Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-jcwnq Total loading time: 2.337 Render date: 2021-10-24T14:02:24.586Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Part III - Understanding wildlife disease ecology at the community and landscape level

Published online by Cambridge University Press:  28 October 2019

Kenneth Wilson
Affiliation:
Lancaster University
Andy Fenton
Affiliation:
University of Liverpool
Dan Tompkins
Affiliation:
Predator Free 2050 Ltd
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Wildlife Disease Ecology
Linking Theory to Data and Application
, pp. 427 - 643
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguayo, J., Elegbede, F., Husson, C., Saintonge, F.X. & Marçais, B. (2014) Modeling climate impact on an emerging disease, the Phytophthora alni induced alder decline. Global Change Biology, 20, 32093221.CrossRefGoogle ScholarPubMed
Alizon, S., de Roode, J. C. & Michalakis, Y. (2013) Multiple infections and the evolution of virulence. Ecology Letters, 16, 556567.Google ScholarPubMed
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. (2009) Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22, 245259.CrossRefGoogle ScholarPubMed
Alizon, S. & Michalakis, Y. (2015) Adaptive virulence evolution: the good old fitness-based approach. Trends in Ecology & Evolution, 30, 248254.CrossRefGoogle ScholarPubMed
Altizer, S., Ostfeld, R.S., Johnson, P.T., Kutz, S. & Harvell, C.D. (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science, 341(6145), 514519.CrossRefGoogle ScholarPubMed
Amarasekare, P. (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6, 11091122.CrossRefGoogle Scholar
Anderson, R.M. & May, R.M. (1982) Coevolution of hosts and parasites. Parasitology, 85, 411426.CrossRefGoogle ScholarPubMed
Armstrong, R.A. & McGhee, R. (1980) Competitive exclusion. The American Naturalist, 115, 151170.CrossRefGoogle Scholar
Baucom, R.S. & de Roode, J.C. (2011) Ecological immunology and tolerance in plants and animals. Functional Ecology, 25, 1828.CrossRefGoogle Scholar
Bearchell, S.J., Fraaije, B.A., Shaw, M.W. & Fitt, B.D. (2005) Wheat archive links long-term fungal pathogen population dynamics to air pollution. Proceedings of the National Academy of Sciences of the United States of America, 102, 54385442.CrossRefGoogle ScholarPubMed
Berendsen, R.L., Pieterse, C.M. & Bakker, P.A. (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478486.CrossRefGoogle ScholarPubMed
Berngruber, T.W., Froissart, R., Choisy, M. & Gandon, S. (2013) Evolution of virulence in emerging epidemics. PLoS Pathogens, 9(3), e1003209.CrossRefGoogle ScholarPubMed
Bert, D., Lasnier, J.-B., Capdevielle, X., Dugravot, A. & Desprez-Loustau, M.L. (2016) Powdery mildew decreases the radial growth of oak trees with cumulative and delayed effects over years. PLoS ONE, 11(5), e0155344.CrossRefGoogle ScholarPubMed
Best, A., White, A. & Boots, M. (2014) The coevolutionary implications of host tolerance. Evolution, 68, 14261435.Google ScholarPubMed
Bever, J.D., Mangan, S.A. & Alexander, H.M. (2015) Maintenance of plant species diversity by pathogens. Annual Review of Ecology, Evolution, and Systematics, 46, 305325.CrossRefGoogle Scholar
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004) Toward a metabolic theory of ecology. Ecology, 85, 17711789.Google Scholar
Brown, J.K. (2003) A cost of disease resistance: paradigm or peculiarity? Trends in Genetics, 19, 667671.CrossRefGoogle ScholarPubMed
Budde, K.B., Nielsen, L.R., Ravn, H.P. & Kjær, E.D. (2016) The natural evolutionary potential of tree populations to cope with newly introduced pests and pathogens – lessons learned from forest health catastrophes in recent decades. Current Forestry Reports, 2, 1829.CrossRefGoogle Scholar
Bull, J.J. (1994) Perspective: virulence. Evolution, 48, 14231437.Google ScholarPubMed
Bull, J.J. & Ebert, D. (2008) Invasion thresholds and the evolution of nonequilibrium virulence. Evolutionary Applications, 1, 172182.CrossRefGoogle ScholarPubMed
Burdon, J.J., Thrall, P.H. & Ericson, L. (2013) Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host–pathogen interactions. Current Opinion in Plant Biology, 16(4), 400405.CrossRefGoogle ScholarPubMed
Busby, P.E., Ridout, M. & Newcombe, G. (2016) Fungal endophytes: modifiers of plant disease. Plant Molecular Biology, 90, 645655.CrossRefGoogle ScholarPubMed
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343366.CrossRefGoogle Scholar
Chuine, I., de Cortazar-Atauri, I.G., Kramer, K. & Hänninen, H. (2013) Plant development models. In: Schwarz, M.D. (ed.), Phenology: An Integrative Environmental Science (pp. 275293). Dordrecht: Springer.CrossRefGoogle Scholar
Combes, C. (2001) Parasitism: The Ecology and Evolution of Intimate Interactions. Chicago, IL: University of Chicago Press.Google Scholar
Cronin, J.P., Rúa, M.A. & Mitchell, C.E. (2014) Why is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. The American Naturalist, 184, 172187.CrossRefGoogle Scholar
Crous, P.W. & Groenewald, J.Z. (2005) Hosts, species and genotypes: opinions versus data. Australasian Plant Pathology, 34, 463470.CrossRefGoogle Scholar
Cunniffe, N.J., Koskella, B., Metcalf, C.J.E., et al. (2015) Thirteen challenges in modelling plant diseases. Epidemics, 10, 610.CrossRefGoogle ScholarPubMed
Dantec, C.F., Ducasse, H., Capdevielle, X., et al. (2015) Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. Journal of Ecology, 103, 10441056.CrossRefGoogle Scholar
Desprez-Loustau, M.L., Feau, N., Mougou-Hamdane, A. & Dutech, C.C. (2011) Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. Mycoscience, 52, 165173.CrossRefGoogle Scholar
Desprez-Loustau, M.L., Robin, C., Buee, M., et al. (2007) The fungal dimension of biological invasions. Trends in Ecology & Evolution, 22, 472480.CrossRefGoogle ScholarPubMed
Desprez-Loustau, M.L., Saint-Jean, G., Barres, B., Dantec, C. & Dutech, C.C. (2014) Oak powdery mildew changes growth patterns in its host tree: host tolerance response and potential manipulation of host physiology by the parasite. Annals of Forest Science, 71, 563573.CrossRefGoogle Scholar
Desprez-Loustau, M.L., Vitasse, Y., Delzon, S., et al. (2010) Are plant pathogen populations adapted for encounter with their host? A case study of phenological synchrony between oak and an obligate fungal parasite along an altitudinal gradient. Journal of Evolutionary Biology, 23, 8797.CrossRefGoogle Scholar
Doumayrou, J., Avellan, A., Froissart, R. & Michalakis, Y. (2013) An experimental test of the transmission–virulence trade-off hypothesis in a plant virus. Evolution, 67, 477486.CrossRefGoogle Scholar
Ducousso, A., Guyon, J.P. & Kremer, A. (1996) Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quercus petraea (Matt) Liebl). Annals of Forest Science, 53, 775782.CrossRefGoogle Scholar
Edwards, M.C. & Ayres, P.G. (1982) Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Transactions of the British Mycological Society, 78, 569571.Google Scholar
Emmons, C.W. (1930) Cicinnobolus cesatii, a study in host–parasite relationships. Bulletin of the Torrey Botanical Club, 57, 421441.CrossRefGoogle Scholar
Ennos, R.A. (2015) Resilience of forests to pathogens: an evolutionary ecology perspective. Forestry, 88, 4152.CrossRefGoogle Scholar
Escriu, F., Fraile, A. & García-Arenal, F. (2003) The evolution of virulence in a plant virus. Evolution, 57, 755765.CrossRefGoogle Scholar
Feau, N., Decourcelle, T., Husson, C., Desprez Loustau, M.L. & Dutech, C.C. (2011) Finding single copy genes out of sequenced genomes for multilocus phylogenetics in non-model fungi. PLoS ONE, 6(4), e18803.CrossRefGoogle ScholarPubMed
Feau, N., Lauron-Moreau, A., Piou, D., et al. (2012) Niche partitioning of the genetic lineages of the oak powdery mildew complex. Fungal Ecology, 5, 154162.CrossRefGoogle Scholar
Fisher, M.C., Henk, D.A., Briggs, C.J., et al. (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186194.CrossRefGoogle ScholarPubMed
Fitt, B.D., Huang, Y., van den Bosch, F. & West, J.S. (2006) Coexistence of related pathogen species on arable crops in space and time. Annual Review of Phytopathology, 44, 163–82.CrossRefGoogle ScholarPubMed
Flory, S.L. & Clay, K. (2013) Pathogen accumulation and long‐term dynamics of plant invasions. Journal of Ecology, 101, 607613.CrossRefGoogle Scholar
Francl, L.J. (2001) The disease triangle: a plant pathological paradigm revisited. Plant Health Instructor, DOI:10.1094/PHI-T-2001-0517-01CrossRef
Gilchrist, M.A., Sulsky, D.L. & Pringle, A. (2006). Identifying fitness and optimal life-history strategies for an asexual filamentous fungus. Evolution, 60, 970979.CrossRefGoogle ScholarPubMed
Glawe, D.A. (2008) The powdery mildews: a review of the world’s most familiar (yet poorly known) plant pathogens. Annual Review of Phytopathology, 46, 2751.Google ScholarPubMed
Guillaume, F. & Rougemont, J. (2006) Nemo: an evolutionary and population genetics programming framework. Bioinformatics, 22, 25562557.CrossRefGoogle ScholarPubMed
Hajji, M., Dreyer, E. & Marçais, B. (2009) Impact of Erysiphe alphitoides on transpiration and photosynthesis in Quercus robur leaves. European Journal of Plant Pathology, 125, 6372.CrossRefGoogle Scholar
Halkett, F., Harrington, R., Hullé, M., et al. (2004) Dynamics of production of sexual forms in aphids: theoretical and experimental evidence for adaptive ‘coin-flipping’ plasticity. The American Naturalist, 163, E112E125.CrossRefGoogle ScholarPubMed
Hamelin, F.M., Bisson, A., Desprez-Loustau, M.L., Fabre, F. & Mailleret, L. (2016) Temporal niche differentiation of parasites sharing the same plant host: oak powdery mildew as a case study. Ecosphere, 7, e01517.CrossRefGoogle Scholar
Hamelin, F.M., Castel, M., Poggi, S., Andrivon, D. & Mailleret, L. (2011) Seasonality and the evolutionary divergence of plant parasites. Ecology, 92, 21592166.CrossRefGoogle ScholarPubMed
Huot, B., Yao, J., Montgomery, B.L. & He, S.Y. (2014) Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant, 7, 12671287.CrossRefGoogle ScholarPubMed
Jakuschkin, B., Fievet, V., Schwaller, L., et al. (2016) Deciphering the pathobiome: intra- and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microbial Ecology, 72, 870880.CrossRefGoogle ScholarPubMed
Jarosz, A.M. & Davelos, A.L. (1995) Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytologist, 129, 371387.CrossRefGoogle Scholar
Jeger, M.J. (2000) Theory and plant epidemiology. Plant Pathology, 49, 651658.CrossRefGoogle Scholar
Jousimo, J., Tack, A.J., Ovaskainen, O., et al. (2014) Ecological and evolutionary effects of fragmentation on infectious disease dynamics. Science, 344(6189), 12891293.CrossRefGoogle ScholarPubMed
Keeling, M.J. & Rohani, P. (2008) Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Kerling, L.C.P. (1966) The hibernation of the oak mildew. Plant Biology, 15, 7683.Google Scholar
Kermack, W.O. & McKendrick, A.G. (1927) A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London A, 115, 700721.Google Scholar
Kisdi, E. (2012) F1000 Prime Recommendation of Hamelin FM et al., Ecology 2011, 92(12),2159–66. F1000 Prime.
