Skip to main content Accessibility help
×
  • Cited by 10
Publisher:
Cambridge University Press
Online publication date:
May 2010
Print publication year:
2003
Online ISBN:
9780511606403

Book description

No longer simple line drawings on a page, molecular structures can now be viewed in full-figured glory, often in color and even with interactive possibilities. Anatomy of Gene Regulation is the first book to present the parts and processes of gene regulation at the three-dimensional level. Vivid structures of nucleic acids and their companion proteins are revealed in full-color, three-dimensional form. Beginning with a general introduction to three-dimensional structures, the book looks at the organization of the genome, the structure of DNA, DNA replication and transcription, splicing, protein synthesis, and ultimate protein death. Throughout, the text employs a discussion of genetics and structural mechanics. The concise and unique synthesis of information will offer insight into gene regulation, and into the development of methods to interfere with regulation at diseased states. This textbook and its accompanying web site are appropriate for both undergraduate and graduate students in genetics, molecular biology, structural biology, and biochemistry courses.

Reviews

' … beautiful and informative three-dimensional images of the nucleosome, RNA and DNA polymerases and the ribosome. Years of genetic and biochemical data spring to life when mapped onto these structures, and future experiments can be designed with much greater precision. Many of us who teach molecular biology at the undergraduate or graduate level have tried to convey this excitement by incorporating structures into our teaching. What might otherwise be dry descriptions of protein interactions or catalytic steps take on greater clarity and tangibility when students can see the molecules. Pangiotis Tsonis has compiled and summarized a great deal of structural information in his new book entitled Anatomy of Gene Regulations. It's a terrific idea and a laudable effort.'

Source: Nature Structural Biology

'So this book presents a very wide-ranging coverage of three-dimensional structural aspects only in a concise and attractive format with very readable text … I enjoyed this book as a handy source to dip into for structural insights and for the author's obvious pleasure in communicating these to his audience.'

Source: Heredity

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Further Reading and References
Further Reading and References
BOOKS
Branden, C., and Tooze, J. (1999). Introduction to protein structure, Garland, New York
Lewin, B. (2000). Genes VII, Oxford, New York
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular cellular biology, W. H. Freeman, New York
Ptashne, M. (1992). A genetic switch, Cell Press and Blackwell Scientific Publications, Cambridge, MA
Singer, M., and Berg, P. (1991). Genes and genomes. University Science Books, Mill Valley, CA
Weaver, R. F. (1999). Molecular biology, McGraw-Hill, New York
SCIENTIFIC PAPERS AND REVIEWS
Anderson, J. E., Ptashne, M., and Harrison, S. C. (1987). Structure of the repressor-operator complex of bacteriophage 434. Nature 326: 846–52
Andrews, B. J., and Donoviel, M. S. (1995). A heterodimeric transcriptional repressor becomes crystal clear. Science 270: 251–3
Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., and Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401: 235–42
Arents, G., and Moudrianakis, E. N. (1995). The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. USA 92: 11170–4
Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M., and Kornberg, R. D. (1999). Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283: 985–7
Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., and Steitz, T. A. (1998). A 9 Å resolution X-Ray crystallographic map of the large ribosomal subunit. Cell 93: 1105–15
Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., and Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400: 841–7
Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–19
Bass, B. L. (2000). Double-stranded RNA as a template for gene silencing. Cell 101: 235–8
Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287: 1232–9
Battiste, J. L., Pestova, T. V., Hellen, C. U., and Wagner, G. (2000). The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5: 109–19
Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92: 367–80
Beamer, L. J., and Pabo, C. O. (1992). Refined 1.8 Angstrom crystal structure of the lambda repressor-operator complex. J. Mol. Biol. 227: 177–96
Becker, S., Groner, B., and Muller, C. W. (1998). Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394: 145–51
Bell, C. E., Frescura, P., Hochschild, A., and Lewis, M. (2000). Crystal structure of the λ repressor C-terminal domain provides a model for cooperative operator binding. Cell 101: 801–11
Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379: 225–32
