Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:40:16.314Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 April 2021

Wallace Arthur
Affiliation:
National University of Ireland, Galway
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

Bateson, W. 1894. Materials for the Study of Variation, Treated with Especial Regard to Discontinuity in the Origin of Species. Macmillan, London.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.CrossRefGoogle Scholar
Gilbert, S. F. and Epel, D. 2015. Ecological Developmental Biology: The Environmental Regulation of Development, Health, and Evolution, 2nd edition. Sinauer, Sunderland, MA.Google Scholar
Goodwin, B. 1994. How the Leopard Changed its Spots: The Evolution of Complexity. Weidenfeld & Nicolson, London.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205: 581598.Google Scholar
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Lewis, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature, 276: 565570.Google Scholar
Lewontin, R. C. 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, New York.Google Scholar
McGinnis, W., Garber, R. L., Wirz, J., Kuroiwa, A. and Gehring, W. J. 1984. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell, 37: 403408.Google Scholar
Moczek, A. P. (ed.) 2020. Special issue: Developmental bias in evolution. Evolution & Development, 22: 1217.Google Scholar
Nüsslein-Volhard, C. and Wieschaus, E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature, 287: 795801.Google Scholar
Scott, M. P. and Weiner, A. J. 1984. Structural relationships among genes that control development: sequence homology between the Antennapedia, Ultrabithorax and fushi tarazu loci of Drosophila. Proceedings of the National Academy of Sciences of the USA, 81: 41154119.Google Scholar
Vedel, V., Chipman, A.D., Akam, M. and Arthur, W. 2008. Temperature-dependent plasticity of segment number in an arthropod species: the centipede Strigamia maritima. Evolution & Development, 10: 487492.Google Scholar
Waddington, C. H. 1975. The Evolution of an Evolutionist. Edinburgh University Press, Edinburgh.Google Scholar
Williams, G. C. 1992. Natural Selection: Domains, Levels, and Challenges. Oxford University Press, New York.Google Scholar

Secondary Sources

Bateson, W. 1894. Materials for the Study of Variation, Treated with Especial Regard to Discontinuity in the Origin of Species. Macmillan, London.Google Scholar
Clack, J. 2002. Gaining Ground: The Origin and Early Evolution of Tetrapods. Indiana University Press, Bloomington, IN.Google Scholar
Darwin, C. 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London.Google Scholar
De Beer, G. R. 1940. Embryos and Ancestors. Clarendon Press, Oxford.Google Scholar
Fisher, R. A. 1918. The correlations between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52: 399433.CrossRefGoogle Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
Goldschmidt, R. 1940. The Material Basis of Evolution. Yale University Press, New Haven, CT.Google Scholar
Haeckel, E. 1866. Generelle Morphologie der Organismen. Georg Reimer, Berlin.CrossRefGoogle Scholar
Haeckel, E. 1876. The History of Creation: The Development of the Earth and its Inhabitants by the Action of Natural Causes, in two volumes. Appleton, New York. (Various recent reprint editions are available.)Google Scholar
Haeckel, E. 1896. The Evolution of Man: A Popular Exposition of the Principal Points of Human Ontogeny and Phylogeny, in two volumes. Appleton, New York.Google Scholar
Haldane, J. B. S. 1932. The Causes of Evolution. Longman, London.Google Scholar
Panchen, A. L. 1992. Classification, Evolution and the Nature of Biology. Cambridge University Press, Cambridge.Google Scholar
Raff, R. A. 1996. The Shape of Life: Genes, Development and the Evolution of Animal Form. Chicago University Press, Chicago.CrossRefGoogle Scholar
Raff, R. A. and Kaufman, T. C. 1983. Embryos, Genes, and Evolution: The Developmental Genetic Basis of Evolutionary Change. Macmillan, New York.Google Scholar
Richards, R. J. 2008. The Tragic Sense of Life: Ernst Haeckel and the Struggle over Evolutionary Thought. Chicago University Press, Chicago.Google Scholar
Santayana, G. 1905. The Life of Reason: The Phases of Human Progress, in five volumes. Charles Scribner’s Sons, New York.Google Scholar
Thompson, D’A. W. 1917. On Growth and Form. Cambridge University Press, Cambridge.Google Scholar
Von Baer, K. E. 1828. Uber Entwicklungsgeschichte der Tiere: Beobachtung und Reflexion. Borntrager, Königsberg.Google Scholar
Aguinaldo, A. M. A. et al. (7 authors) 1997. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387: 489493.Google Scholar
Berrill, N. 1961. Growth, Development, and Pattern. Freeman, San Francisco, CA.Google Scholar
Brown, W. L. 1958. General adaptation and evolution. Systematic Zoology, 7: 157168.Google Scholar
Darwin, C. and Wallace, A. R. 1858. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zoological Journal of the Linnean Society, 3: 4662.Google Scholar