Kiss, L., Russell, J.C., Szentiványi, O., Xu, X. & Jeffries, P. (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14, 635651.CrossRefGoogle Scholar
Lenski, R.E. & May, R.M. (1994) The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. Journal of Theoretical Biology, 169, 253265.CrossRefGoogle ScholarPubMed
Limkaisang, S., Cunnington, J.H, Wui, L.K., et al. (2006) Molecular phylogenetic analyses reveal a close relationship between powdery mildew fungi on some tropical trees and Erysiphe alphitoides, an oak powdery mildew. Mycoscience, 47, 327335.Google Scholar
Lively, C.M., de Roode, J.C., Duffy, M.A., Graham, A.L. & Koskella, B. (2014) Interesting open questions in disease ecology and evolution. The American Naturalist, 184(S1), S1S8.CrossRefGoogle ScholarPubMed
Liyanage, A.D.S. & Royle, D.J. (1976) Overwintering of Sphaerotheca humuli, the cause of hop powdery mildew. Annals of Applied Biology, 83, 381394.CrossRefGoogle Scholar
Loreau, M. (1992) Time scale of resource dynamics and coexistence through time partitioning. Theoretical Population Biology, 41, 401412.CrossRefGoogle Scholar
Loreau, M. & Hector, A. (2001) Partitioning selection and complementarity in biodiversity experiments. Nature, 412(6842), 7276.CrossRefGoogle ScholarPubMed
Madden, L.V., Hughes, G. & Bosch, F. (2007) The Study of Plant Disease Epidemics. St Paul, MN: American Phytopathological Society (APS Press).Google Scholar
Mailleret, L., Castel, M., Montarry, J. & Hamelin, F.M. (2012) From elaborate to compact seasonal plant epidemic models and back: is competitive exclusion in the details? Theoretical Ecology, 5, 311324.CrossRefGoogle Scholar
Mailleret, L. & Lemesle, V. (2009) A note on semi-discrete modelling in the life sciences. Philosophical Transactions of the Royal Society of London A, 367, 47794799.CrossRefGoogle ScholarPubMed
Marcais, B. & Desprez-Loustau, M.L. (2014) European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science, 71, 633642.CrossRefGoogle Scholar
Marcais, B., Kavkova, M. & Desprez-Loustau, M.L. (2009) Phenotypic variation in the phenology of ascospore production between European populations of oak powdery mildew. Annals of Forest Science, 66, 814.Google Scholar
Marçais, B., Piou, D., Dezette, D. & Desprez-Loustau, M.L. (2017) Can oak powdery mildew severity be explained by indirect effects of climate on the composition of the Erysiphe pathogenic complex? Phytopathology, 107, 570579.CrossRefGoogle ScholarPubMed
Menzel, A. (2000). Trends in phenological phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44(2), 7681.CrossRefGoogle ScholarPubMed
Montarry, J., Cartolaro, P., Delmotte, F., Jolivet, J. & Willocquet, L. (2008) Genetic structure and aggressiveness of Erysiphe necator populations during grapevine powdery mildew epidemics. Applied and Environmental Microbiology, 74, 63276332.CrossRefGoogle ScholarPubMed
Mordecai, E.A. (2011) Pathogen impacts on plant communities: unifying theory, concepts, and empirical work. Ecological Monographs, 81, 429441.CrossRefGoogle Scholar
Mougou, A., Dutech, C.C. & Desprez-Loustau, M.L. (2008) New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. Forest Pathology, 38, 275287.CrossRefGoogle Scholar
Mougou-Hamdane, A., Giresse, X., Dutech, C.C. & Desprez Loustau, M.L. (2010) Spatial distribution of lineages of oak powdery mildew fungi in France, using quick molecular detection methods. Annals of Forest Science, 67, 212.CrossRefGoogle Scholar
Newcombe, G. (1998) A review of exapted resistance to diseases of Populus. European Journal of Forest Pathology, 28, 209216.CrossRefGoogle Scholar
Pasco, C., Montarry, J., Marquer, B. & Andrivon, D. (2016) And the nasty ones lose in the end: foliar pathogenicity trades off with asexual transmission in the Irish famine pathogen Phytophthora infestans. New Phytologist, 209, 334342.CrossRefGoogle ScholarPubMed
Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. (2013) European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biological Conservation, 158, 3749.CrossRefGoogle Scholar
Pautasso, M., Holdenrieder, O. & Stenlid, J. (2005) Susceptibility to fungal pathogens of forests differing in tree diversity. In: Scherer-Lorenzen, M., Körner, C. & Schulze, E.-D. (eds.), Forest Diversity and Function (pp. 263289). Berlin: Springer.CrossRefGoogle Scholar
Pearson, R.C. & Gadoury, D.M. (1987) Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology, 77, 15091514.CrossRefGoogle Scholar
Penczykowski, R.M., Walker, E., Soubeyrand, S. & Laine, A.L. (2015) Linking winter conditions to regional disease dynamics in a wild plant–pathogen metapopulation. New Phytologist, 205, 11421152.Google Scholar
Piepenbring, M., Hofmann, T.A., Kirschner, R., et al. (2011) Diversity patterns of Neotropical plant parasitic microfungi. Ecotropica, 17, 2740.Google Scholar
Plomion, C., Aury, J.M., Amselem, J., et al. (2018) Oak genome reveals facets of long lifespan. Nature Plants, 4, 440.CrossRefGoogle ScholarPubMed
Robinson, R.A. (1976) Plant Pathosystems. Berlin: Springer.CrossRefGoogle Scholar
Roslin, T., Laine, A.-L. & Gripenberg, S. (2007) Spatial population structure in an obligate plant pathogen colonizing oak Quercus robur. Functional Ecology, 21, 11681177.CrossRefGoogle Scholar
Roy, B.A. & Kirchner, J.W. (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution, 54, 5163.CrossRefGoogle ScholarPubMed
Sacristan, S. & Garcia-Arenal, F. (2008) The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology, 9, 369384.Google ScholarPubMed
Schoch, C.L., Seifert, K.A., Huhndorf, S., et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America, 109, 62416246.CrossRefGoogle ScholarPubMed
Segarra, J., Jeger, M.J. & Van den Bosch, F. (2001) Epidemic dynamics and patterns of plant diseases. Phytopathology, 91, 10011010.CrossRefGoogle ScholarPubMed
Soularue, J.P. & Kremer, A. (2012) Assortative mating and gene flow generate clinal phenological variation in trees. BMC Evolutionary Biology, 12, 79.CrossRefGoogle ScholarPubMed
Sparks, T.H. & Carey, P.D. (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. Journal of Ecology, 83, 321.CrossRefGoogle Scholar
Sparks, T.H., Carey, P.D. & Combes, J. (1997) First leafing dates of trees in Surrey between 1947 and 1996. The London Naturalist, 76, 1520.Google Scholar
Spotts, R.A. & Chen, P.M. (1984) Cold hardiness and temperature responses of healthy and mildew-infected terminal buds of apple during dormancy. Phytopathology, 74, 542544.CrossRefGoogle Scholar
Stukenbrock, E.H. & McDonald, B.A. (2008) The origins of plant pathogens in agro-ecosystems. Annual Review of Phytopathology, 46, 75100.CrossRefGoogle ScholarPubMed
Susi, H., Barrès, B., Vale, P.F. & Laine, A.L. (2015) Co-infection alters population dynamics of infectious disease. Nature Communications, 6, 5975.CrossRefGoogle ScholarPubMed
Tack, A.J. & Laine, A.L. (2014) Ecological and evolutionary implications of spatial heterogeneity during the off‐season for a wild plant pathogen. New Phytologist, 202, 297308.CrossRefGoogle ScholarPubMed
Takamatsu, S. (2013) Origin and evolution of the powdery mildews (Ascomycota, Erysiphales). Mycoscience, 54, 7586.CrossRefGoogle Scholar
Takamatsu, S., Braun, U., Limkaisang, S., et al. (2007) Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycological Research, 111, 809826.CrossRefGoogle ScholarPubMed
Takamatsu, S., Ito, H., Shiroya, Y., Kiss, L. & Heluta, V. (2015) First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage. Mycologia, 107, 475489.CrossRefGoogle ScholarPubMed
Tedersoo, L., Bahram, M., Põlme, S., et al. (2014) Global diversity and geography of soil fungi. Science, 346(6213), 1256688.CrossRefGoogle ScholarPubMed
Tian, D., Traw, M.B., Chen, J. Q., Kreitman, M. & Bergelson, J. (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423(6935), 7477.CrossRefGoogle ScholarPubMed
Tollenaere, C., Susi, H. & Laine, A.-L. (2016) Evolutionary and epidemiological implications of multiple infection in plants. Trends in Plant Science, 21, 8090.CrossRefGoogle ScholarPubMed
van den Berg, F., Bacaer, N., Metz, J.A.J., Lannou, C. & van den Bosch, F. (2011) Periodic host absence can select for both higher or lower parasite transmission rates. Evolutionary Ecology, 25, 121137.CrossRefGoogle Scholar
Verdú, M. & Climent, J. (2007) Evolutionary correlations of polycyclic shoot growth in Acer (Sapindaceae). American Journal of Botany, 94, 13161320.Google ScholarPubMed
Viennot-Bourgin, G. (1968) Note sur des Erysiphacees. Bulletin Trimestriel de la Societe Mycologique de France, 84, 117118.Google Scholar
Viney, R. (1970) L’oïdium du Chêne: incident léger ou désastre. Revue Forestière Française, 22, 365369.CrossRefGoogle Scholar
Vitasse, Y. (2013) Ontogenic changes rather than difference in temperature cause understory trees to leaf out earlier. New Phytologist, 198, 149155.Google ScholarPubMed
Vitasse, Y., François, C., Delpierre, N., et al. (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151, 969980.CrossRefGoogle Scholar
Vuillemin, P. (1910a) Le déclin de la maladie du blanc du chêne. Bulletin de l’Office forestier du Centre et de l’Ouest, 347350.
