Skip to main content Accessibility help
×
  • Cited by 4
Publisher:
Cambridge University Press
Online publication date:
November 2014
Print publication year:
2014
Online ISBN:
9781139875950

Book description

Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics. Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.

Reviews

'… excellent, clear … [The authors'] exposition of unique physical insights together with their detailed mathematical expression is most welcome. Each chapter contains problem sets and there are references and an index. The chapter on experimental foundations of quantum theory is replete with rare physical explanations and insights. The various approximation methods are presented in a unified approach as are the modern pictures of quantum mechanics. This textbook provides a good introduction to the tomographic picture which allows classical and quantum descriptions to [be] compared.'

Source: Optics and Photonics News

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Asorey, M., Ibort, A. and Marmo, G. (2005) Global theory of quantum boundary conditions and topology change, Int. J. Mod. Phys. A20, 1001–26.
Balachandra, A. P., Marmo, G., Skagerstam, B. S. and Stern, A. 1983) Gauge Symmetries and Fibre Bundles. Applications to Particle Dynamics (Berlin, Springer).
Balachandran, A. P., Jo, S. G. and Marmo, G. (2010) Group Theory and Hopf Algebras. Lectures for Physicists (Singapore, World Scientific).
Balmer, J. J. (1885) Notiz über die spectrallinien des wasserstoffs, Verh. d. Naturf. Ges. 7, 548–60.
Bergmann, P. G. (1949) Non-linear field theories, Phys. Rev. 75, 680–5.
Bergmann, P. G. and Brunings, J. H. M. (1949) Non-linear field theories II. Canonical equations and quantization, Rev. Mod. Phys. 21, 480–7.
Bimonte, G. and Musto, R. (2003a) Comment on quantitative wave-particle duality in multibeam interferometers, Phys. Rev. A67, 066101.
Bimonte, G. and Musto, R. (2003b) Interferometric duality in multibeam experiments, J. Phys. A36, 11481–502.
Bohr, N. (1913) On the constitution of atoms and molecules, in The Old Quantum Theory, ed. D., Ter Haar (Glasgow, Pergamon Press).
Born, M. and Wolf, E. (1959) Principles of Optics (London, Pergamon Press).
Born, M. (1969) Atomic Physics (London, Blackie & Son).
Bose, S. N. (1924) Plancks gesetz und lichtquantenhypothese, Z. Phys. 26, 178–81.
Brillouin, L. (1926a) La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives, Comptes Rendus 183, 24–6.
Brillouin, L. (1926b) Remarques sur la mécanique ondulatoire, J. Phys. Radium 7, 353–68.
Cartan, E. (1938) La Théorie des Spineurs I & II (Paris, Hermann).
Cartier, P. and DeWitt-Morette, C. (2000) Functional integration, J. Math. Phys. 41, 4154–87.
Chaturvedi, S., Ercolessi, E., Marmo, G., et al. (2007) Ray space ‘Riccati’ evolution and geometric phases for N-level quantum systems, Pramana 69, 317–27.
Chevalley, C. (1946) Theory of Lie Groups (Princeton, Princeton University Press).
Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977a) Quantum Mechanics. I (New York, Wiley).
Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977b) Quantum Mechanics. II (New York, Wiley).
Compton, A. H. (1923a) A quantum theory of the scattering of X-rays by light elements, Phys. Rev. 21, 483–502.
Compton, A.E. (1923b) The spectrum of scattered X-rays, Phys. Rev. 22, 409–13.
Curie, P. (1894) Sur la symmetrie dans les phènomènes physiques. Symmetrie d'un champ electrique et d'un champ magnetique. J. Phys. (Paris) 3.
Davisson, C. and Germer, L. H. (1927) Diffraction of electrons by a crystal of nickel, Phys. Rev. 30, 705–40.
de Broglie, L. (1923) Waves and quanta, Nature 112, 540.
de Ritis, R., Marmo, G. and Preziosi, B. (1999) A new look at relativity transformations, Gen. Rel. Grav. 31, 1501–17.
DeWitt, B. S. (2003) The Global Approach to Quantum Field Theory, International Series of Monographs on Physics 114 (Oxford, Clarendon Press).
Dirac, P. A. M. (1926) The fundamental equations of quantum mechanics, Proc. R. Soc. Lond. A109, 642–53.
Dirac, P. A. M. (1928) The quantum theory of the electron, Proc. R. Soc. Lond. A117, 610–24.
Dirac, P. A. M. (1933) The Lagrangian in quantum mechanics, Phys. Z. USSR 3, 64–72.
Dirac, P. A. M. (1958) The Principles of Quantum Mechanics (Oxford, Clarendon Press).
