Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-14T19:17:21.018Z Has data issue: false hasContentIssue false

8 - Euler and analysis: case studies and historiographical perspectives

Published online by Cambridge University Press:  19 July 2021

Niccolò Guicciardini
Affiliation:
Università degli Studi di Milano
Get access

Summary

Two parts of analysis to which Leonhard Euler contributed in the 1740s and 1750s are the calculus of variations and the theory of infinite series. Certain concepts from these subjects occupy a fundamental place in modern analysis, but do not appear in the work of either Euler or his contemporaries. In the case of variational calculus there is the concept of the invariance of the variational equations; in the case of infinite series there is the concept of summability. However, some modern mathematicians have suggested that early forms of these concepts are implicitly present in Euler’s writings. We examine Euler’s work in calculus of variations and infinite series and reflect on this work in relation to modern theories.

Type
Chapter
Information
Anachronisms in the History of Mathematics
Essays on the Historical Interpretation of Mathematical Texts
, pp. 223 - 250
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×