Vuillemin, P. (1910b) Un ennemi naturel de l’Oïdium du Chêne. Bulletin de la Société Mycologique de France, 26.Google Scholar
Weis, A.E., Simms, E.L. & Hochberg, M.E. (2000) Will plant vigor and tolerance be genetically correlated? Effects of intrinsic growth rate and self-limitation on regrowth. Evolutionary Ecology, 14, 331352.CrossRefGoogle Scholar
Woodward, R.C., Waldie, J.S.L. & Steven, H.M. (1929) Oak mildew and its control in forest nurseries. Forestry, 3, 3856.CrossRefGoogle Scholar
Zandt, P.A.V. & Mopper, S. (1998) A meta-analysis of adaptive deme formation in phytophagous insect populations. The American Naturalist, 152, 595604.CrossRefGoogle ScholarPubMed
Auld, S.K., Hall, S.R., Ochs, J.H., Sebastian, M. & Duffy, M.A. (2014) Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites. American Naturalist, 18, S77S90.CrossRefGoogle Scholar
Bertram, C.R., Pinkowski, M., Hall, S.R., Duffy, M.A. & Cáceres, C.E. (2013) Trait-mediated indirect effects, predators, and disease: test of a size-based model. Oecologia, 173, 10231032.CrossRefGoogle ScholarPubMed
Bidegain, G., Powell, E.N., Klinck, J.M., Ben-Horin, T. & Hofmann, E.E. (2016) Marine infectious disease dynamics and outbreak thresholds: contact transmission, pandemic infection, and the potential role of filter feeders. Ecosphere, 7, e01286.CrossRefGoogle Scholar
Brooks, J.L. & Dodson, S.I. (1965) Predation, body size, and composition of plankton. Science, 150, 2835.CrossRefGoogle ScholarPubMed
Buck, J., Truong, L. & Blaustein, A. (2011) Predation by zooplankton on Batrachochytrium dendrobatidis: biological control of the deadly amphibian chytrid fungus? Biodiversity and Conservation, 20, 35493553.CrossRefGoogle Scholar
Byers, J.E., Malek, A.J., Quevillon, L.E., Altman, I. & Keogh, C.L. (2015) Opposing selective pressures decouple pattern and process of parasitic infection over small spatial scale. Oikos, 124, 15111519.CrossRefGoogle Scholar
Cáceres, C.E., Hall, S.R., Duffy, M.A., Tessier, A.J., Helmle, C. & MacIntyre, S. (2006) Physical structure of lakes constrains epidemics in Daphnia populations. Ecology, 87, 14381444.CrossRefGoogle ScholarPubMed
Cáceres, C.E., Knight, C.J. & Hall, S.R. (2009) Predator spreaders: predation can enhance parasite success in a planktonic host–parasite system. Ecology, 90, 28502858.CrossRefGoogle Scholar
Cáceres, C.E., Tessier, A.J., Duffy, M.A. & Hall, S.R. (2014) Disease in freshwater zooplankton: what have we learned and where are we going? Journal of Plankton Research, 36, 326333.Google Scholar
Choisy, M. & Rohani, P. (2006) Harvesting can increase severity of wildlife disease epidemics. Proceedings of the Royal Society of London Series B, 273, 20252034.Google ScholarPubMed
Civitello, D.J., Pearsall, S., Duffy, M.A. & Hall, S.R. (2013) Parasite consumption and host interference can inhibit disease spread in dense populations. Ecology Letters, 16, 626634.CrossRefGoogle ScholarPubMed
Civitello, D.J., Penczykowski, R.M., Smith, A.N., et al. (2015) Resources, key traits, and the size of fungal epidemics in Daphnia populations. Journal of Animal Ecology, 84, 10101017.CrossRefGoogle ScholarPubMed
Coors, A. & De Meester, L. (2011) Fitness and virulence of a bacterial endoparasite in an environmentally stressed crustacean host. Parasitology, 138, 122131.CrossRefGoogle Scholar
Cressler, C.E., Nelson, W.A., Day, T. & McCauley, E. (2014) Disentangling the interaction among host resources, the immune system and pathogens. Ecology Letters, 17, 284293.CrossRefGoogle ScholarPubMed
de Roos, A.M. & Persson, L. (2013) Population and Community Ecology of Ontogenetic Development. Princeton, NJ: Princeton University Press.Google Scholar
Decaestecker, E., De Meester, L. & Ebert, D. (2002) In deep trouble: habitat selection constrained by multiple enemies in zooplankton. Proceedings of the National Academy of Science of the United States of America, 99, 54815485.CrossRefGoogle ScholarPubMed
Department for Environment Food and Rural Affairs (2016) Summary of badger control monitoring during 2016. www.gov.uk/government/uploads/system/uploads/attachment_data/file/578436/summary-badger-control-monitoring-2016.pdf
Donnelly, C.A., Woodroffe, R., Cox, D.R., et al. (2003) Impact of localized badger culling on tuberculosis incidence in British cattle. Nature, 426, 834837.CrossRefGoogle ScholarPubMed
Duffy, M.A. (2007) Selective predation, parasitism, and trophic cascades in a bluegill–Daphnia–parasite system. Oecologia, 153, 453460.CrossRefGoogle Scholar
Duffy, M.A. (2009) Staying alive: the post-consumption fate of parasite spores and its implications for disease dynamics. Limnology and Oceanography, 54, 770773.Google Scholar
Duffy, M.A., Cáceres, C.E., Hall, S.R., Tessier, A.J. & Ives, A.R. (2010) Temporal, spatial, and between-host comparisons of patterns of parasitism in lake zooplankton. Ecology, 91, 33223331.CrossRefGoogle ScholarPubMed
Duffy, M.A. & Hall, S.R. (2008) Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations. American Naturalist, 171, 499510.Google ScholarPubMed
Duffy, M.A., Hall, S.R., Cáceres, C.E. & Ives, A.R. (2009) Rapid evolution, seasonality and the termination of parasite epidemics. Ecology, 90, 14411448.CrossRefGoogle ScholarPubMed
Duffy, M.A., Hall, S.R., Tessier, A.J. & Huebner, M. (2005) Selective predators and their parasitized prey: are epidemics in zooplankton under top-down control? Limnology and Oceanography, 50, 412420.CrossRefGoogle Scholar
Duffy, M.A., Housley, J.M., Penczykowski, R.M., Cáceres, C.E. & Hall, S.R. (2011) Unhealthy herds: indirect effects of predators enhance two drivers of disease spread. Functional Ecology, 25, 945953.CrossRefGoogle Scholar
Duffy, M.A., James, T.Y. & Longworth, A. (2015) Ecology, virulence, and phylogeny of Blastulidium paedophthorum, a widespread brood parasite of Daphnia spp. Applied & Environmental Microbiology, 81, 54865496.CrossRefGoogle ScholarPubMed
Duffy, M.A., Ochs, J.H., Penczykowski, R.M., et al. (2012) Ecological context influences epidemic size and parasite-mediated selection. Science, 335, 16361638.CrossRefGoogle Scholar
Elser, M.M., Vonende, C.N., Sorrano, P. & Carpenter, S.R. (1987) Chaoborus populations: response to food web manipulation and potential effects on zooplankton communities. Canadian Journal of Zoology, 65, 28462852.CrossRefGoogle Scholar
González, M.J. & Tessier, A.J. (1997) Habitat segregation and interactive effects of multiple predators on a prey assemblage. Freshwater Biology, 38, 179191.CrossRefGoogle Scholar
Goren, L. & Ben-Ami, F. (2017) To eat or not to eat infected food: a bug’s dilemma.Hydrobiologia, 798, 2532.CrossRefGoogle Scholar
Groner, M.L. & Relyea, R.A. (2015) Predators reduce Batrachochytrium dendrobatidis infection loads in their prey. Freshwater Biology, 60, 16991704.CrossRefGoogle Scholar
Hall, S.R., Becker, C.R., Simonis, J.L., et al. (2009) Friendly competition: evidence for a dilution effect among competitors in a planktonic host–parasite system. Ecology, 90, 791801.CrossRefGoogle Scholar
Hall, S.R., Duffy, M.A. & Cáceres, C.E. (2005) Selective predation and productivity jointly drive complex behavior in host–parasite systems. American Naturalist, 165, 7081.CrossRefGoogle ScholarPubMed
Hall, S.R., Sivars-Becker, L., Becker, C., et al. (2007) Eating yourself sick: transmission of disease as a function of feeding biology of hosts. Ecology Letters, 10, 207218.CrossRefGoogle Scholar
Hall, S.R., Smyth, R., Becker, C.R., et al. (2010) Why are Daphnia in some lakes sicker? Disease ecology, habitat structure, and the plankton. BioScience, 60, 363375.CrossRefGoogle Scholar
Hall, S.R., Tessier, A.J., Duffy, M.A., Huebner, M. & Cáceres, C.E. (2006) Warmer does not have to mean sicker: temperature and predators can jointly drive timing of epidemics. Ecology, 87, 16841695.CrossRefGoogle Scholar
Harvell, D., Aronson, R., Baron, N., et al. (2004) The rising tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the Environment, 2, 375382.CrossRefGoogle Scholar
Hesse, O., Engelbrecht, W., Laforsch, C. & Wolinska, J. (2012) Fighting parasites and predators: how to deal with multiple threats? BMC Ecology, 12, 12.CrossRefGoogle ScholarPubMed
Hite, J.L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S.R. (2016) Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proceedings of the Royal Society of London B, 283, 20160832.CrossRefGoogle ScholarPubMed
Holt, R.D. & Roy, M. (2007) Predation can increase the prevalence of infectious disease. American Naturalist, 169, 690699.CrossRefGoogle ScholarPubMed
Hudson, P.J. (1986) The effect of a parasitic nematode on the breeding production of red grouse. Journal of Animal Ecology, 55, 8592.CrossRefGoogle Scholar
Hudson, P.J., Dobson, A.P. & Newborn, D. (1992) Do parasites make prey vulnerable to predation? Red grouse and parasites. Journal of Animal Ecology, 61, 681692.CrossRefGoogle Scholar
Johnson, A. & Brunner, J. (2014) Persistence of an amphibian ranavirus in aquatic communities. Diseases of Aquatic Organisms, 111, 129138.CrossRefGoogle ScholarPubMed
Johnson, P.T.J., Dobson, A., Lafferty, K.D., et al. (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology & Evolution, 25, 362371.CrossRefGoogle ScholarPubMed
Johnson, P.T.J., Stanton, D.E., Preu, E.R., Forshay, K.J. & Carpenter, S.R. (2006) Dining on disease: how interactions between parasite infection and environmental conditions affect host predation risk. Ecology, 87, 19731980.CrossRefGoogle Scholar
Kagami, M., Van Donk, E., de Bruin, A., Rijkeboer, M. & Ibelings, B.W. (2004) Daphnia can protect diatoms from fungal parasitism. Limnology and Oceanography, 49, 680685.CrossRefGoogle Scholar
Keeling, M.J. & Rohani, P. (2008) Modeling Infectious Diseases in Humans and Animals. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Keesing, F., Belden, L.K., Daszak, P., et al. (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468, 647652.CrossRefGoogle ScholarPubMed
Keymer, A., Crompton, D.W.T. & Walters, D.E. (1983) Parasite population biology and host nutrition – dietary fructose and Moniliformis (Acanthocephala). Parasitology, 87, 265278.CrossRefGoogle Scholar