Biou, V., Shu, F., and Ramakrishnan, V. (1995). X-ray crystallography shows that translational initation factor IF3 consists of two compact α/β domains linked by an α-helix. EMBO J. 14: 4056–64
Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A., Davidson, I., and Moras, D. (1998). Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94: 239–49
Blum, B., Bakalara, N., and Simpson, L. (1990). A model for RNA editing in kinetoplasmid mitochondria: “Guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60: 189–98
Bochkarev, A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176–81
Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D., and Berger, J. M. (1999). The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3: 487–93
Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000). Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275(13): 9468–75
Brodersen, D. E., Clemons, W. M. Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143–54
Bukau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–66
Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101: 119–22
Caprara, M. G., Lehnert, V., Lambowitz, A. M., and Westhof, E. (1996). A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87: 1135–45
Carrodeguas, J. A., Theis, K., Bogenhagen, D. F., and Kisker, C. (2001). Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, PolgammaB, functions as a homodimer. Mol. Cell 7: 43–54
Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001). Atomic structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501
Carter, A. P., Clemmons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–8
Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N., and Noller, H. F. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095–104
Celander, D. W., and Cech, T. R. (1991). Visualizing the higher order folding of a catalytic RNA molecule. Science 251: 401–7
Cheetham, G. M. T., and Steitz, T. A. (1999). Structure of a transcribing T7 RNA polymerase initiation complex. Science 286: 2305–9
Chen, L., Glover, J. N. M., Hogan, P. G., Rao, A., and Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392: 42–8
Cho, H., Ha, N., Kang, L., Chung, K., Back, S., Jang, S., and Oh, B. (1998). Crystal structure of RNA helicase from genotype 1b hepatitis C virus. J. Biol. Chem. 273(24): 15045–52
Copertino, D. W., and Hallick, R. B. (1993). Group II and group III introns of twintrons: Potential relationships with nuclear pre-mRNA introns. Trends Biochem. Sci. 18: 467–71
Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edwards, A. M., David, P. R., and Kornberg, R. D. (2000). Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640–9
Darst, S. A., Edwards, A. M., Kubalek, E. W., and Kornberg, R. D. (1991). Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell 66: 121–8
Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287: 2497–500
Decanniere, K., Babu, A. M., Reeve, J. N., and Heinemann, U. (2000). Crystal structures of recombinant Hmfa and Hmfb from the hyperthermophilic archaeon methanothermus ferridus. J. Mol. Biol. 303: 35–47
Dernburg, A. F., Broman, K. W., Fung, J. C., Marshall, W. F., Philips, J., Agard, D. A., and Sedat, J. W. (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–59
Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. (1999). Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835–45
Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391: 251–7
Ellenberger, T. E., Brandl, C. J., Struhl, K., and Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell 71: 1223–37
Elrod-Erickson, M., Benson, T. E., and Pabo, C. O. (1998). High-resolution structures of vatiant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 6: 451–64
Erwin, D., Valentine, J., and Jablonski, D. (1997). The origin of animal body plans. Amer. Sci. 85: 126–37
Escalante, C. R., Yie, J., Thanos, D., and Aggarwal, A. K. (1998). Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391: 103–6
Fabrera, C., Farrow, M. A., Mukhopadhyay, B., Crecy-Lagard, V., Ortiz, A. R., and Schimmel, P. (2001). An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 411: 110–4
Feagin, J. E., Abraham, J. M., and Stuart, K. (1988). Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53: 413–22
Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science 280: 585–90
Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science 271: 1123–5
Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R. (1990). Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9(4): 1319–27
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15: 358–63
Fletcher, C. M., Pestova, T. V., Hellen, C. U., and Wagner, G. (1999). Structure and interactions of the translation initiation factor eIF1. EMBO J. 18: 2631–7
Frank, J. (1998). How the ribosome works. Amer. Sci. 86: 428–39
Franklin, M. C., Wang, J., and Steitz, T. A. (2001). Structure of the replicating complex of a Pol α family DNA polymerase. Cell 105: 657–67