Dirac, P. A. M. (1964) Lectures on Quantum Mechanics (Belfer Graduate School of Science, New York, Yeshiva University).
DuBridge, L. A. (1933) Theory of the energy distribution of photoelectrons, Phys. Rev. 43, 727–41.
Dyson, F. J. (1949) The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev. 75, 486–502.
Ehrenfest, P. (1927) Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik, Z. Phys. 45, 455–7.
Einstein, A. (1905) On a heuristic point of view about the creation and conversion of light, in The Old Quantum Theory, ed. D., Ter Haar (Glasgow, Pergamon Press).
Einstein, A. (1917) On the quantum theory of radiation, in Sources of Quantum Mechanics, ed. B. L., van der Waerden (New York, Dover).
Elsasser, W. (1925) Bemerkungen zur quantenmechanik freier elektrone, Naturwiss enschafter 13, 711.
Ercolessi, E., Marmo, G. and Morandi, G. (2010) From the equations of motion to the canonical commutation relations, Riv. Nuovo Cim. 33, 401–590.
Esposito, G., Marmo, G. and Sudarshan, E. C. G. (2004) From Classical to Quantum Mechanics (Cambridge, Cambridge University Press).
Esteve, J. G., Falceto, F. and Garcia-Canal, C. (2010) Generalization of the Hellmann–Feynman theorem, Phys. Lett. A374, 819–22.
Fermi, E. (1932) Quantum theory of radiation, Rev. Mod. Phys. 4, 87–132.
Fermi, E. (1950) Nuclear Physics (Chicago, The University of Chicago Press).
Feynman, R. P. (1939) Forces in molecules, Phys. Rev. 56, 340–3.
Feynman, R. P. (1948) Space–time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–87.
Franck, J. and Hertz, G. (1914) Über zusammenstösse zwischen elektronen und den molekülen des quecksilberdampfes und die ionisierungsspannung desselben, Verh. d. Deutsch. Phys. Ges. 16, 457–67.
Gamow, G. (1928) Zur Quantentheorie des Atomkernes, Z. Phys. 51, 204–12.
Gamow, G. (1946) Expanding universe and the origin of elements, Phys. Rev. 70, 572–3.
Gazeau, J. P. (2009) Coherent States in Quantum Physics (New York, Wiley).
Gerlach, W. and Stern, O. (1922) Der experimentelle nachweiss der richtungsquantelung im magnetfeld, Z. Phys. 9, 349–52.
Glauber, R. J. (1963) Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766–88.
Glimme, J. and Jaffe, A. (1987) Quantum Physics: A Functional Integral Point of View (Berlin, Springer).
Grabowski, J., Kus, M. and Marmo, G. (2011) Entanglement for multipartite systems of indistinguishable particles, J. Phys. A44, 175302.
Gradshteyn, I. S. and Ryzhik, I. M. (1965) Tables of Integrals, Series and Products (New York, Academic Press).
Grechko, L. G., Sugarov, V. I. and Tomasevich, O. F. (1977) Problems in Theoretical Physics (Moscow, MIR).
Green, H. S. (1953) A generalized method of field quantization, Phys. Rev. 90, 270–3.
Haas, A. E. (1910a) Sitz. Ber. der Wiener Akad Abt IIa, 119–344.
Haas, A. E. (1910b) Uber eine neue theoretische methode zur bestimmung des elektrischen elementar quantums und des halbmessers des wasserstoffatoms, Phys. Z. 11, 537–8.
Haas, A. E. (1925) Introduction to Theoretical Physics (London, Constable & Company).
Hawking, S. W. (1974) Black hole explosions?, Nature 248, 30–1.
Hawking, S. W. (1975) Particle creation by black holes, Commun. Math. Phys. 43, 199–220.
Heisenberg, W. (1925) Quantum-theoretical re-interpretation of kinematic and mechanical relations, Z. Phys. 33, 879–93.
Herzberg, G. (1944) Atomic Spectra and Atomic Structure (New York, Dover).
Holland, P. R. (1993) The Quantum Theory of Motion (Cambridge, Cambridge University Press).
Holton, G. (2000) Millikan's struggle with theory, Europhys. News 31 No 3, 12–14.
Hörmander, L. (1983) The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis (New York, Springer).
Hughes, A. L. and DuBridge, L. A. (1932) Photoelectric Phenomena (New York, McGraw-Hill).
Hunziker, W. (1974) Scattering in classical mechanics, in Scattering Theory in Mathematical Physics, eds. J. A., La Vita and J. P., Marchand, 79–96.
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2009) An introduction to the tomographic picture of quantum mechanics, Phys. Scripta 79, 065013 (2009).
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2010) On the tomographic picture of quantum mechanics, Phys. Lett. A374, 2614–17.
