Skip to main content Accessibility help
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T06:09:46.611Z Has data issue: false hasContentIssue false

Chapter 8 - Pathology of Hematopoietic Stem Cell Transplantation

Published online by Cambridge University Press:  17 March 2018

Phillip Ruiz
University of Miami School of Medicine
Get access
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Kolb, H.J., Graft-versus-Leukemia Effects of Transplantation and Donor Lymphocytes. Blood, 2008. 112(12): p. 4371–83.Google Scholar
Miller, J.S., et al., NCI First International Workshop on The Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: Report from the Committee on the Biology Underlying Recurrence of Malignant Disease following Allogeneic HSCT: Graft-versus-Tumor/Leukemia Reaction. Biol Blood Marrow Transplant, 2010. 16(5): p. 565–86.Google Scholar
Mielcarek, M., et al., Outcomes among Patients with Recurrent High-risk Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant, 2007. 13(10): p. 1160–8.Google Scholar
Porter, D.L. and Antin, J.H., Donor Leukocyte Infusions in Myeloid Malignancies: New Strategies. Best Pract Res Clin Haematol, 2006. 19(4): p. 737–55.Google Scholar
Matte-Martone, C., et al., Graft-versus-Leukemia (GVL) against Mouse Blast-crisis Chronic Myelogenous Leukemia (BC-CML) and Chronic-phase Chronic Myelogenous Leukemia (CP-CML): Shared Mechanisms of T Cell Killing, but Programmed Death Ligands Render CP-CML and Not BC-CML GVL Resistant. J Immunol, 2011. 187(4): p. 1653–63.Google Scholar
Foley, B., et al., NK Cell Education after Allogeneic Transplantation: Dissociation between Recovery of Cytokine-producing and Cytotoxic Functions. Blood, 2011. 118(10): p. 2784–92.Google Scholar
Ruggeri, L., et al., Role of Natural Killer Cell Alloreactivity in HLA-mismatched Hematopoietic Stem Cell Transplantation. Blood, 1999. 94(1): p. 333–9.Google Scholar
To, L.B., Levesque, J.P., and Herbert, K.E., How I Treat Patients Who Mobilize Hematopoietic Stem Cells Poorly. Blood, 2011. 118(17): p. 4530–40.CrossRefGoogle Scholar
Kumar, S., et al., Mobilization in Myeloma Revisited: IMWG Consensus Perspectives on Stem Cell Collection Following Initial Therapy with Thalidomide-, Lenalidomide-, or Bortezomib-containing Regimens. Blood, 2009. 114(9): p. 1729–35.Google Scholar
Champlin, R.E., et al., Blood Stem Cells Compared with Bone Marrow as a Source of Hematopoietic Cells for Allogeneic Transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT). Blood, 2000. 95(12): p. 3702–9.Google Scholar
Attal, M., et al., A Prospective, Randomized Trial of Autologous Bone Marrow Transplantation and Chemotherapy in Multiple Myeloma. Intergroupe Francais du Myelome. N Engl J Med, 1996. 335(2): p. 91–7.Google Scholar
Attal, M., et al., Single versus Double Autologous Stem-cell Transplantation for Multiple Myeloma. N Engl J Med, 2003. 349(26): p. 2495–502.Google Scholar
Attal, M., et al., Lenalidomide Maintenance after Stem-cell Transplantation for Multiple Myeloma. N Engl J Med, 2012. 366(19): p. 1782–91.Google Scholar
McCarthy, P.L., et al., Lenalidomide after Stem-cell Transplantation for Multiple Myeloma. N Engl J Med, 2012. 366(19): p. 1770–81.Google Scholar
Bruno, B., et al., A Comparison of Allografting with Autografting for Newly Diagnosed Myeloma. N Engl J Med, 2007. 356(11): p. 1110–20.CrossRefGoogle ScholarPubMed
Jaccard, A., et al., High-dose Melphalan versus Melphalan plus Dexamethasone for AL Amyloidosis. N Engl J Med, 2007. 357(11): p. 1083–93.Google Scholar
Schouten, H.C., et al., High-dose Therapy Improves Progression-free Survival and Survival in Relapsed Follicular Non-Hodgkin’s Lymphoma: Results from the Randomized European CUP Trial. J Clin Oncol, 2003. 21(21): p. 3918–27.Google Scholar
Philip, T., et al., Autologous Bone Marrow Transplantation as Compared with Salvage Chemotherapy in Relapses of Chemotherapy-sensitive Non-Hodgkin’s Lymphoma. N Engl J Med, 1995. 333(23): p. 1540–5.Google Scholar
Tam, C.S., et al., Mature Results of the M. D. Anderson Cancer Center Risk-adapted Transplantation Strategy in Mantle Cell Lymphoma. Blood, 2009. 113(18): p. 4144–52.Google Scholar
Geisler, C.H., et al., Long-term Progression-free Survival of Mantle Cell Lymphoma after Intensive Front-line Immunochemotherapy with in Vivo-purged Stem Cell Rescue: A Nonrandomized Phase 2 Multicenter Study by the Nordic Lymphoma Group. Blood, 2008. 112(7): p. 2687–93.Google Scholar