Dawkins, R. 1986. The Blind Watchmaker. Longman, London.Google Scholar
Huxley, J. S. 1942. Evolution: The Modern Synthesis. Allen and Unwin, London.Google Scholar
Minelli, A. 2009. Perspectives in Animal Phylogeny and Evolution. Oxford University Press, Oxford.Google Scholar
Minelli, A. 2021. Understanding Development. Cambridge University Press, Cambridge.Google Scholar
Arthur, W. 1997. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge University Press, Cambridge.Google Scholar
Arthur, W. 2011. Evolution: A Developmental Approach. Wiley-Blackwell, Oxford.Google Scholar
Carroll, S. B., Grenier, J. K. and Weatherbee, S. D. 2005. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design, 2nd edition. Blackwell, Oxford.Google Scholar
Duboule, D. 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development (Supplement), 1994:135142.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205: 581598.Google Scholar
Kirschner, J. and Gerhart, J. 1998. Evolvability. Proceedings of the National Academy of Sciences of the USA, 95: 84208427.Google Scholar
Klingenberg, C. K. 2010. Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics, 11: 623635.Google Scholar
Roth, G. and Wake, D. B. 1985. Trends in the functional morphology and sensorimotor control of feeding behaviour in salamanders: an example of the role of internal dynamics in evolution. Acta Biotheoretica, 34: 175192.Google Scholar
Wilson, E. O. and Bossert, W. H. 1971. A Primer of Population Biology. Sinauer/Oxford University Press, Oxford.Google Scholar
Allen, C. E., Beldade, P., Zwann, B. J. and Brakefield, P. 2008. Differences in the selection response of serially repeated color pattern characters: standing variation, development, and evolution. BMC Evolutionary Biology, 8: 94 (13 pages).Google Scholar
Beldade, P., Koops, K. and Brakefield, P.M. 2002. Developmental constraints versus flexibility in morphological evolution. Nature, 416: 844847.Google Scholar
Böhmer, C., Amson, E., Arnold, P., van Heteren, A.H. and Nyakatura, J.A. 2018. Homeotic transformations reflect departure from the mammalian ‘rule of seven’ cervical vertebrae in sloths: inferences on the Hox code and morphological modularity of the mammalian neck. BMC Evolutionary Biology, 18: 84 (11 pages).CrossRefGoogle ScholarPubMed
Chipman, A. D., Arthur, W. and Akam, M. 2004. A double segment periodicity underlies segment generation in centipede development. Current Biology, 14: 12501255.Google Scholar
Galis, F. 1999. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. Journal of Experimental Zoology, 285: 1926.Google Scholar
Gould, S. J. 1983. Hen’s Teeth and Horse’s Toes: Further Reflections in Natural History. Norton, New York.Google Scholar
Gould, S. J. and Lewontin, R. C. 1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London B, 205: 581598.Google Scholar
Haldane, J. B. S. 1932. The Causes of Evolution. Longman, London.Google Scholar
Kemp, T. S. 2016. The Origin of Higher Taxa: Palaeobiological, Developmental, and Ecological Perspectives. Oxford University Press, Oxford.Google Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York.Google Scholar
Varela-Lasheras, I., Bakker, A. J., van der Mije, S. D., Metz, J. A. J., van Alphen, J. and Galis, F. 2011. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. EvoDevo, 2: 11 (27 pages).Google Scholar
Dawkins, R. 1986. The Blind Watchmaker. Longman, London.Google Scholar
Dugon, M. M., Hayden, L., Black, A. and Arthur, W. 2012. Development of the venom ducts in the centipede Scolopendra: an example of recapitulation. Evolution & Development, 14: 515521.Google Scholar
Grande, C. and Patel, N. 2009. Nodal signalling is involved in left–right asymmetry in snails. Nature, 457: 10071011.Google Scholar
Haldane, J. B. S. 1932. The Causes of Evolution. Longman, London.Google Scholar
Held, L. I. 2014. How the Snake Lost its Legs: Curious Tales from the Frontier of Evo-Devo. Cambridge University Press, Cambridge.Google Scholar
Hughes, C. L. and Kaufman, T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evolution & Development, 4: 459499.Google Scholar
Johnson, M. S. 1982. Polymorphism for direction of coil in Partula suturalis: behavioural isolation and positive frequency dependent selection. Heredity, 49: 145151.CrossRefGoogle Scholar
Loredo, G.A. et al. (12 authors) 2001. Development of an evolutionarily novel structure: fibroblast growth factor expression in the carapacial ridge of turtle embryos. Journal of Experimental Zoology, 291: 274281.CrossRefGoogle ScholarPubMed
Ohno, S. 1970. Evolution by Gene Duplication. Springer-Verlag, New York.Google Scholar
Wagner, G. P. 2014. Homology, Genes, and Evolutionary Innovation. Princeton University Press, Princeton, NJ.Google Scholar
Akam, M. 1998. Hox genes: from master genes to micromanagers. Current Biology 8: R676R678.CrossRefGoogle ScholarPubMed