Kistler, R.A. (1985) Host-age structure and parasitism in a laboratory system of two hymenopterous parasitoids and larvae of Zabrotes subfasciatus (Coleoptera, Bruchidae). Environmental Entomology, 14, 507511.CrossRefGoogle Scholar
Lafferty, K.D. (2004) Fishing for lobsters indirectly increases epidemics in sea urchins. Ecological Applications, 14, 15661573.CrossRefGoogle Scholar
Lafferty, K.D., Harvell, C.D., Conrad, J.M., et al. (2015) Infectious diseases affect marine fisheries and aquaculture economics. Annual Review of Marine Science, 7, 471496.CrossRefGoogle ScholarPubMed
Lass, S. & Bittner, K. (2002) Facing multiple enemies: parasitised hosts respond to predator kairomones. Oecologia, 132, 344349.CrossRefGoogle ScholarPubMed
Levi, T., Kilpatrick, A.M., Mangel, M. & Wilmers, C.C. (2012) Deer, predators, and the emergence of Lyme disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 10,94210,947.CrossRefGoogle ScholarPubMed
Li, J., Kolivras, K.N., Hong, Y., et al. (2014) Spatial and temporal emergence pattern of Lyme disease in Virginia. The American Journal of Tropical Medicine and Hygiene, 91, 11661172.CrossRefGoogle ScholarPubMed
Lindeque, P.M. & Turnbull, P.C.B. (1994) Ecology and epidemiology of anthrax in the Etosha National Park, Namibia. Onderstepoort Journal of Veterinary Research, 61, 7183.Google ScholarPubMed
Michael, E. & Bundy, D.A.P. (1992) Nutrition, immunity and helminth infection: effect of dietary protein on the dynamics of the primary antibody response to Trichuris muris (Nematoda) in CBA/Ca mice. Parasite Immunology, 14, 169183.CrossRefGoogle Scholar
Mittelbach, G.G. (1981) Patterns of invertebrate size and abundance in aquatic habitats. Canadian Journal of Fisheries and Aquatic Sciences, 38, 896904.CrossRefGoogle Scholar
Morters, M.K., Restif, O., Hampson, K., et al. (2013) Evidence-based control of canine rabies: a critical review of population density reduction. Journal of Animal Ecology, 82, 614.CrossRefGoogle ScholarPubMed
Navarro, C., de Lope, F., Marzal, A. & Møller, A.P. (2004) Predation risk, host immune response, and parasitism. Behavioral Ecology, 15, 629635.CrossRefGoogle Scholar
Orlofske, S.A., Jadin, R.C., Preston, D.L. & Johnson, P.T.J. (2012) Parasite transmission in complex communities: predators and alternative hosts alter pathogenic infections in amphibians. Ecology, 93, 12471253.CrossRefGoogle ScholarPubMed
Ostfeld, R.S. & Holt, R.D. (2004) Are predators good for your health? Evaluating evidence for top-down regulation of zoonotic disease reservoirs. Frontiers in Ecology and the Environment, 2, 1320.CrossRefGoogle Scholar
Ostfeld, R.S. & Keesing, F. (2000) Biodiversity and disease risk: the case of Lyme disease [Biodiversidad y Riesgo de Enfermedades: El Caso de la Enfermedad de Lyme]. Conservation Biology, 14, 722728.CrossRefGoogle Scholar
Pace, M.L., Cole, J.J., Carpenter, S.R. & Kitchell, J.F. (1999) Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483488.CrossRefGoogle ScholarPubMed
Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D. & Dobson, A.P. (2003) Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecology Letters, 6, 797802.CrossRefGoogle Scholar
Pastorok, R.A. (1981) Prey vulnerability and size selection by Chaoborus larvae. Ecology, 62, 13111324.CrossRefGoogle Scholar
Penczykowski, R.M., Hall, S.R., Civitello, D.J. & Duffy, M.A. (2014) Habitat structure and ecological drivers of disease. Limnology and Oceanography, 59, 340348.CrossRefGoogle Scholar
Ramirez, R.A. & Snyder, W.E. (2009) Scared sick? Predator–pathogen facilitation enhances exploitation of a shared resource. Ecology, 90, 28322839.Google ScholarPubMed
Rapti, Z. & Cáceres, C.E. (2016) Effects of intrinsic and extrinsic host mortality on disease spread. Bulletin of Mathematical Biology, 78, 235253.CrossRefGoogle ScholarPubMed
Rohr, J.R., Civitello, D.J., Crumrine, P.W., et al. (2015) Predator diversity, intraguild predation, and indirect effects drive parasite transmission. Proceedings of the National Academy of Sciences of the United States of America, 112, 30083013.CrossRefGoogle ScholarPubMed
Salkeld, D.J., Padgett, K.A. & Jones, J.H. (2013) A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecology Letters, 16, 679686.CrossRefGoogle ScholarPubMed
Searle, C.L., Mendelson, J.R., Green, L.E. & Duffy, M.A. (2013) Daphnia predation on the amphibian chytrid fungus and its impacts on disease risk in tadpoles. Ecology and Evolution, 3, 41294138.CrossRefGoogle ScholarPubMed
Smith, V. (2007) Host resource supplies influence the dynamics and outcome of infectious disease. Integrative and Comparative Biology, 47, 310316.CrossRefGoogle ScholarPubMed
Snyder, W.E. & Ives, A.R. (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology, 82, 705716.CrossRefGoogle Scholar
Spitze, K. (1985) Functional response of an ambush predator: Chaoborus americanus predation on Daphnia pulex. Ecology, 66, 938949.CrossRefGoogle Scholar
Strauss, A.T., Civitello, D.J., Cáceres, C.E. & Hall, S.R. (2015) Success, failure and ambiguity of the dilution effect among competitors. Ecology Letters, 18, 916926.CrossRefGoogle ScholarPubMed
Strauss, A.T., Shocket, M.S., Civitello, D.J., et al. (2016) Habitat, predators, and hosts regulate disease in Daphnia through direct and indirect pathways. Ecological Monographs, 86, 393411.CrossRefGoogle Scholar
Tessier, A.J. & Woodruff, P. (2002) Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 12631270.CrossRefGoogle Scholar
Thomas, S.H., Bertram, C., van Rensburg, K., Caceres, C.E. & Duffy, M.A. (2011) Spatiotemporal dynamics of free-living stages of a bacterial parasite of zooplankton. Aquatic Microbial Ecology, 63, 265272.CrossRefGoogle Scholar
Turney, S., Gonzalez, A. & Millien, V. (2014) The negative relationship between mammal host diversity and Lyme disease incidence strengthens through time. Ecology, 95, 32443250.CrossRefGoogle Scholar
Valois, A.E. & Burns, C.W. (2016) Parasites as prey: Daphnia reduce transmission success of an oomycete brood parasite in the calanoid copepod Boeckella. Journal of Plankton Research, 38, 12811288.CrossRefGoogle Scholar
Williamson, C.E., Overholt, E.P., Pilla, R.M., et al. (2015) Ecological consequences of long-term browning in lakes. Scientific Reports, 5, 18666.CrossRefGoogle ScholarPubMed
Wilson, K. & Cotter, S.C. (2009) Density-dependent prophylaxis in insects. In: Whitman, D.W. & Ananthakrishnan, T.N. (eds.), Phenotypic Plasticity of Insects: Mechanisms and Consequences (pp. 137176). Boca Raton, FL: CRC Press.Google Scholar
Wood, C.L. & Lafferty, K.D. (2013) Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends in Ecology & Evolution, 28, 239247.CrossRefGoogle ScholarPubMed
Abrams, P.A. (1995) Implications of dynamically variable traits for identifying, classifying, and measuring direct and indirect effects in ecological communities. American Naturalist, 146, 112134.CrossRefGoogle Scholar
Ackery, P.R. & Vane-Wright, R.I. (1984) Milkweed Butterflies: Their Cladistics and Biology. Ithaca, NY: Cornell University Press.Google Scholar
Adamo, S. & Parsons, N. (2006) The emergency life-history stage and immunity in the cricket, Gryllus texensis. Animal Behaviour, 72, 235244.CrossRefGoogle Scholar
Adamo, S., Roberts, J., Easy, R. & Ross, N. (2008) Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. Journal of Experimental Biology, 211, 531538.CrossRefGoogle ScholarPubMed
Agrawal, A.A., Petschenka, G., Bingham, R.A., Weber, M.G. & Rasmann, S. (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions. New Phytologist, 194, 2845.Google ScholarPubMed
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology, 22, 245259.CrossRefGoogle ScholarPubMed
Alizon, S. & Michalakis, Y. (2015) Adaptive virulence evolution: the good old fitness-based approach. Trends in Ecology & Evolution, 30, 248254.CrossRefGoogle ScholarPubMed
Altizer, S., Bartel, R. & Han, B.A. (2011) Animal migration and infectious disease risk. Science, 331, 296302.CrossRefGoogle ScholarPubMed
Altizer, S. & de Roode, J.C. (2015) Monarchs and their debilitating parasites: immunity, migration, and medicinal plant use. In: Oberhauser, K.O., Altizer, S. & Nail, K. (eds.), Monarchs in a Changing World: Biology and Conservation of an Iconic Insect (pp. 8393). Ithaca, NY:Cornell University Press.Google Scholar
Altizer, S., Hobson, K., Davis, A., de Roode, J. & Wassenaar, L. (2015) Do healthy monarchs migrate farther? Tracking natal origins of parasitized vs. uninfected monarch butterflies overwintering in Mexico. PLoS ONE, 10, e0141371.CrossRefGoogle ScholarPubMed
Altizer, S., Ostfeld, R.S., Johnson, P.T.J., Kutz, S. & Harvell, C.D. (2013) Climate change and infectious diseases: from evidence to a predictive framework. Science, 341, 514519.CrossRefGoogle ScholarPubMed
Altizer, S.M. (2001) Migratory behaviour and host–parasite co-evolution in natural populations of monarch butterflies infected with a protozoan parasite. Evolutionary Ecology Research, 3, 611632.Google Scholar
Altizer, S.M. & Oberhauser, K.S. (1999) Effects of the protozoan parasite Ophryocystis elektroscirrha on the fitness of monarch butterflies (Danaus plexippus). Journal of Invertebrate Pathology, 74, 7688.CrossRefGoogle Scholar
Altizer, S.M., Oberhauser, K.S. & Brower, L.P. (2000) Associations between host migration and the prevalence of a protozoan parasite in natural populations of adult monarch butterflies. Ecological Entomology, 25, 125139.CrossRefGoogle Scholar
Altizer, S.M., Oberhauser, K.S. & Geurts, K.A. (2004) Transmission of the protozoan parasite, Ophryocystis elektroscirrha, in monarch butterfly populations: implications for prevalence and population-level impacts. In: Oberhauser, K.S. & Solensky, M. (eds.), The Monarch Butterfly: Biology and Conservation (pp. 203218). Ithaca, NY: Cornell University Press.Google Scholar
Anderson, R.M. & May, R.M. (1982) Coevolution of hosts and parasites. Parasitology, 85, 411426.CrossRefGoogle ScholarPubMed
Anderson, R.M. & May, R.M. (1991) Infectious Diseases of Humans – Dynamics and Control. Oxford: Oxford University Press.Google Scholar
Andrews, H. (2015) Changes in water availability and variability affect plant defenses and herbivore responses in grassland forbs. Master’s thesis, University of Michigan.