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J., and Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100: 537–49
Glasfeld, A., Koehler, A. N., Schumacher, M. A., and Brennan, R. G. (1999). The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J. Mol. Biol. 291(2): 347–61
Golden, B. L., Gooding, A. R., Podell, E. R., and Cech, T. R. (1998). A preorganized active site in the crystal structure of Tetrahymena ribozyme. Science 282: 259–64
Greider, C. W. (1999). Telomeres do D-loop-T-loop. Cell 97: 419–22
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97: 503–14
Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M., and Kuriyan, J. (1996). Structure of the C-terminal region of p21 complexed with human PCNA. Cell 87: 297–306
Hakansson, K., Doherty, A. J., Shuman, S., and Wigley, D. B. (1997). X-Ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzyme. Cell 89: 545–53
Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J., and Kaptein, R. (1990). Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249: 157–60
Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U., and Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–5
Hodel, A. E., Gershon, P. D., and Quiocho, F. A. (1998). Structural basis for sequencing-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell 1: 443–7
Hopkin, K. (1997). Spools, switches, or scaffolds: How might histones regulate transcription? J. NIH Res. 9: 34–7
Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A., and Schultz, S. C. (1998). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95: 963–74
Hosfield, D. J., Mol, C. D., Shen, B., and Tainer, J. A. (1998). Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity. Cell 95: 135–46
Howard, M. J. (1998). Protein NMR spectroscopy. Curr. Biol. 8(10): R331–3
Ito, K., Uno, M., and Nakamura, Y. (2000). A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403: 680–4
Jin, Y., Mead, J., Li, T., Wolberger, C., and Vershon, A. K. (1995). Altered DNA recognition and bending by insertions in the α2 tail of the yeast a1/α2 homeodomain heterodimer. Science 270: 290–3
Joseph, S., Weiser, B., and Noller, H. F. (1997). Mapping the inside of the ribosome with an RNA helical ruler. Science 278: 1093–8
Kastner, B. (1998). Purification and electron microscopy of spliceosomal snRNPs. In RNP particles, splicing and autoimmune diseases (J. Scenkel, Ed.), Springer, Berlin, pp. 95–140
Kambach, C., Walke, S., Young, R., Avis, J. M., Fortelle, E., Raker, V. A., Luhrmann, R., Li, J., and Nagai, K. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375–87
Kambach, C., Walke, S., and Nagai, K. (1999). Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr. Opin. Struct. Biol. 9: 222–30
Kang, C., Zhang, X., Ratliff, R., Moyzis, R., and Rich, A. (1992). Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356: 126–31
Keck, J. L., Roche, D. D., Lynch, A. S., and Berger, J. M. (2000). Structure of the RNA polymerase domain of E. coli primase. Science 287: 2482–6
Keenan, R. J., Freymann, D. M., Walter, P., and Stroud, R. M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94: 181–91
Kiefer, J. R., Mao, C., Braman, J. C., and Beese, L. S. (1998). Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391: 304–7
Kim, C. A., and Berg, J. M. (1996). A 2.2 Angstrom resolution crystal structure of a designed zinc finger protein bound to DNA. Nature Struct. Biol. 3: 940–5
Kissinger, C. R., Liu, B., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63: 579–90
Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993). The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1(1): 35–50
Konforti, B. B., Abramovitz, D. L., Duarte, C. M., Karpeisky, A., Beigelan, L., and Pyle, A. M. (1998). Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1: 433–41
Konig, P., Giraldo, R., Chapman, L., and Rhodes, D. (1996). The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125–36
Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M., and Waksman, G. (1997). Major domain swiveling revealed by the crystal structures of complexes of E. coli rep helicase bound to single-stranded DNA and ADP. Cell 90: 635–47
Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000). A structural model of transcriptional elongation. Science 289: 619–25
Larsen, C. N., and Finley, D. (1997). Protein translocation channels in the proteasome and other proteases. Cell 91: 431–4
Lavoie, B. D., Shaw, G. S., Millner, A., and Chaconas, G. (1996). Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 85: 761–71
Lawrence, J. B., Singer, R. H., and Marselle, L. M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502
Leuther, K. K., Bushnell, D. A., and Kornberg, R. D. (1996). Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation. Cell 85: 773–9
Levin, D. S., Bai, W., Yao, N., O'Donnel, M., and Tomkinson, A. E. (1997). An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94: 12863–8
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 1247–54
Li, T., Stark, M. R., Johnson, A. D., and Wolberger, C. (1995). Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270: 262–9