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2011) A pedagogical presentation of a C*-algebraic approach to quantum tomography, Phys. Scripta 84, 065006 (2011).
Jackson, J. D. (1975) Classical Electrodynamics (New York, Wiley).
Jeans, J. H. (1905) On the partition of energy between matter and aether, Phil. Mag. 10, 91–8.
Jeffreys, H. (1923) On certain approximate solutions of linear differential equations of the second order, Proc. London Math. Soc. 23, 428–36.
Jordan, P., von Neumann, J. and Wigner, E. P. (1934) On the algebraic generalization of the quantum mechanical formalism, Ann. Math. 34, 29–64.
Kirchhoff, G. (1860) On the relation between the radiating and absorbing powers of different bodies for light and heat, Phil. Mag. (4) 20, 1–21.
Klauder, J. R. and Skagerstam, B. S. (eds.) (1985) Coherent States. Applications in Physics and Mathematical Physics (Singapore, World Scientific).
Kramers, H. A. (1926) Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39, 828–40.
Landau, L. D. (1930) Diamagnetismus der metalle, Z. Phys. 64, 629–37.
Landau, L. D. and Lifshitz, E. M. (1958) Course of Theoretical Physics. III: Quantum Mechanics, Non-Relativistic Theory (Oxford, Pergamon Press).
Lesgourgues, J., Mangano, G., Miele, G. and Pastor, S. (2013) Neutrino Cosmology (Cambridge, Cambridge University Press).
Lim, Y. K. (1998) Problems and Solutions on Quantum Mechanics (Singapore, World Scientific).
Lippmann, B. A. and Schwinger, J. (1950) Variational principles for scattering processes, I, Phys. Rev. 79, 469–80.
Mandel, L. (1963) Intensity fluctuations of partially polarized light, Proc. Phys. Soc. (London) 81, 1104–14.
Mandel, L., Sudarshan, E. C. G. and Wolf, E. (1964) Theory of photoelectric detection of light fluctuations, Proc. Phys. Soc. (London) 84, 435–44.
Man'ko, M. A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2013) Introduction to tomography, classical and quantum, Nuovo Cimento 36C, 163–82.
Marmo, G. and Mukunda, N. (1986) Symmetries and constants of the motion in the Lagrangian formalism on TQ: beyond point transformations, Nuovo Cimento B92, 1–12.
Marmo, G. and Preziosi, B. (2006) The structure of space-time: relativity groups, Int. J. Geom. Methods Mod. Phys. 3, 591–603.
Marmo, G. and Volkert, G. F. (2010) Geometrical description of quantum mechanics. Transformations and dynamics, Phys. Scripta 82, 038117.
Merli, P. G., Missiroli, G. F. and Pozzi, G. (1974) Electron interferometry with the Elmiskop 101 electron microscope, J. Phys. E7, 729–33.
Messiah, A. (2014) Quantum Mechanics (New York, Dover).
Millikan, R. A. (1916) A direct photoelectric determination of Planck's h, Phys. Rev. 7, 355–88.
Montgomery, D. and Zippin, L. (1940) Topological transformation groups, Ann. Math. 41, 788–91.
Montgomery, D. and Zippin, L. (1955) Topological Transformation Groups (New York, Interscience).
Montonen, C. and Olive, D. I. (1977) Magnetic monopoles as gauge particles?, Phys. Lett. B72, 117–20.
Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G. and Rubano, C. (1990) The inverse problem in the calculus of variations and the geometry of the tangent bundle, Phys. Rep. 188, 147–284.
Morette, C. (1951) On the definition and approximation of Feynman's path integral, Phys. Rev. 81, 848–52.
Moyal, J. E. (1949) Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99–124.
Parisi, G. (2001) Planck's legacy to statistical mechanics, COND-MAT 0101293 (preprint).
Paschen, F. and Back, E. (1912) Normale und anomale Zeemaneffekte, Ann. Phys. 39, 897–932.
Paschen, F. and Back, E. (1913) Normale und anomale Zeemaneffekte, Nachtrag, Ann. Phys. 40, 960–70.
Penrose, R. and Rindler, W. (1984) Spinors and Space-time. Two-Spinor Calculus and Relativistic Fields (Cambridge, Cambridge University Press).
Penzias, A. and Wilson, R. W. (1965) A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419–21.
Perelomov, A. M. (1986) Generalized Coherent States and Their Applications (Berlin, Springer-Verlag).
Phipps, T. E. and Taylor, J. B. (1927) The magnetic moment of the hydrogen atom, Phys. Rev. 29, 309–20.
Planck, M. (1900) On the theory of the energy distribution law of the normal spectrum, Verh. d. Deutsch. Phys. Ges. 2, 237–45.
