Neonatal Med. 2010;15(1):4045.Google Scholar
Boat, A, Mahmoud, M, Michelfelder, EC, et al. Supplementing desflurane with intravenous anesthesia reduces fetal cardiac dysfunction during open fetal surgery. Paediatr Anaesth. 2010;20(8):748756.Google Scholar
Ngamprasertwong, P, Michelfelder, EC, Arbabi, S, et al. Anesthetic techniques for fetal surgery: effects of maternal anesthesia on intraoperative fetal outcomes in a sheep model. Anesthesiology. 2013;118(4):796808.CrossRefGoogle Scholar
Lin, EE, Moldenhauer, JS, Tran, KM, et al. Anesthetic management of 65 cases of ex utero intrapartum therapy: a 13-year single-center experience. Anesth Analg. 2016;123(2):411417.Google Scholar
Moldenhauer, JS, Soni, S, Rintoul, NE, et al. Fetal myelomeningocele repair: the post-MOMS experience at the Children’s Hospital of Philadelphia. Fetal Diagn Ther. 2015;37(3):235240.Google Scholar
Tran, KM, Maxwell, LG, Cohen, DE, et al. Quantification of serum fentanyl concentrations from umbilical cord blood during ex utero intrapartum therapy. Anesth Analg. 2012;114(6):12651267.Google Scholar
Robinson, S, Laussen, PC, Brown, TC, Woodward, AA. Anaesthesia for sacrococcygeal teratoma–a case report and a review of 32 cases. Anaesth Intensive Care. 1992;20(3):354358.Google Scholar
Tran, KM, Flake, AW, Kalawadia, NV, et al. Emergent excision of a prenatally diagnosed sacrococcygeal teratoma. Pediatr Anesth. 2008;18(5):431434.Google Scholar
Kim, J-W, Gwak, M, Park, J-Y, et al. Cardiac arrest during excision of a huge sacrococcygeal teratoma – A report of two cases. Korean J Anesthesiol. 2012;63(1):8084.CrossRefGoogle ScholarPubMed
Girisch, M, Rauch, R, Carbon, R, et al. Refractory bleeding following major surgery of a giant sacrococcygeal teratoma in a premature infant: successful use of recombinant factor VIIa. Eur J Pediatr. 2004;163(2):118119.CrossRefGoogle Scholar
Reinoso-Barbero, F, Sepulveda, I, Pérez-Ferrer, A, De Andres, A. Cardiac arrest secondary to hyperkalemia during surgery for a neonatal giant sacrococcygeal teratoma. Pediatr Anesth. 2009;19(7):712714.CrossRefGoogle ScholarPubMed
Jafra, A, Dwivedi, D, Jain, D, Bala, I. Giant sacrococcygeal teratoma: Management concerns with reporting of a rare occurrence of venous air embolism. Saudi J Anaesth. 2017;11(1):124125.Google ScholarPubMed
Isserman, RS, Nelson, O, Tran, KM, et al. Risk factors for perioperative mortality and transfusion in sacrococcygeal teratoma resections. Paediatr Anaesth. 2017;27(7):726732.Google Scholar
Murphy, JJ, Blair, GK, Fraser, GC. Coagulopathy associated with large sacrococcygeal teratomas. J Pediatr Surg. 1992;27(10):13081310.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×