Liao, S., Lin, J., Do, H., and Johnson, A. E. (1997). Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90: 31–41
Lima, C. D., Wang, L. K., and Shuman, S. (1999). Structure and mechanism of yeast RNA triphosphatase: An essential component of the mRNA capping apparatus. Cell 99: 533–43
Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L. E., Nakatani, Y., and Ikura, M. (1998). Solution structure of a TBP-TAFII230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94: 573–83
Love, J. J., Li, X., Case, D. A., Giese, K., Grosschedl, R., and Wright, P. E. (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376: 791–5
Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Siegler, P. B. (1991). Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505
Ma, J., Sigler, P. B., Xu, Z., and Karplus, M. (2000). A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302(2): 303–13
Manna, A. C., Pai, K. S., Bussiere, D. E., Davies, C., White, S. W., and Bastia, D. (1996). Helicase-contrahelicase interaction and the mechanism of termination of DNA replication. Cell 87: 881–91
Marcotrigiano, J., Gingras, A. C., Sonenberg, N., and Burley, S. K. (1997). Cocrystal structure of the messenger RNA 5′ cap/binding protein (eIF4E) bound to 7/methyl/GDP. Cell 89: 951–61
Marcotrigiano, J., Lomakin, I. B., Sonenberg, N., Pestova, T. V., Hellen, C. U. T., and Burley, S. K. (2001). A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7: 193–203
Marmorstein, R., and Harrison, S. C. (1994). Crystal structure of a PRP1/DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8: 2504–12
Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992). DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356: 408–14
Martinez/Yamout, M., Legge, G. B., Zhang, O., Wright, P. E., and Dyson, H. J. (2000). Solution structure of the cysteine/rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300(4): 805–18
McCutcheon, J. P., Agrawal, R. K., Phillips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M., Ramakrishnan, V., and Frank, J. (1999). Location of translation initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96: 4301–6
McKnight, S. L. (1991). Molecular zippers in gene regulation. Scientific American April: 54–64
Milkereit, P., Gadal, O., Podtelejnikov, A., Trumlet, S., Gas, N., Petfalski, E., Tollervey, D., Mann, M., Hurt, E., and Tschochner, H. (2001). Maturation and internuclear transport of pre/ribosomes requires Noc proteins. Cell 105: 499–509
Mooney, R. A., and Landick, R. (1999). RNA polymerase unveiled. Cell 96: 687–90
Morals Cabral, J. H., Jackson, A. P., Smith, C. V., Shikotra, N., Maxwell, A., and Liddington, R. C. (1997). Crystal structure of the breakage/reunion domain of DNA gyrase. Nature 388: 903–6
Morshauser, R. C., Hu, W., Wang, H., Pang, Y., Flynn, G. C., and Zuiderweg, E. R. P. (1999). High/resolution solution structure of the 18 kDa substrate/binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289: 1387–403
Mueller, F., Sommer, I., Baranov, P., Matadeen, R., Stoldt, M., Wohnert, J., Gorlach, M., Heel, M., and Brimacombe, R. (2000). The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo/electron microscopic reconstruction at 7.5 Å resolution. J. Mol. Biol. 248: 35–59
Muller, C. W., and Hermann, B. G. (1997). Crystallographic structure of the T-domain-DNA complex of the Brachyury transcription factor. Nature 389: 884–8
Murante, R. S., Henricksen, L. A., and Bambara, R. A. (1998). Junction ribonuclease: An activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. USA 95: 2244–9
Murray, J. B., Terwey, D. P., Maloney, L., Karpiesky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998). The structural basis of hammerhead ribozyme self/cleavage. Cell 92: 665–73
Newton, C. S. (1997). Putting it all together: Building a prereplicative complex. Cell 91: 717–20
Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–30
Nolte, R. T., Collins, R. M., Harrison, S. C., and Brown, R. S. (1998). Differing roles for zinc fingers in DNA recognition: Structure of a six finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95: 2938–43
Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995). Coupling between transcription termination and RNA polymerase inchworming. Cell 81: 351–7
Otwinowski, Z., Schevitz, R. W., Zhang, R/G., Lawson, C. L., Joachimiak, A. J., Marmorstein, R., Luisi, B. F., and Sigler, P. B. (1988). Crystal structure of Trp repressor operator complex at atomic resolution. Nature 335: 321–9
Pabo, C. O., Aggarwal, A. K., Jordan, S. R., Beamer, L. J., Obeysekare, U. R., and Harrison, S. C. (1990). Conserved residues make similar contacts in two repressor-operator complexes. Science 247: 1210–13
Pavletich, N. P., and Pabo, C. O. (1993). Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261: 1701–7
Pazin, M. J., and Kadonaga, J. T. (1997). What's up and down with histone deacetylation and transcription? Cell 89: 325–8