Antia, R., Levin, B.R. & May, R.M. (1994) Within-host population dynamics and the evolution and maintenance of microparasite virulence. American Naturalist, 144, 457472.CrossRefGoogle Scholar
Barriga, P.A., Sternberg, E.D., Lefèvre, T., de Roode, J.C. & Altizer, S. (2016) Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.). Journal of Invertebrate Pathology, 140, 7582.CrossRefGoogle ScholarPubMed
Bartel, R.A., Oberhauser, K.S., de Roode, J.C. & Altizer, S. (2011) Monarch butterfly migration and parasite transmission in eastern North America. Ecology, 92, 342351.CrossRefGoogle ScholarPubMed
Batalden, R.V. & Oberhauser, K.S. (2015) Potential changes in eastern North American monarch migration in response to an introduced milkweed, Asclepias curassavica. In: Oberhauser, K.S., Nail, K.R. & Altizer, S. (eds.), Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly. Ithaca, NY: Cornell University Press.Google Scholar
Baucom, R.S. & de Roode, J.C. (2011) Ecological immunology and tolerance in plants and animals. Functional Ecology, 25, 1828.CrossRefGoogle Scholar
Bauer, S. & Hoye, B.J. (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 1242552.CrossRefGoogle ScholarPubMed
Bowlin, M.S., Bisson, I.A., Shamoun-Baranes, J., et al. (2010) Grand challenges in migration biology. Integrative and Comparative Biology, 50, 261279.CrossRefGoogle ScholarPubMed
Bradley, C.A. & Altizer, S. (2005) Parasites hinder monarch butterfly flight: implications for disease spread in migratory hosts. Ecology Letters, 8, 290300.CrossRefGoogle Scholar
Bremermann, H.J. & Pickering, J. (1983) A game-theoretical model of parasite virulence. Journal of Theoretical Biology, 100, 411426.CrossRefGoogle ScholarPubMed
Bremermann, H.J. & Thieme, H.R. (1989) A competitive exclusion principle for pathogen virulence. Journal of Mathematical Biology, 27, 179190.CrossRefGoogle ScholarPubMed
Brower, L.P. (1995) Understanding and misunderstanding the migration of the monarch butterfly (Nymphalidae) in North America: 1857–1995. Journal of the Lepidopterists’ Society, 49, 304385.Google Scholar
Brower, L.P. & Fink, L.S. (1985) A natural toxic defense system – cardenolides in butterflies versus birds. Annals of the New York Academy of Sciences, 443, 171188.CrossRefGoogle ScholarPubMed
Brower, L.P., Ryerson, W.N., Coppinger, L. & Glazier, S.C. (1968) Ecological chemistry and the palatability spectrum. Science, 161, 13491351.CrossRefGoogle ScholarPubMed
Brower, L.P., Taylor, O.R., Williams, E.H., et al. (2012) Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conservation and Diversity, 5, 95100.CrossRefGoogle Scholar
Buehler, D.M., Tieleman, B.I. & Piersma, T. (2010) How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to disease. Integrative and Comparative Biology, 50, 346357.CrossRefGoogle ScholarPubMed
Choisy, M. & de Roode, J.C. (2014) The ecology and evolution of animal medication: genetically fixed response versus phenotypic plasticity. American Naturalist, 184, S31S46.CrossRefGoogle ScholarPubMed
Civitello, D.J., Penczykowski, R.M., Hite, J.L., Duffy, M.A. & Hall, S.R. (2013) Potassium stimulates fungal epidemics in Daphnia by increasing host and parasite reproduction. Ecology, 94, 380388.CrossRefGoogle ScholarPubMed
Clough, D., Prykhodko, O. & Råberg, L. (2016) Effects of protein malnutrition on tolerance to helminth infection. Biology Letters, 12.CrossRefGoogle ScholarPubMed
Cory, J.S. & Hoover, K. (2006) Plant-mediated effects in insect–pathogen interactions. Trends in Ecology and Evolution, 21, 278286.CrossRefGoogle ScholarPubMed
Costello, M.J. (2009) How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proceedings of the Royal Society of London B, 276, 33853394.CrossRefGoogle ScholarPubMed
Cousineau, S.V. & Alizon, S. (2014) Parasite evolution in response to sex-based host heterogeneity in resistance and tolerance. Journal of Evolutionary Biology, 27, 27532766.CrossRefGoogle ScholarPubMed
Couture, J.J., Serbin, S.P. & Townsend, P.A. (2015) Elevated temperature and periodic water stress alter growth and quality of common milkweed (Asclepias syriaca) and monarch (Danaus plexippus) larval performance. Arthropod–Plant Interactions, 9, 149161.CrossRefGoogle Scholar
de Roode, J.C. & Altizer, S. (2010) Host–parasite genetic interactions and virulence–transmission relationships in natural populations of monarch butterflies. Evolution, 64, 502514.CrossRefGoogle ScholarPubMed
de Roode, J.C., Chi, J., Rarick, R.M. & Altizer, S. (2009) Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia, 161, 6775.CrossRefGoogle Scholar
de Roode, J.C., Gold, L.R. & Altizer, S. (2007) Virulence determinants in a natural butterfly–parasite system. Parasitology, 134, 657668.CrossRefGoogle Scholar
de Roode, J.C., Lefèvre, T. & Hunter, M.D. (2013) Self-medication in animals. Science, 340, 150151.CrossRefGoogle ScholarPubMed
de Roode, J.C., Lopez Fernandez de Castillejo, C., Faits, T. & Alizon, S. (2011a) Virulence evolution in response to anti-infection resistance: toxic food plants can select for virulent parasites of monarch butterflies. Journal of Evolutionary Biology, 24, 712722.CrossRefGoogle ScholarPubMed
de Roode, J.C., Pedersen, A.B., Hunter, M.D. & Altizer, S. (2008) Host plant species affects virulence in monarch butterfly parasites. Journal of Animal Ecology, 77, 120126.CrossRefGoogle ScholarPubMed
de Roode, J.C., Rarick, R.M., Mongue, A.J., Gerardo, N.M. & Hunter, M.D. (2011b) Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecology Letters, 14, 453461.CrossRefGoogle ScholarPubMed
de Roode, J.C., Yates, A.J. & Altizer, S. (2008) Virulence–transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America, 105, 74897494.CrossRefGoogle Scholar
Dingle, H. (1996) Migration: The Biology of Life on the Move. Oxford: Oxford University Press.Google Scholar
Dobler, S., Dalla, S., Wagschal, V. & Agrawal, A.A. (2012) Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proceedings of the National Academy of Sciences of the United States of America, 109, 13,04013,045.CrossRefGoogle ScholarPubMed
Dwyer, G. & Elkinton, J.S. (1995) Host dispersal and the spatial spread of insect pathogens. Ecology, 76, 12621275.CrossRefGoogle Scholar
Epstein, J.H., McKee, J., Shaw, P., et al. (2006) The Australian white ibis (Threskiornis molucca) as a reservoir of zoonotic and livestock pathogens. EcoHealth, 3, 290298.Google Scholar
Evans, K.L., Newton, J., Gaston, K.J., et al. (2012) Colonisation of urban environments is associated with reduced migratory behaviour, facilitating divergence from ancestral populations. Oikos, 121, 634640.CrossRefGoogle Scholar
Felton, G.W., Duffey, S.S., Vail, P.V., Kaya, H.K. & Manning, J. (1987) Interaction of nuclear polyhedrosis virus with catechols: potential incompatability for host-plant resistence against noctuid larvae. Journal of Chemical Ecology, 13, 947957.CrossRefGoogle Scholar
Flack, A., Fiedler, W., Blas, J., et al. (2016) Costs of migratory decisions: a comparison across eight white stork populations. Science Advances, 2, e1500931.CrossRefGoogle ScholarPubMed
Folstad, I., Nilssen, A.C., Halvorsen, O. & Andersen, J. (1991) Parasite avoidance: the cause of post-calving migrations in Rangifer? Canadian Journal of Zoology, 69, 24232429.CrossRefGoogle Scholar
Forbey, J.S. & Hunter, M.D. (2012) The herbivore’s prescription: a pharm-ecological perspective on host plant use by vertebrate and invertebrate herbivores. In: Iason, G.R., Dicke, M. & Hartley, S.E. (eds.),The Ecology of Plant Secondary Matabolites: From Genes to Global Processes (pp. 78100). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Frank, S.A. (1996) Models of parasite virulence. Quarterly Review of Biology, 71, 3778.CrossRefGoogle ScholarPubMed
Gandon, S., Mackinnon, M.J., Nee, S. & Read, A.F. (2001) Imperfect vaccines and the evolution of pathogen virulence. Nature, 414, 751756.CrossRefGoogle ScholarPubMed
Gandon, S. & Michalakis, Y. (2000) Evolution of parasite virulence against qualitative or quantitative host resistance. Proceedings of the Royal Society of London B, 267, 985990.CrossRefGoogle ScholarPubMed
Gilbert, N.I., Correia, R.A., Silva, J.P., et al. (2016) Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Movement Ecology, 4, 7.CrossRefGoogle Scholar
Gowler, C.D., Leon, K.E., Hunter, M.D. & de Roode, J.C. (2015) Secondary defense chemicals in milkweed reduce parasite infection in monarch butterflies, Danaus plexippus. Journal of Chemical Ecology, 41, 520523.CrossRefGoogle ScholarPubMed
Graham, R.I., Grzywacz, D., Mushobozi, W.L. & Wilson, K. (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecology Letters, 15, 9931000.CrossRefGoogle Scholar
Gustafsson, K.M., Agrawal, A.A., Lewenstein, B.V. & Wolf, S.A. (2015) The monarch butterfly through time and space: the social construction of an icon. Bioscience, 65, 612622.CrossRefGoogle Scholar
Hall, R.J., Altizer, S. & Bartel, R.A. (2014) Greater migratory propensity in hosts lowers pathogen transmission and impacts. Journal of Animal Ecology, 83, 10681077.CrossRefGoogle ScholarPubMed
Hegemann, A., Matson, K.D., Both, C. & Tieleman, B.I. (2012) Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia, 170, 605618.CrossRefGoogle Scholar
Hoang, K.M., Tao, L., Hunter, M.D. & de Roode, J.C. (2017) Host diet affects the morphology of a butterfly parasite. Journal of Parasitology, 103, 228236.CrossRefGoogle Scholar
Howard, E., Aschen, H. & Davis, A.K. (2010) Citizen science observations of monarch butterfly overwintering in the southern United States. Psyche: A Journal of Entomology, 2010, 689301.Google Scholar
Hsieh, H.Y., Liere, H., Soto, E.J. & Perfecto, I. (2012) Cascading trait-mediated interactions induced by ant pheromones. Ecology and Evolution, 2, 21812191.CrossRefGoogle ScholarPubMed
Hunter, M.D. (2016) The Phytochemical Landscape. Linking Trophic Interactions and Nutrient Dynamics. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Hunter, M.D., Malcolm, S.B. & Hartley, S.E. (1996) Population-level variation in plant secondary chemistry and the population biology of herbivores. Chemoecology, 7, 4556.CrossRefGoogle Scholar
Hunter, M.D. & Schultz, J.C. (1993) Induced plant defenses breached? Phytochemical induction protects an herbivore from disease. Oecologia, 94, 195203.CrossRefGoogle ScholarPubMed
Johns, S. & Shaw, A.K. (2016) Theoretical insight into three disease-related benefits of migration. Population Ecology, 58, 213221.CrossRefGoogle Scholar
Johnson, P.T.J., de Roode, J.C. & Fenton, A. (2015) Why infectious disease research needs community ecology. Science, 349, 1259504.CrossRefGoogle ScholarPubMed
Johnson, P.T.J., Preston, D.L., Hoverman, J.T. & Richgels, K.L.D. (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature, 494, 230233.CrossRefGoogle ScholarPubMed
Keating, S.T. & Yendol, W.G. (1987) Influence of selected host plants on gypsy moth (Lepidoptera, Lymantriidae) larval mortality caused by a baculovirus. Environmental Entomology, 16, 459462.CrossRefGoogle Scholar
Krkošek, M., Ford, J.S., Morton, A., et al. (2007a) Declining wild salmon populations in relation to parasites from farm salmon. Science, 318, 17721775.CrossRefGoogle ScholarPubMed