Radon, J. (1917) über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl. 69, 262–77.
Rayleigh, J. W. S. (1900) Remarks upon the law of complete radiation, Phil. Mag. 49, 539–40.
Rayleigh, J. W. S. (1912) On the propagation of waves through a stratified medium, with special reference to the question of reflection, Proc. R. Soc. London A86, 207–26.
Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics. II: Fourier Analysis and Self-Adjointness (New York, Academic Press).
Reed, M. and Simon, B. (1979) Methods of Modern Mathematical Physics. III: Scattering Theory (New York, Academic Press).
Robertson, H. P. (1930) A general formulation of the uncertainty principle and its classical interpretation, Phys. Rev. 35, 667.
Rollnik, H. (1956) Streumaxima und gebundene Zustande, Z. Phys. 145, 639–53.
Scully, M. O., Englert, B. G. and Walther, H. (1991) Quantum optical tests of complementarity, Nature 351, 111–16.
Smithey, D. T., Beck, M., Raymer, M. G. and Faridani, A. (1993) Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum, Phys. Rev. Lett. 70, 1244–7.
Smoot, G. F., Bennett, C.L, Kagut, A. et al. (1992) Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. 396, L1–L5.
Sommerfeld, A. and Debye, P. (1913) Theorie des lichtelektrischen effektes vom staudpunkt des wirkumgsquantums, Ann. der Phys. 41, 873–930.
Spergel, D. N., Verde, L., Peiris, H. V., et al. (2003) First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl. 148, 175–94.
Squires, G. L. (1995) Problems in Quantum Mechanics (Cambridge, Cambridge University Press).
Stark, J. (1914) Beobachtungen über den effekt des elektrischen feldes auf spektrallinien, Ann. Phys. 43, 965–82.
Stewart, B. (1858) An account of some experiments on radiant heat, involving an extension of Prévost's theory of exchanges, Trans. R. Soc. Edin. 22, 1–20.
Sudarshan, E. C. G. (1963) Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10, 277–9.
Sudarshan, E. C. G. and Rothman, T. (1991) The two-slit interferometer re-examined, Am. J. Phys. 59, 592–5.
Sudarshan, E. C. G., Chiu, C. B. and Bhamathi, G. (1995) Generalized uncertainty relations and characteristic invariants for the multimode states, Phys. Rev. A52, 43–54.
Syad, T. A., Antoine, J. P. and Gazeau, J. P. (2000) Coherent States, Wavelets and Their Generalizations, Graduate Texts in Contemporary Physics (New York, Springer-Verlag).
Ter Haar, D. (1967) The Old Quantum Theory (Glasgow, Pergamon Press).
Thirring, W. (1997) Classical Mathematical Physics. Dynamical Systems and Field Theories, 3rd Edition (New York, Springer-Verlag).
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. and Ezawa, H. (1989) Demonstration of single-electron buildup of an interference pattern, Am. J. Phys. 57, 117–20.
Uhlenbeck, G. E. and Goudsmit, S. (1926) Spinning electrons and the structure of spectra, Nature 117, 264–5.
Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics (Princeton, Princeton University Press).
Wentzel, G. (1926) Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Phys. 38, 518–29.
Weyl, H. (1931) The Theory of Groups and Quantum Mechanics (New York, Dover).
Wheeler, J. A. and Zurek, W. H. (1983) Quantum Theory and Measurement (Princeton, Princeton University Press).
Wien, W. (1896) Über die energieverteilung im emissionsspektrum eines schwarzen körpers, Ann. Phys. 58, 662–9.
Wiener, N. (1930) Generalized harmonic analysis, Acta Math. 55, 117–258.
Wightman, A. S., ed. (1995). Wigner Collected Works, vol. 6, part 4, (Berlin, Springer).
Wightman, A. S. (1996) How it was learned that quantized fields are operator-valued distributions, Fortschr. Phys. 44, 143–78.
Wigner, E. P. (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York, Academic Press).
Willmore, T. J. (1960) The definition of Lie derivative, Proc. Edin. Math. Soc. 12, 27–9.
Wintner, A. (1947) The unboundedness of quantum-mechanical matrices, Phys. Rev. 71, 738–9.
Witten, E. (1997) Duality, spacetime and quantum mechanics, Phys. Today May, 28–33.
Zeeman, P. (1897a) On the influence of magnetism on the nature of the light emitted by a substance, Phil. Mag. 43, 226–39.
Zeeman, P. (1897b) Doublets and triplets in the spectrum produced by external magnetic forces, Phil. Mag. 44, 55–60, 255–9.
Zhang, W. M., Feng, D. H. and Gilmore, R. (1990) Coherent states: theory and some applications, Rev. Mod. Phys. 26, 867.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.