Pennisi, E. (1997). Opening the way to gene activity. Science 275: 155–7
Pestova, T. V., Borukhov, S. I., and Hellen, C. U. T. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394: 854–9
Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J., and Cozzarelli, N. R. (1998). The structure of supercoiled intermediates in DNA replication. Cell 94: 819–27
Piper, D. E., Batchelor, A. H., Chang, C. P., Clearly, M. L., and Wolberger, C. (1999). Structure of a HoxB1-Pbx1 heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96: 587–97
Podobnik, M., McInerney, P., O'Donnell, M., and Kuriyan, J. (2000). A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300(2): 353–62
Poglitsch, C. L., Meredith, G. D., Gnatt, A. L., Jensen, G. J., Chang, W., Fu, J., and Kornberg, R. D. (1999). Electron crystal structure of an RNA polymerase transcription elongation complex. Cell 98: 791–8
Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001). Ribosomal peptidyl treansferase can withstand mutations at the putative catalytic nucleotide. Nature 411: 498–501
Polyakov, A., Severinova, E., and Darst, S. A. (1995). Three-dimensional structure of E. coli core RNA polymerase: Promoter binding and elongation conformations of the enzyme. Cell 83: 365–73
Porse, B. T., and Garret, R. A. (1999). Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97: 423–6
Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. (1987). A novel form of tissue/specific RNA processing produce apolipoprotein/B48 in intestine. Cell 50: 831–40
Proudfoot, N. (1996). Ending the message is not so simple. Cell 87: 779–81
Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7(8): 648–52
Ramakrishnan, V., and Moore, P. B. (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 144–154
Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. J.(1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279: 1504–13
Rice, P. A., Yang, S/W., Mizuuchi, K., and Nash, H. A. (1996). Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 87: 1295–306
Robinson, H., Gao, Y., McCrary, B. S., Edmondson, S. P., Shriver, J. W., and Wang, A. H. J. (1998). The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392: 202–5
Rodgers, D. W., and Harrison, S. C. (1993). The complex between phage 434 repressor DNA-binding domain and operator site O3: Structural differences between consensus and non-consensus half-sites. Structure 1(4): 227–40
Roll/Mecak, A., Cao, C., Dever, T. E., and Burley, S. K. (2000). X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GDP binding. Cell 103: 781–92
Rould, M. A., Perona, J. J., Soll, D., and Steitz, T. A. (1989). Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA and ATP at 2.8 Å resolution. Science 246: 1135–42
Sachs, A. B. (2000). Cell cycle-dependent translation intitiation: IRES elements prevail. Cell 101: 243–5
Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C., and Ellenberger, T. (1999). Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99: 167–77
Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997). Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36: 11205–15
Schimmel, P., and Ribas de Pouplana, L. (1999). Genetic code origins: Experiments confirm phylogenic predictions and may explain a puzzle. Proc. Natl. Acad. Sci. USA 96: 327–8
Schultz, S. C., Shields, G. C., and Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees. Science 253: 1001–7
Schumacher, M. A., Choi, K. Y., Zaklin, H., and Brennan, R. G. (1994). Crystal structure of the LacI family member, PurR, bound to DNA: Minor groove binding by alpha helices. Science 266: 763–70
Schwabe, J. W. R., and Rhodes, D. (1991). Beyond zinc fingers: Steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16: 291–6
Schwabe, J. W. R., Neuhaus, D., and Rhodes, D. (1990). Solution structure of the DNA/binding domain of the oestrogen receptor. Nature 348: 458–61
Selmer, M., Al/Karadaghi, S., Hirokawa, G., Kaji, A., and Liljas, A. (1999). Crystal structure of Thermotoga maritima ribosome recycling factor: A tRNA mimic. Science 286: 2349–52
Shamoo, Y., and Steitz, T. A. (1999). Building a replisome from interacting pieces: Sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99: 155–65
Sharkey, M., Graba, Y., and Scott, M. P. (1997). Hox genes in evolution: Protein surfaces and paralog groups. Trends Genet. 13: 145–51
Sharp, P. A., and Burge, C. B. (1997). Classification of introns: U2-type or U12-type. Cell 91: 875–9
Shimon, L. J. W., and Harrison, S. C. (1993). The phage 434 OR2/R1-69 complex at 2.5 angstroms resolution. J. Mol. Biol. 232: 826–38
Shimotakahara, S., Gorin, A., Kolbanovskiy, A., Kettani, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N., and Patel, D. J. (2000). Accomodation of S-cis-tamoxifen-N-guanine adduct within a bent and widened DNA minor groove. J. Mol. Biol. 302: 377–93
Shippen/Lentz, D., and Blackburn, E. H. (1990). Functional evidence for an RNA template in telomerase. Science 247: 546–52
Shyu, A., and Wilkinson, M. F. (2000). The double lives of shuttling mRNA binding proteins. Cell 102: 135–8