Krkošek, M., Gottesfeld, A., Proctor, B., et al. (2007b) Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations. Proceedings of the Royal Society of London B, 274, 31413149.CrossRefGoogle ScholarPubMed
Krkošek, M., Lewis, M.A. & Volpe, J.P. (2005) Transmission dynamics of parasitic sea lice from farm to wild salmon. Proceedings of the Royal Society of London B, 272, 689696.CrossRefGoogle ScholarPubMed
Lank, D.B., Butler, R.W., Ireland, J. & Ydenberg, R.C. (2003) Effects of predation danger on migration strategies of sandpipers. Oikos, 103, 303319.CrossRefGoogle Scholar
Lefèvre, T., Chiang, A., Kelavkar, M., et al. (2012) Behavioural resistance against a protozoan parasite in the monarch butterfly. Journal of Animal Ecology, 81, 7079.CrossRefGoogle ScholarPubMed
Lefèvre, T., Oliver, L., Hunter, M.D. & de Roode, J.C. (2010) Evidence for trans-generational medication in nature. Ecology Letters, 13, 14851493.CrossRefGoogle ScholarPubMed
Lefèvre, T., Williams, A.J. & de Roode, J.C. (2011) Genetic variation for resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proceedings of the Royal Society of London B, 278, 751759.CrossRefGoogle Scholar
Leong, K.L.H., Kaya, H.K., Yoshimura, M.A. & Frey, D.F. (1992) The occurrence and effect of a protozoan parasite, Ophryocystis elektroscirrha (Neogregarinida, Ophryocystidae) on overwintering monarch butterflies, Danaus plexippus (Lepidoptera, Danaidae) from two California winter sites. Ecological Entomology, 17, 338342.CrossRefGoogle Scholar
Levin, S. & Pimentel, D. (1981) Selection of intermediate rates of increase in parasite–host systems. American Naturalist, 117, 308315.CrossRefGoogle Scholar
Liere, H. & Larsen, A. (2010) Cascading trait-mediation: disruption of a trait-mediated mutualism by parasite-induced behavioral modification. Oikos, 119, 13941400.CrossRefGoogle Scholar
Mackinnon, M.J., Gandon, S. & Read, A.F. (2008) Virulence evolution in response to vaccination: the case of malaria. Vaccine, 26, C42C52.CrossRefGoogle ScholarPubMed
Malcolm, S.B. (1994) Milkweeds, monarch butterflies and the ecological significance of cardenolides. Chemoecology, 5, 101117.CrossRefGoogle Scholar
Malcolm, S.B. & Brower, L.P. (1989) Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia, 45, 284295.CrossRefGoogle Scholar
Malcolm, S.B. & Zalucki, M.P. (1996) Milkweed latex and cardenolide induction may resolve the lethal plant defence paradox. Entomologia Experimentalis et Applicata, 80, 193196.CrossRefGoogle Scholar
Matson, K.D., Horrocks, N.P., Tieleman, B.I. & Haase, E. (2012) Intense flight and endotoxin injection elicit similar effects on leukocyte distributions but dissimilar effects on plasma-based immunological indices in pigeons. Journal of Experimental Biology, 215, 37343741.CrossRefGoogle ScholarPubMed
May, R.M. & Anderson, R.M. (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proceedings of the Royal Society of London B, 219, 281313.Google ScholarPubMed
McKay, A.F., Ezenwa, V.O. & Altizer, S. (2016a) Consequences of food restriction for immune defense, parasite infection, and fitness in monarch butterflies. Physiological and Biochemical Zoology, 89, 389401.CrossRefGoogle ScholarPubMed
McKay, A.F., Ezenwa, V.O. & Altizer, S. (2016b) Unravelling the costs of flight for immune defenses in the migratory monarch butterfly. Integrative and Comparative Biology, 56, 278289.CrossRefGoogle Scholar
McKinnon, L., Smith, P.A., Nol, E., et al. (2010) Lower predation risk for migratory birds at high latitudes. Science, 327, 326327.CrossRefGoogle ScholarPubMed
McLaughlin, R.E. & Myers, J. (1970) Ophryocystis elektroscirrha sp. n., a neogregarine pathogen of monarch butterfly Danaus plexippus (L.) and the Florida queen butterfly D. gilippus berenice Cramer. Journal of Protozoology, 17, 300305.CrossRefGoogle Scholar
Møller, A.P. & Erritzøe, J. (1998) Host immune defence and migration in birds. Evolutionary Ecology, 12, 945953.CrossRefGoogle Scholar
Nagano, C.D., Sakai, W.H., Malcolm, S.B., et al. (1993) Spring migration of monarch butterflies in California. In: Zalucki, M.P. (ed.), Biology and Conservation of the Monarch Butterfly (pp. 217232). Los Angeles, CA: Natural History Museum of Los Angeles County.Google Scholar
Nebel, S., Buehler, D.M., MacMillan, A. & Guglielmo, C.G. (2013) Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response. Journal of Experimental Biology, 216, 27522759.CrossRefGoogle ScholarPubMed
Owen, J., Moore, F., Panella, N., et al. (2006) Migrating birds as dispersal vehicles for West Nile virus. EcoHealth, 3, 79.CrossRefGoogle Scholar
Owen, J. & Moore, F.R. (2008a) Relationship between energetic condition and indicators of immune function in thrushes during spring migration. Canadian Journal of Zoology, 86, 638647.CrossRefGoogle Scholar
Owen, J.C. & Moore, F.R. (2006) Seasonal differences in immunological condition of three species of thrushes. The Condor, 108, 389398.CrossRefGoogle Scholar
Owen, J.C. & Moore, F.R. (2008b) Swainson’s thrushes in migratory disposition exhibit reduced immune function. Journal of Ethology, 26, 383388.CrossRefGoogle Scholar
Penczykowski, R.M., Lemanski, B.C., Sieg, R.D., et al. (2014) Poor resource quality lowers transmission potential by changing foraging behaviour. Functional Ecology, 28, 12451255.CrossRefGoogle Scholar
Petschenka, G., Fandrich, S., Sander, N., et al. (2013) Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the NA+/K+-ATPase of milkweed butterflies (Lepidoptera, Danaini). Evolution, 67, 27532761.CrossRefGoogle Scholar
Pierce, A.A., de Roode, J.C. & Tao, L. (2016) Comparative genetics of Na+/K+-ATPase in monarch butterfly populations with varying host plant toxicity. Biological Journal of the Linnean Society, 119, 194200.CrossRefGoogle Scholar
Pierce, A.A., Zalucki, M.P., Bangura, M., et al. (2014) Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proceedings of the Royal Society of London B, 281, 20142230.CrossRefGoogle ScholarPubMed
Piersma, T. (1997) Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure? Oikos, 80, 623631.CrossRefGoogle Scholar
Pleasants, J.M. & Oberhauser, K.S. (2013) Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conservation and Diversity, 6, 135144.CrossRefGoogle Scholar
Plowright, R.K., Foley, P., Field, H.E., et al. (2011) Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proceedings of the Royal Society of London B, 278, 37033712.CrossRefGoogle Scholar
Price, P.W., Bouton, C.E., Gross, P., et al. (1980) Interactions among three tropic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecology and Systematics, 11, 4165.CrossRefGoogle Scholar
Råberg, L., Graham, A.L. & Read, A.F. (2009) Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 364, 3749.CrossRefGoogle ScholarPubMed
Råberg, L., Sim, D. & Read, A.F. (2007) Disentangling genetic variation for resistance and tolerance to infectious disease in animals. Science, 318, 318320.CrossRefGoogle ScholarPubMed
Rappole, J.H., Derrickson, S.R. & Hubálek, Z. (2000) Migratory birds and spread of West Nile virus in the Western Hemisphere. Emerging Infectious Diseases, 6, 319.CrossRefGoogle ScholarPubMed
Rasmann, S. & Agrawal, A.A. (2011) Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecology Letters, 14, 476483.CrossRefGoogle ScholarPubMed
Read, A.F., Baigent, S.J., Powers, C., et al. (2015) Imperfect vaccination can enhance the transmission of highly virulent pathogens. PLoS Biology, 13, e1002198.CrossRefGoogle ScholarPubMed
Sasaki, A. & Iwasa, Y. (1991) Optimal growth schedule of pathogens within a host: switching between lytic and latent cycles. Theoretical Population Biology, 39, 201239.CrossRefGoogle ScholarPubMed
Satterfield, D.A., Altizer, S., Williams, M.-K. & Hall, R.J. (2017) Environmental persistence influences infection dynamics for a butterfly pathogen. PLoS ONE, 12, e0169982.CrossRefGoogle ScholarPubMed
Satterfield, D.A., Maerz, J.C. & Altizer, S. (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proceedings of the Royal Society of London B, 282, 20141734.CrossRefGoogle ScholarPubMed
Satterfield, D.A., Maerz, J.C., Hunter, M.D., et al. (2018) Migratory monarchs that encounter resident monarchs show life-history differences and higher rates of parasite infection. Ecology Letters, 21, 1670–1680.CrossRefGoogle ScholarPubMed
Satterfield, D.A., Villablanca, F.X., Maerz, J.C. & Altizer, S. (2016) Migratory monarchs wintering in California experience low infection risk compared to monarchs breeding year-round on non-native milkweed. Integrative and Comparative Biology, 56, 343352.CrossRefGoogle ScholarPubMed
Satterfield, D.A., Wright, A.E. & Altizer, S. (2013) Lipid reserves and immune defense in healthy and diseased migrating monarchs Danaus plexippus. Current Zoology, 59, 393402.CrossRefGoogle Scholar
Shaw, A.K., Binning, S.A., Hall, S.R. & Michalakis, Y. (2016) Migratory recovery from infection as a selective pressure for the evolution of migration. The American Naturalist, 187, 491501.CrossRefGoogle ScholarPubMed
Simmons, A.M. & Rogers, C.E. (1991) Dispersal and seasonal occurrence of Noctuidonema guyanense, an ectoparasitic nematode of adult fall armyworm (Lepidoptera: Noctuidae), in the United States 2. Journal of Entomological Science, 26, 136148.CrossRefGoogle Scholar
Speight, M.R., Hunter, M.D. & Watt, A.D. (2008) The Ecology of Insects: Concepts and Applications, 2nd edn. Oxford: Wiley-Blackwell.Google Scholar
Sternberg, E.D., Lefèvre, T., Li, J., et al. (2012) Food plant derived disease tolerance and resistance in a natural butterly–plant–parasite interaction. Evolution, 66, 33673376.CrossRefGoogle Scholar
Sternberg, E.D., Li, H., Wang, R., Gowler, C. & de Roode, J.C. (2013) Patterns of host–parasite adaptation in three populations of monarch butterflies infected with a naturally occurring protozoan disease: virulence, resistance, and tolerance. American Naturalist, 182, E235E248.CrossRefGoogle ScholarPubMed
Sternberg, E.D., de Roode, J.C. & Hunter, M.D. (2015) Trans‐generational parasite protection associated with paternal diet. Journal of Animal Ecology, 84, 310321.CrossRefGoogle ScholarPubMed
Tao, L., Gowler, C.D., Ahmad, A., Hunter, M.D. & de Roode, J.C. (2015) Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions. Proceedings of the Royal Society of London B, 282, 20151993.CrossRefGoogle ScholarPubMed
Tao, L., Hoang, K.M., Hunter, M.D. & de Roode, J.C. (2016) Fitness costs of animal medication: anti‐parasitic plant chemicals reduce fitness of monarch butterfly hosts. Journal of Animal Ecology, 85, 12461254.CrossRefGoogle Scholar
Taylor, C.M., Laughlin, A.J. & Hall, R.J. (2016) The response of migratory populations to phenological change: a migratory flow network modelling approach. Journal of Animal Ecology, 85, 648659.CrossRefGoogle ScholarPubMed
Taylor, C.M. & Norris, D.R. (2010) Population dynamics in migratory networks. Theoretical Ecology, 3, 6573.CrossRefGoogle Scholar
Urquhart, F.A. (1976) Found at last: the monarch’s winter home. National Geographic, 161173.
