Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-7mfl8 Total loading time: 0.26 Render date: 2021-12-03T11:46:06.156Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

13 - User Association in Ultra-dense Networks

from Part III - Resource Allocation and Network Management

Published online by Cambridge University Press:  12 October 2020

Haijun Zhang
Affiliation:
University of Science and Technology Beijing
Jemin Lee
Affiliation:
Daegu Gyeongbuk Institute of Science and Technology, Korea
Tony Q. S. Quek
Affiliation:
Singapore University of Technology and Design
Chih-Lin I
Affiliation:
China Mobile Research Institute
Get access

Summary

In recent years, the overall network data traffic is dramatic increasing, a promising solution is the deployment of ultra dense networks (UDNs) combined with millimeter wave (mmWave) communication technology, which is expected to enhance the overall performance of the network in terms of energy efficiency and load balancing. In this chapter, user association and power allocation inmmWave-based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. This chapter not only establish the system utility optimal function model in the limitations of power and QoS, but also gives an iterative gradient user association and power allocation algorithm to resolve the optimization issue. This algorithm provides a best ratio of convergence and can get a near optimal scheme. In addtion, through utilizing Lagrangian dual decomposition, the dual optimization issue is disintegrated to two sub-problems, we can resolve them respectively. The simulation datum indicate that our method is effective.

Type
Chapter
Information
Ultra-dense Networks
Principles and Applications
, pp. 239 - 258
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Send book to Kindle

To send this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Send book to Dropbox

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Dropbox.

Available formats
×

Send book to Google Drive

To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to Google Drive.

Available formats
×