Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T12:17:16.525Z Has data issue: false hasContentIssue false

5 - Natural Properties of a Rule-Governed World, or Why Scientists Study Certain Types of Things and Not Others

from Part II

Published online by Cambridge University Press:  04 July 2019

James C. Zimring
Affiliation:
University of Virginia
Get access

Summary

While hypothetico-deductive (HD) coherence is required for science to be performed, it is the observable predictions of the theories that most scientists investigate; in other words, the phenomena of the natural world. Science depends upon natural phenomena as the final metric of validity. Humans are persuaded by all manner of things, many of which are emotional or authoritative in nature, and in some ways the actual practice of science is no different. However, in an ideal scientific world – the world that scientific practice strives for – the final word on “truth” is not authority, revelation, or statements of a definitive text; rather, ongoing observation of the natural world around us is the determinant of how we evaluate specific scientific facts and theories.1 Most people recognize that scientists perform studies and experiments, which are essentially a way to “check in” with the natural world – to determine whether a theory’s prediction is what actually occurs. The importance of this process of checking in – of using the natural world and natural phenomena as the ultimate arbiter of legitimate knowledge claims – cannot be overestimated. Creative thinking, to be sure, is a large part of the process that leads to scientific progress. Without great creativity, novel hypotheses cannot be retroduced, innovative auxiliary hypotheses cannot be generated, and new technologies to test predictions cannot be invented; however, creative thinking and imagination are not the “scientific” part of the process. Rather, the scientific application of innovative and creative thinking is found in the abilities of new ideas or explanations to resolve current violations of HD coherence where predictions and observations are misaligned, or to give rise to new predictions of the natural world, which can then only be tested by observation or experimentation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×