Urquhart, F.A. & Urquhart, N.R. (1978) Autumnal migration routes of the eastern population of the monarch butterfly (Danaus p. plexippus L.; Danaidae; Lepidoptera) in North America to the overwintering site in the Neovolcanic Plateau of Mexico. Canadian Journal of Zoology, 56, 17591764.CrossRefGoogle Scholar
Van Baalen, M. & Sabelis, M.W. (1995) The dynamics of multiple infection and the evolution of virulence. American Naturalist, 146, 881910.CrossRefGoogle Scholar
Van der Ree, R., McDonnell, M., Temby, I., Nelson, J. & Whittingham, E. (2006) The establishment and dynamics of a recently established urban camp of flying foxes (Pteropus poliocephalus) outside their geographic range. Journal of Zoology, 268, 177185.CrossRefGoogle Scholar
Van Gils, J.A., Munster, V.J., Radersma, R., et al. (2007) Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus. PLoS ONE, 2, e184.CrossRefGoogle ScholarPubMed
Van Zandt, P.A. & Agrawal, A.A. (2004) Specificity of induced plant responses to specialist herbivores of the common milkweed Asclepias syriaca. Oikos, 104, 401409.CrossRefGoogle Scholar
Vane-Wright, R.I. (1993) The Columbus hypothesis: an explanation for the dramatic 19th century range expansion of the monarch butterfly. In: Malcolm, S.B. & Zalucki, M.P. (eds.), Biology and Conservation of the Monarch Butterfly (pp. 179187). Los Angeles, CA: Natural History Museum of Los Angeles County.Google Scholar
Vannette, R.L. & Hunter, M.D. (2011) Plant defence theory re-examined: nonlinear expectations based on the costs and benefits of resource mutualisms. Journal of Ecology, 99, 6676.CrossRefGoogle Scholar
Vidal, O. & Rendón-Salinas, E. (2014) Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biological Conservation, 180, 165175.CrossRefGoogle Scholar
Visser, M.E., Perdeck, A.C., van Balen, J. & Both, C. (2009) Climate change leads to decreasing bird migration distances. Global Change Biology, 15, 18591865.CrossRefGoogle Scholar
Werner, E.E. & Peacor, S.D. (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology, 84, 10831100.CrossRefGoogle Scholar
Wilcove, D.S. (2008) No Way Home: The Decline of the World’s Great Animal Migrations. Washington, DC: Island Press.Google Scholar
Woods, E.C., Hastings, A.P., Turley, N.E., Heard, S.B. & Agrawal, A.A. (2012) Adaptive geographical clines in the growth and defense of a native plant. Ecological Monographs, 82, 149168.CrossRefGoogle Scholar
Woodson, R.E. (1954) The North American species of Asclepias L. Annals of the Missouri Botanical Garden, 41, 1211.CrossRefGoogle Scholar
Zalucki, M.P., Brower, L.P. & Malcolm, S.B. (1990) Oviposition by Danaus plexippus in relation to cardenolide content of 3 Asclepias species in the southeastern USA. Ecological Entomology, 15, 231240.CrossRefGoogle Scholar
Zalucki, M.P. & Clarke, A.R. (2004) Monarchs across the Pacific: the Columbus hypothesis revisited. Biological Journal of the Linnean Society, 82, 111121.CrossRefGoogle Scholar
Zalucki, M.P., Malcolm, S.B., Paine, T.D., et al. (2001) It’s the first bites that count: survival of first-instar monarchs on milkweeds. Austral Ecology, 26, 547555.CrossRefGoogle Scholar
Zehnder, C.B. & Hunter, M.D. (2007) Interspecific variation within the genus Asclepias in response to herbivory by a phloem-feeding insect herbivore. Journal of Chemical Ecology, 33, 20442053.CrossRefGoogle ScholarPubMed
Zehnder, C.B. & Hunter, M.D. (2008) Effects of nitrogen deposition on the interaction between an aphid and its host plant. Ecological Entomology, 33, 2430.CrossRefGoogle Scholar
Zehnder, C.B. & Hunter, M.D. (2009) More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecological Entomology, 34, 535543.CrossRefGoogle ScholarPubMed
Zhan, S., Zhang, W., Niitepõld, K., et al. (2014) The genetics of monarch butterfly migration and warning colouration. Nature, 514, 317321.CrossRefGoogle ScholarPubMed
Zhen, Y., Aardema, M.L., Medina, E.M., Schumer, M. & Andolfatto, P. (2012) Parallel molecular evolution in a herbivore community. Science, 337, 16341637.CrossRefGoogle Scholar
Zhu, H., Casselman, A. & Reppert, S.M. (2008) Chasing migration genes: a brain expressed sequence tag resource for summer and migratory monarch butterflies (Danaus plexippus). PLoS ONE, 3, e1345.CrossRefGoogle ScholarPubMed
Bielby, J., Fisher, M.C., Clare, F.C., Rosa, G.M. & Garner, T.W.J. (2015) Host species vary in infection probability, sub-lethal effects, and costs of immune response when exposed to an amphibian parasite. Scientific Reports, 5, 18.CrossRefGoogle Scholar
Briggs, C.J., Vredenburg, V.T.,Knapp, R.A. & Rachowicz, L.J. (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology, 86, 31493159.CrossRefGoogle Scholar
Hanlon, S.M., Lynch, K.J., Kerby, J. & Parris, M.J. (2015) Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Diseases of Aquatic Organisms, 112, 237242.CrossRefGoogle ScholarPubMed
Jani, A.J., Knapp, R.A. & Briggs, C.J. (2017) Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society of London B, 284, 20170944.CrossRefGoogle Scholar
Kilpatrick, A.M., Briggs, C.J. & Daszak, P. (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution, 25, 109118.CrossRefGoogle ScholarPubMed
Knapp, R.A. & Matthews, K.R. (2000) Non-native mountain fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology, 14, 428438.CrossRefGoogle Scholar
Knapp, R.A., Fellers, G.M., Kleeman, P.M., et al. (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 113, 11,88911,894.CrossRefGoogle ScholarPubMed
Longcore, J.E., Pessier, A.P. &Nichols, D.K. (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219227.CrossRefGoogle Scholar
Voyles, J., Berger, L., Young, S., et al. (2007) Electrolyte depletion and osmotic imbalance in amphibians with chytridiomycosis. Diseases of Aquatic Organisms, 77, 113118.CrossRefGoogle ScholarPubMed
Voyles, J., Young, S., Berger, L., et al. (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science, 326, 58.CrossRefGoogle ScholarPubMed
Vredenburg, V.T., Knapp, R.A., Tunstall, T.S. & Briggs, C.J. (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America, 107, 96899694.CrossRefGoogle ScholarPubMed
Boyle, D.G., Boyle, D.B., Olsen, V., Morgan, J.A.T. & Hyatt, A.D. (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms, 60, 141148.CrossRefGoogle ScholarPubMed
Briggs, C.J., Knapp, R.A. & Vredenburg, V.T. (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 107, 96959700.CrossRefGoogle ScholarPubMed
Easterling, M.R., Ellner, S.P. & Dixon, P.M. (2000) Size-specific sensitivity: applying a new structured population model. Ecology, 81, 694708.CrossRefGoogle Scholar
Jani, A.J., Knapp, R.A. & Briggs, C.J. (2017) Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society of London B, 284, 20170944.CrossRefGoogle Scholar
Wilber, M.Q., Knapp, R.A., Toothman, M. & Briggs, C.J. (2017) Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease. Ecology Letters, 30, 11691181.CrossRefGoogle Scholar
Wilber, M.Q., Langwig, K.E., Kilpatrick, A.M., McCallum, H.I. & Briggs, C.J. (2016) Integral projection models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 7, 11821194.CrossRefGoogle ScholarPubMed
Woodhams, D.C., Alford, R.A., Briggs, C.J., Johnson, M. & Rollins-Smith, L.A. (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology, 89, 16271639.CrossRefGoogle ScholarPubMed
Briggs, C.J., Knapp, R.A. & Vredenburg, V.T. (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 107, 96959700.CrossRefGoogle ScholarPubMed
Wilber, M.Q., Knapp, R.A., Toothman, M. & Briggs, C.J. (2017) Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease. Ecology Letters, 30, 11691181.CrossRefGoogle Scholar
Adams, A.J., Kupferberg, S.J., Wilber, M.Q., et al. (2017) Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere, 8(3), e01740.CrossRefGoogle Scholar
Allen, L.J.S. (2015) Stochastic Population and Epidemic Models: Persistence and Extinction. London: Springer International Publishing.CrossRefGoogle Scholar
Altwegg, R. & Reyer, H.-U. (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evolution, 57, 872882.CrossRefGoogle ScholarPubMed
Anderson, R.M. & May, R.M. (1979) Population biology of infectious diseases: Part I. Nature, 280, 361367.CrossRefGoogle ScholarPubMed
Anderson, R.M. & May, R.M. (1981) The population dynamics of microparasites and their invertebrate hosts. Philosophical Transactions of the Royal Society of London B, 291, 451524.CrossRefGoogle Scholar
Anderson, R.M. & May, R.M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press.Google Scholar
Becker, C.G., Greenspan, S.E., Tracy, K.E., et al. (2017) Variation in phenotype and virulence among enzootic and panzootic amphibian chytrid lineages. Fungal Ecology, 26, 4550.CrossRefGoogle Scholar
Begon, M., Bennett, M., Bowers, R.G., et al. (2002) A clarification of transmission terms in host–microparasite models: numbers, densities and areas. Epidemiology and Infection, 129, 147153.CrossRefGoogle ScholarPubMed
Bletz, M.C., Rosa, G.M., Andreone, F., et al. (2015) Widespread presence of the pathogenic fungus Batrachochytrium dendrobatidis in wild amphibian communities in Madagascar. Scientific Reports, 5, 110.CrossRefGoogle ScholarPubMed
Boots, M., Best, A., Miller, M.R. & White, A. (2009) The role of ecological feedbacks in the evolution of host defence: what does theory tell us? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 2736.CrossRefGoogle ScholarPubMed
Bosch, J., Martínez-Solano, I. & García-París, M. (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biological Conservation, 97, 331337.CrossRefGoogle Scholar
Briggs, C.J., Knapp, R.A. & Vredenburg, V.T. (2010) Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the National Academy of Sciences of the United States of America, 107, 96959700.CrossRefGoogle ScholarPubMed
Briggs, C.J., Vredenburg, V.T., Knapp, R.A. & Rachowicz, L.J. (2005) Investigating the population-level effects of chytridiomycosis: an emerging infectious disease of amphibians. Ecology, 86, 31493159.CrossRefGoogle Scholar
Chestnut, T., Anderson, C., Popa, R., et al. (2014) Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLoS ONE, 9, e106790.CrossRefGoogle ScholarPubMed
Clare, F.C., Halder, J.B., Daniel, O., et al. (2016) Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 371, 20150454.CrossRefGoogle ScholarPubMed
Cohen, J.M., Venesky, M.D., Sauer, E.L., et al. (2017) The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecology Letters, 20, 184193.CrossRefGoogle Scholar
Combes, C. (2000) Parasitism: The Ecology and Evolution of Intimate Interactions. Chicago, IL: The University of Chicago Press.Google Scholar
Courtois, E.A., Loyau, A., Bourgoin, M. & Schmeller, D.S. (2017) Initiation of Batrachochytrium dendrobatidis infection in the absence of physical contact with infected hosts – a field study in a high altitude lake. Oikos, 126, 843851.CrossRefGoogle Scholar
Daszak, P., Cunningham, A.A. & Hyatt, A.D. (2003) Infectious disease and amphibian population declines. Diversity and Distributions, 9, 141150.CrossRefGoogle Scholar
De Castro, F. & Bolker, B. (2005) Mechanisms of disease-induced extinction. Ecology Letters, 8, 117126.CrossRefGoogle Scholar
Diekmann, O. & Heesterbeek, J.A.P. (2000) Mathematical Epidemiology of Infectious Disease: Model Building, Interpretation, and Analysis. New York, NY: John Wiley & Sons.Google Scholar
DiRenzo, G.V., Langhammer, P.F., Zamudio, K.R. & Lips, K.R. (2014) Fungal infection intensity and zoospore output of Atelopus zeteki, a potential acute chytrid supershedder. PLoS ONE, 9, e93356.CrossRefGoogle ScholarPubMed
Doddington, B.J., Bosch, J., Oliver, J.A., et al. (2013) Context-dependent amphibian host population response to an invading pathogen. Ecology, 94, 17951804.CrossRefGoogle Scholar
Drawert, B., Griesemer, M., Petzold, L.R. & Briggs, C.J. (2017) Using stochastic epidemiological models to evaluate conservation strategies for endangered amphibians. Journal of The Royal Society Interface, 14, 20170480.CrossRefGoogle ScholarPubMed
Ellison, A.R., Tunstall, T., Direnzo, G.V., et al. (2015) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biology and Evolution, 7, 286298.CrossRefGoogle Scholar