Arthur, W. 1984. Mechanisms of Morphological Evolution: A Combined Genetic, Developmental and Ecological Approach. Wiley, Chichester.Google Scholar
Clark, R. B. 1964. Dynamics in Metazoan Evolution: The Origin of the Coelom and Segments. Clarendon Press, Oxford.Google Scholar
Cuvier, G. 1817. Le Règne Animal Distribué d’après son Organisation, pour servir de base a l’histoire naturelle des animaux et d’introduction a l’anatomie comparée, 1st edition, in four volumes. Deterville, Paris.Google Scholar
Geoffroy Saint-Hilaire, E. 1822. Considérations générales sur la vertèbre. Mémoires du Museum national d’Histoire naturelle, 9: 89119.Google Scholar
Haldane, J. B. S. 1932. The Causes of Evolution. Longman, London.Google Scholar
Lewis, E. B. 1978. A gene complex controlling segmentation in Drosophila. Nature, 276: 565570.Google Scholar
Riedl, R. 1978. Order in Living Organisms: A Systems Analysis of Evolution. Wiley, Chichester.Google Scholar
Salser, S. J. and Kenyon, C. 1996. A C. elegans Hox gene switches on, off, on and off again to regulate proliferation, differentiation and morphogenesis. Development 122: 16511661.CrossRefGoogle Scholar
Thomson, K. 1988. Morphogenesis and Evolution. Oxford University Press, Oxford.CrossRefGoogle Scholar
Balavoine, B. and Adoutte, A. 2003. The segmented Urbilateria: a testable scenario. Integrative and Comparative Biology, 43: 137147.Google Scholar
Chipman, A. D. 2010. Parallel evolution of segmentation by co‐option of ancestral gene regulatory networks. BioEssays, 32: 6070.Google Scholar
Gilbert, S. 2016. Developmental Biology, 11th edition. Sinauer, Sunderland, MA.Google Scholar
Hejnol, A. and Martindale, M. Q. 2008. Acoel development supports a simple planula-like urbilaterian. Philosophical Transactions of the Royal Society of London B, 363: 14931501.CrossRefGoogle ScholarPubMed
Jiggins, C. D., Wallbank, R. W. R. and Hanly, J. J. 2017. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns? Philosophical Transactions of the Royal Society of London B, 372: 20150485 (10 pages).Google Scholar
Kozmik, Z. 2005. Pax genes in eye development and evolution. Current Opinion in Genetics and Development, 15: 430438.Google Scholar
Panganiban, G. S. et al. (14 authors) 1997. The origin and evolution of animal appendages. Proceedings of the National Academy of Sciences of the USA, 94: 51625166.Google Scholar
Smith, J. L. B. 1939. A living fish of Mesozoic type. Nature, 143: 455456.Google Scholar
True, J. R. and Carroll, S. B. 2002. Gene co-option in physiological and morphological evolution. Annual Review of Cell and Developmental Biology, 18: 5380.Google Scholar
Watson, J. D. and Crick, F. H. C. 1953. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171: 737738.Google Scholar
Carroll, R. 2000. Towards a new evolutionary synthesis. Trends in Ecology and Evolution, 15: 2732.CrossRefGoogle ScholarPubMed
Carroll, S. B. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134: 2536.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
De Beer, G. R. 1940. Embryos and Ancestors. Clarendon Press, Oxford.Google Scholar
Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, MA.Google Scholar
Gould, S. J. 2002. The Structure of Evolutionary Theory. Harvard University Press, Cambridge, MA.Google Scholar
Haldane, J. B. S. 1932. The Causes of Evolution. Longman, London.Google Scholar
Huxley, J. S. 1942. Evolution: The Modern Synthesis. Allen & Unwin, London.Google Scholar
Laland, K. et al. 2014. Does evolutionary theory need a rethink? Yes, urgently. Nature, 514: 161164. (One of a pair of linked articles; see also Wray, Hoekstra et al.)Google Scholar
Pigliucci, M. and Müller, G. (eds) 2010. Evolution: The Extended Synthesis. MIT Press, Cambridge, MA.Google Scholar
Waddington, C. H. 1957. The Strategy of the Genes. Allen & Unwin, London.Google Scholar
Wray, G., Hoekstra, H. et al. 2014. Does evolutionary theory need a rethink? No, all is well. Nature, 514: 161164. (One of a pair of linked articles; see also Laland et al.)Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16: 97159.Google Scholar
Yampolsky, L.Y. and Stoltzfus, A. 2001. Bias in the introduction of variation as an orienting factor in evolution. Evolution & Development, 3: 7383.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wallace Arthur, National University of Ireland, Galway
  • Book: Understanding Evo-Devo
  • Online publication: 29 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108873130.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wallace Arthur, National University of Ireland, Galway
  • Book: Understanding Evo-Devo
  • Online publication: 29 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108873130.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wallace Arthur, National University of Ireland, Galway
  • Book: Understanding Evo-Devo
  • Online publication: 29 April 2021
  • Chapter DOI: https://doi.org/10.1017/9781108873130.014
Available formats
×