Siegert, R., Leroux, M. R., Scheufler, C., Harti, F. U., and Moarefi, I. (2000). Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103: 621–32
Singer, R. H., and Green, M. R. (1997). Compartmentalization of eukaryotic gene expression: Causes and effects. Cell 91: 291–4
Smale, S. T., and Baltimore, D. (1989). The “initiator” as a transcription control element. Cell 57: 103–13
Sollner/Webb, B. (1991). RNA editing. Curr. Opin. Cell Biol. 3: 1056–61
Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. (2000). The crystal structure of human eukaryotic release factor eRF1/mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–21
Spronk, C. A. E. M., Bonvin, A. M. J. J., Radha, P. K., Melacini, G., Boelens, R., and Kaptein, R. (1999). The solution structure of lac repressor headpiece 62 complexed to symmetrical lac operator. Structure 7: 1483–92
Staley, J. P., and Guthrie, C. (1998). Mechanical devices of the spliceosome: Motors, clocks, springs, and things. Cell 92: 315–26
Stark, H., Orlova, E. V., Rinke/Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R. and Heel, M. (1997). Arrangement of tRNAs in pre/ and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88: 19–28
Stark, H., Rodnina, M. V., Wieden, H. J., Heel, M., and Wintermeyer, W. (2000). Large/scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100: 301–9
Steitz, T. A. (1992). A general structural mechanism of coupling NTP hydrolysis to other processes. Proceedings of the Robert A. Welch Foundation, Houston, TX, pp. 173–86
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J., and Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279: 1534–41
Strobel, S. A., and Cech, T. R. (1995). Minor groove recognition of the conserved G-U pair at the Tetrahymena ribozyme reaction site. Science 267: 675–9
Su, S., Gao, Y/G., Robinson, H., Liaw, Y/C., Edmondson, S. P., Shriver, J. W., and Wang, A. H/J. (2000). Crystal structure of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base pairs. J. Mol. Biol. 303: 395–403
Subramanya, H. S., Doherty, A. J., Ashford, S. R., and Wigley, D. B. (1996). Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85: 607–15
Tan, S., and Richmond, T. J. (1998). Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391: 660–6
Tan, S., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381: 127–34
Tsai, F. T. F., and Singer, P. B. (2000). Structural basis of preinitiation complex assembly of human Pol II promoters. EMBO J. 19(1): 25–36
Tuschi, T., Gohlke, C., Jovin, T. M., Westhof, E., and Eckstein, F. (1994). A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–9
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S., and Wigley, D. B. (1999). Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97: 75–84
Wang, D., Meier, T. I., Chan, C. L., Feng, G., Lee, D. N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81: 341–50
Wang, J., Sattar, A. K. M. A., Wang, C. C., Karam, J. D., Konigsberg, W. H., and Steitz, T. A. (1997). Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89: 1087–99
Wang, Y., and Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG (T AG)] G/tetraplex. Structure 1(4): 263–82
Wei, X., Samarabandu, J., Devdhar, R. S., Siegel, A. J., Acharya, R., and Berezney, R. (1998). Segregation of transcription and replication sites into higher order domains. Science 281: 1502–4
Weichenrieder, O., Wild, K., Strub, K., and Cusak, S. (2000). Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408: 167–73
Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135–40
Wickner, S., Maurizi, M. R., and Gottesman, S. (1999). Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286: 1888–93
Wilson, K. S., and Noller, H. F. (1998). Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92: 131–9
Wilson, K. S.. (1998). Molecular movement inside the translational engine. Cell 92: 337–49
Wimberly, B. T., Brodersen, D. E., Clemmons, W. M., Morgan/Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407: 327–39
Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999). A detailed view of a ribosomal active site: The structure of the L11/RNA complex. Cell 97: 491–502
Wintjens, R., Lievin, J., Rooman, M., and Buisine, E. (2000). Contribution of cation-π interactions to the stability of protein-DNA complexes. J. Mol. Biol. 302: 395–410
Xing, Y., Johnson, C. V., Moen, P. T. Jr., McNeil, J. A., and Lawrence, J. (1995). Nonrandom gene organization: Structural arrangements of specific pre/mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131: 1635–47
Xu, H. E., Rould, M. A., Xu, W., Epstein, J. A., Maas, R. L., and Pabo, C. O. (1999). Crystal structure of the human pax-6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Develop. 13: 1263–75
Yudkovsky, N., Ranish, J. A., and Hahn, S. (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature 408: 225–9
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–14

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.