Farrer, R.A., Weinert, L.A., Bielby, J., et al. (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences of the United States of America, 108, 18,73218,736.CrossRefGoogle ScholarPubMed
Fisher, M.C., Bosch, J., Yin, Z., et al. (2009) Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Molecular Ecology, 18, 415429.CrossRefGoogle ScholarPubMed
Fisher, M.C., Henk, D.A., Briggs, C.J., et al. (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186194.CrossRefGoogle ScholarPubMed
Garmyn, A.,Rooij, P. van, Pasmans, F., et al. (2012) Waterfowl: potential environmental reservoirs of the chytrid fungus Batrachochytrium dendrobatidis. PLoS ONE, 7, e35038.CrossRefGoogle ScholarPubMed
Garner, T.W.J., Walker, S., Bosch, J., et al. (2009) Life history tradeoffs influence mortality associated with the amphibian pathogen Batrachochytrium dendrobatidis. Oikos, 118, 783791.CrossRefGoogle Scholar
Godfray, H.C.J., Briggs, C.J., Barlow, N.D., et al. (1999) A model of insect–pathogen dynamics in which a pathogenic bacterium can also reproduce saprophytically. Proceedings of the Royal Society of London B, 266, 233240.CrossRefGoogle Scholar
Hagman, M. & Alford, R.A. (2015) Patterns of Batrachochytrium dendrobatidis transmission between tadpoles in a high-elevation rainforest stream in tropical Australia. Diseases of Aquatic Organisms, 115, 213221.CrossRefGoogle Scholar
Hanlon, S.M., Lynch, K.J., Kerby, J. & Parris, M.J. (2015) Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Diseases of Aquatic Organisms, 112, 237242.CrossRefGoogle ScholarPubMed
Jani, A.J., Knapp, R.A. & Briggs, C.J. (2017) Epidemic and endemic pathogen dynamics correspond to distinct host population microbiomes at a landscape scale. Proceedings of the Royal Society of London B, 284, 20170944.CrossRefGoogle Scholar
Johnson, M.L. & Speare, R. (2003) Survival of Batrachochytrium dendrobatidis in water: quarantine and disease control implications. Emerging Infectious Diseases, 9, 922925.CrossRefGoogle ScholarPubMed
Johnson, M.L. & Speare, R. (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms, 65, 181186.CrossRefGoogle ScholarPubMed
Kilburn, V., Ibáñez, R. & Green, D. (2011) Reptiles as potential vectors and hosts of the amphibian pathogen Batrachochytrium dendrobatidis in Panama. Diseases of Aquatic Organisms, 97, 127134.CrossRefGoogle ScholarPubMed
Kilpatrick, A.M., Briggs, C.J. & Daszak, P. (2010) The ecology and impact of chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and Evolution, 25, 109118.CrossRefGoogle ScholarPubMed
Knapp, R.A., Fellers, G.M., Kleeman, P.M., et al. (2016) Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences of the United States of America, 113, 11,88911,894.CrossRefGoogle ScholarPubMed
Kolby, J.E., Ramirez, S.D., Berger, L., et al. (2015) Terrestrial dispersal and potential environmental transmission of the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE, 10, e0125386.CrossRefGoogle Scholar
Lande, R., Engen, S. & Saether, B.-E. (2003) Stochastic Population Dynamics in Ecology and Conservation. Oxford: Oxford University Press.CrossRefGoogle Scholar
Langhammer, P.F., Lips, K.R., Burrowes, P.A., et al. (2013) A fungal pathogen of amphibians, Batrachochytrium dendrobatidis, attenuates in pathogenicity with in vitro passages. PLoS ONE, 8, e77630.CrossRefGoogle ScholarPubMed
Langwig, K.E., Voyles, J., Wilber, M.Q., et al. (2015) Context-dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment, 13, 195202.CrossRefGoogle Scholar
Laurance, W.F., McDonald, K.R. & Speare, R. (1996) Epidemic disease and the catastrophic decline of Australian rain forest frogs. Conservation Biology, 10, 406413.CrossRefGoogle Scholar
Liew, N., Mazon Moya, M.J., Wierzbicki, C.J., et al. (2017) Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nature Communications, 8, 15048.CrossRefGoogle ScholarPubMed
Lloyd-Smith, J.O., Cross, P.C., Briggs, C.J., et al. (2005) Should we expect population thresholds for wildlife disease? Trends in Ecology and Evolution, 20, 511519.CrossRefGoogle ScholarPubMed
Longcore, J.E., Pessier, A.P. & Nichols, D.K. (1999) Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219227.CrossRefGoogle Scholar
Maniero, G.D. & Carey, C. (1997) Changes in selected aspects of immune function in the leopard frog, Rana pipiens, associated with exposure to cold. Journal of Comparative Physiology B, 167, 256263.CrossRefGoogle ScholarPubMed
Marca, E.L., Lips, K.R., Lötters, S., et al. (2005) Catastrophic population declines and extinctions in neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica, 37, 190201.CrossRefGoogle Scholar
McCallum, H. (2012) Disease and the dynamics of extinction. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 28282839.CrossRefGoogle ScholarPubMed
McCallum, H., Barlow, N. & Hone, J. (2001) How should pathogen transmission be modelled? Trends in Ecology and Evolution, 16, 295300.CrossRefGoogle ScholarPubMed
McCallum, H., Jones, M., Hawkins, C., et al. (2009) Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction. Ecology, 90, 33793392.CrossRefGoogle ScholarPubMed
McMahon, T.A., Brannelly, L.A., Chatfield, M.W.H., et al. (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences of the United States of America, 110, 210215.CrossRefGoogle Scholar
McMahon, T.A., Sears, B.F., Venesky, M.D., et al. (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 511, 224227.CrossRefGoogle ScholarPubMed
Medzhitov, R., Schneider, D.S. & Soares, M.P. (2012) Disease tolerance as a defense strategy. Science, 335, 936941.CrossRefGoogle ScholarPubMed
Perez, R., Richards-Zawacki, C.L., Krohn, A.R., et al. (2014) Field surveys in Western Panama indicate populations of Atelopus varius frogs are persisting in regions where Batrachochytrium dendrobatidis is now enzootic. Amphibian and Reptile Conservation, 8, 3035.Google Scholar
Piotrowski, J.S., Annis, S.L. & Longcore, J.E. (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia, 96, 915.CrossRefGoogle ScholarPubMed
Rachowicz, L.J. & Briggs, C.J. (2007) Quantifying the disease transmission function: effects of density on Batrachochytrium dendrobatidis transmission in the mountain yellow-legged frog Rana muscosa. The Journal of Animal Ecology, 76, 711721.CrossRefGoogle ScholarPubMed
Raffel, T.R., Halstead, N.T., McMahon, T.A., Davis, A.K. & Rohr, J.R. (2015) Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proceedings of the Royal Society of London B, 282, 20142039.CrossRefGoogle ScholarPubMed
Raffel, T.R., Rohr, J.R., Kiesecker, J.M. & Hudson, P.J. (2006) Negative effects of changing temperature on amphibian immunity under field conditions. Functional Ecology, 20, 819828.CrossRefGoogle Scholar
Raffel, T.R., Romansic, J.M., Halstead, N.T., et al. (2012) Disease and thermal acclimation in a more variable and unpredictable climate. Nature Climate Change, 3, 146151.CrossRefGoogle Scholar
Råberg, L., Graham, A.L. & Read, A.F. (2009) Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 3749.CrossRefGoogle ScholarPubMed
Reeder, N.M.M., Pessier, A.P. & Vredenburg, V.T. (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS ONE, 7, e33567.CrossRefGoogle Scholar
Refsnider, J.M., Poorten, T.J., Langhammer, P.F., Burrowes, P.A. & Rosenblum, E.B. (2015) Genomic correlates of virulence attenuation in the deadly amphibian chytrid fungus, Batrachochytrium dendrobatidis. G3: Genes|Genomes|Genetics, 5, 22912298.CrossRefGoogle ScholarPubMed
Retallick, R.W.R., McCallum, H. & Speare, R. (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biology, 2, e351.CrossRefGoogle Scholar
Retallick, R.W.R. & Miera, V. (2007) Strain differences in the amphibian chytrid Batrachochytrium dendrobatidis and non-permanent, sub-lethal effects of infection. Diseases of Aquatic Organisms, 75, 201207.CrossRefGoogle Scholar
Rosenblum, E.B., James, T.Y., Zamudio, K.R., et al. (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proceedings of the National Academy of Sciences of the United States of America, 110, 93859390.CrossRefGoogle ScholarPubMed
Savage, A.E., Becker, C.G. & Zamudio, K.R. (2015) Linking genetic and environmental factors in amphibian disease risk. Evolutionary Applications, 8, 560572.CrossRefGoogle ScholarPubMed
Savage, A.E. & Zamudio, K.R. (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proceedings of the National Academy of Sciences of the United States of America, 108, 16,70516,710.CrossRefGoogle ScholarPubMed
Savage, A.E. & Zamudio, K.R. (2016) Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations. Proceedings of the Royal Society of London B, 283, 20153115.CrossRefGoogle ScholarPubMed
Scheele, B.C., Guarino, F., Osborne, W., et al. (2014) Decline and re-expansion of an amphibian with high prevalence of chytrid fungus. Biological Conservation, 170, 8691.CrossRefGoogle Scholar
Scheele, B.C., Skerratt, L.F., Grogan, L.F., et al. (2017) After the epidemic: ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biological Conservation, 206, 3746.CrossRefGoogle Scholar
Schmeller, D.S., Blooi, M., Martel, A., et al. (2014) Microscopic aquatic predators strongly affect infection dynamics of a globally emerged pathogen. Current Biology, 24, 176180.CrossRefGoogle ScholarPubMed
Semlitsch, R.D. (1990) Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Canadian Journal of Zoology, 68, 10271030.CrossRefGoogle Scholar
Skerratt, L.F., Berger, L., Speare, R., et al. (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4, 125134.CrossRefGoogle Scholar
Smith, D.C. (1987) Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology, 68, 344350.CrossRefGoogle Scholar
Stockwell, M.P., Bower, D.S., Clulow, J. & Mahony, M.J. (2016) The role of non-declining amphibian species as alternative hosts for Batrachochytrium dendrobatidis in an amphibian community. Wildlife Research, 43, 341347.CrossRefGoogle Scholar
Stockwell, M.P., Clulow, J. & Mahony, M.J. (2010) Host species determines whether infection load increases beyond disease-causing thresholds following exposure to the amphibian chytrid fungus. Animal Conservation, 13, 6271.CrossRefGoogle Scholar
Stuart, S.N., Chanson, J.S., Cox, N.A., et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 17831786.CrossRefGoogle ScholarPubMed
Venesky, M.D., Liu, X., Sauer, E.L. & Rohr, J.R. (2013) Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology, 83, 557565.CrossRefGoogle ScholarPubMed
Voyles, J., Young, S., Berger, L., et al. (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science, 326, 58.CrossRefGoogle ScholarPubMed
Vredenburg, V.T., Knapp, R.A., Tunstall, T.S. & Briggs, C.J. (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences of the United States of America, 107, 96899694.CrossRefGoogle ScholarPubMed
Wilber, M.Q., Knapp, R.A., Toothman, M. & Briggs, C.J. (2017) Resistance, tolerance and environmental transmission dynamics determine host extinction risk in a load-dependent amphibian disease. Ecology Letters, 30, 11691181.CrossRefGoogle Scholar
Wilber, M.Q., Langwig, K.E., Kilpatrick, A.M., McCallum, H.I. & Briggs, C.J. (2016) Integral projection models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution, 7, 11821194.CrossRefGoogle ScholarPubMed
Woodhams, D.C., Alford, R.A., Briggs, C.J., Johnson, M. & Rollins-Smith, L.A. (2008) Life-history trade-offs influence disease in changing climates: strategies of an amphibian pathogen. Ecology, 89, 16271639.CrossRefGoogle ScholarPubMed
Woodhams, D.C., Bosch, J., Briggs, C.J., et al. (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Frontiers in Zoology, 8, 8.CrossRefGoogle ScholarPubMed
Aaen, S.M., Helgesen, K.O., Bakke, M.J., Kaur, K. & Horsberg, T.E. (2015) Drug resistance in sea lice: a threat to salmonid aquaculture. Trends in Parasitology, 31, 7281.CrossRefGoogle ScholarPubMed
Altizer, S., Harvell, D. & Friedle, E. (2003) Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution, 18, 589596.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1978) Regulation and stability of host–parasite population interactions: I. Regulatory processes. Journal of Animal Ecology, 47, 219247.CrossRefGoogle Scholar
Anderson, R. M. & May, R. M. (1979) Population biology of infectious diseases: Part I. Nature, 280, 361367.CrossRef