Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T14:37:28.315Z Has data issue: false hasContentIssue false

16 - Why do we see better in bright light?

Published online by Cambridge University Press:  05 May 2010

Colin Blakemore
Affiliation:
University of Oxford
Get access

Summary

We have recently been doing some experiments inspired by Horace Barlow's ideas about adaptation and spatial integration. But instead of looking for support for Horace's point of view, we have been hoping to displace one of his ideas by one of our own. This revisionist attitude can be justified by an argument from information theory. Barlow is almost always right, so further demonstrations of his correctness are largely redundant; to catch him out is more difficult but also in a quite objective and technical sense more informative.

It is obvious that at high levels we see textures and details that we miss when the illumination is dim: more light means better sight. This improvement could be due to any of a number of factors, but here we wish to examine one suggestion in particular: that the improvement in vision occurs because light adaptation changes the spatial organization of the retina. That some such change occurs is well documented physiologically. Neurons in the vertebrate visual system typically receive antagonistic influences from the centre and surrounding regions of their receptive fields (Barlow, 1953). Barlow, Fitzhugh & Kuffler (1957) found in cat retinal ganglion cells that light adaptation increases the prominence of the antagonistic surround relative to the centre, thereby reducing the effective size of the central summing area (or, roughly speaking, of the spatial integration region) of each cell. As Barlow (1972) has noted, the effect is rather like reducing the grain size in a photographic film. Like the photographic analog, it could provide an efficient way of regulating sensitivity, because the system would gain a useful improvement in resolution by sacrificing sensitivity that is no longer needed or even desirable.

Type
Chapter
Information
Vision
Coding and Efficiency
, pp. 169 - 174
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×