Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T12:56:28.169Z Has data issue: false hasContentIssue false

24 - Maturation of mechanisms for efficient spatial vision

Published online by Cambridge University Press:  05 May 2010

Colin Blakemore
Affiliation:
University of Oxford
Get access

Summary

Introduction

One of the most remarkable achievements of the human visual system is the capacity to resolve fine detail in the retinal image and efficiently to detect contrast between neighbouring regions of the image. In the central visual field these perceptual abilities appear to be limited by the physical properties of the photoreceptors themselves. The development of spatial vision provides a fine example of the way in which the efficiency of coding in the visual system emerges through an interplay between innate (presumably genetically determined) organization and plasticity of synaptic organization at the level of the visual cortex. As Barlow (1972) pointed out, developmental plasticity might allow the visual cortex to discover, in the pattern of stimulation it receives, important associations and coincidences in the retinal image that relate to the nature of the visual world.

Efficiency of spatial vision in the adult

Factors that might limit spatial vision

The resolution of spatial detail and the detection of contrast in the retinal image might, in principle, be limited by one of a number of factors. Obviously, the optical quality of the image could determine spatial performance and certainly does so in states of refractive error. Even when the eye is accurately focused, chromatic and spherical aberration degrade the image, as does the effect of diffraction, which is dependent on the size of the pupil. Interestingly, under photopic conditions, the pupil of the human eye tends to adopt a diameter that optimizes visual acuity: a larger pupil size would augment the effects of aberrations and a smaller one would increase diffraction, as well as decreasing retinal illumination (Campbell & Gregory, 1960).

Type
Chapter
Information
Vision
Coding and Efficiency
, pp. 254 - 266
Publisher: Cambridge University Press
Print publication year: 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×