Ghielmini, M. and Zucca, E., How I Treat Mantle Cell Lymphoma. Blood, 2009. 114(8): p. 1469–76.Google Scholar
Vose, J.M., et al., Phase III Randomized Study of Rituximab/Carmustine, Etoposide, Cytarabine, and Melphalan (BEAM) Compared with Iodine-131 Tositumomab/BEAM with Autologous Hematopoietic Cell Transplantation for Relapsed Diffuse Large B-cell Lymphoma: Results from the BMT CTN 0401 trial. J Clin Oncol, 2013. 31(13): p. 1662–8.CrossRefGoogle ScholarPubMed
Horning, S.J., et al., High-dose Therapy and Autologous Hematopoietic Progenitor Cell Transplantation for Recurrent or Refractory Hodgkin’s Disease: Analysis of the Stanford University Results and Prognostic Indices. Blood, 1997. 89(3): p. 801–13.CrossRefGoogle ScholarPubMed
Lazarus, H.M., et al., Autotransplants for Hodgkin’s Disease in Patients Never Achieving Remission: A Report from the Autologous Blood and Marrow Transplant Registry. J Clin Oncol, 1999. 17(2): p. 534–45.Google Scholar
Schmitz, N., et al., Treatment and Prognosis of Mature T-cell and NK-cell Lymphoma: An Analysis of Patients with T-cell Lymphoma Treated in Studies of the German High-grade Non-Hodgkin Lymphoma Study Group. Blood, 2010. 116(18): p. 3418–25.Google ScholarPubMed
Weisenburger, D.D., et al., Peripheral T-cell Lymphoma, Not Otherwise Specified: A Report of 340 Cases from the International Peripheral T-cell Lymphoma Project. Blood, 2011. 117(12): p. 3402–8.Google Scholar
Einhorn, L.H., et al., High-dose Chemotherapy and Stem-cell Rescue for Metastatic Germ-cell Tumors. N Engl J Med, 2007. 357(4): p. 340–8.Google Scholar
Matthay, K.K., et al., Treatment of High-risk Neuroblastoma with Intensive Chemotherapy, Radiotherapy, Autologous Bone Marrow Transplantation, and 13-cis-retinoic Acid. Children’s Cancer Group. N Engl J Med, 1999. 341(16): p. 1165–73.Google Scholar
Ladenstein, R., et al., Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial. J Clin Oncol, 2010. 28(20): p. 3284–91.Google Scholar
Kushner, B.H. and Meyers, P.A., How Effective Is Dose-intensive/Myeloablative Therapy against Ewing’s Sarcoma/Primitive Neuroectodermal Tumor Metastatic to Bone or Bone Marrow? The Memorial Sloan-Kettering Experience and a Literature Review. J Clin Oncol, 2001. 19(3): p. 870–80.Google Scholar
Koreth, J., et al., Allogeneic Stem Cell Transplantation for Acute Myeloid Leukemia in First Complete Remission: Systematic Review and Meta-analysis of Prospective Clinical Trials. JAMA, 2009. 301(22): p. 2349–61.Google Scholar
Andersson, B.S., et al., Once Daily I.V. Busulfan and Fludarabine (I.V. Bu-Flu) Compares Favorably with I.V. Busulfan and Cyclophosphamide (I.V. BuCy2) as Pretransplant Conditioning Therapy in AML/MDS. Biol Blood Marrow Transplant, 2008. 14(6): p. 672–84.CrossRefGoogle ScholarPubMed
Andersson, B.S., et al., Clofarabine +/- Fludarabine with Once Daily I.V. Busulfan as Pretransplant Conditioning Therapy for Advanced Myeloid Leukemia and MDS. Biol Blood Marrow Transplant, 2011. 17(6): p. 893900.Google Scholar
Goldstone, A.H., et al., In Adults with Standard-risk Acute Lymphoblastic Leukemia, the Greatest Benefit Is Achieved from a Matched Sibling Allogeneic Transplantation in First Complete Remission, and an Autologous Transplantation Is Less Effective than Conventional Consolidation/Maintenance Chemotherapy in All Patients: Final Results of the International ALL Trial (MRC UKALL XII/ECOG E2993). Blood, 2008. 111(4): p. 1827–33.Google Scholar
Saber, W., et al., Impact of Donor Source on Hematopoietic Cell Transplantation Outcomes for Patients with Myelodysplastic Syndromes (MDS). Blood, 2013.CrossRefGoogle Scholar
Ludwig, W.D., et al., Immunophenotypic and Genotypic Features, Clinical Characteristics, and Treatment Outcome of Adult pro-B acute Lymphoblastic Leukemia: Results of the German Multicenter Trials GMALL 03/87 and 04/89. Blood, 1998. 92(6): p. 1898–909.Google Scholar
Jeannet, R., et al., Oncogenic Activation of the Notch1 Gene by Deletion of Its Promoter in Ikaros-deficient T-ALL. Blood, 2010. 116(25): p. 5443–54.Google Scholar
Dail, M., et al., Mutant Ikzf1, KrasG12D, and Notch1 Cooperate in T Lineage Leukemogenesis and Modulate Responses to Targeted Agents. Proc Natl Acad Sci U S A, 2010. 107(11): p. 5106–11.Google Scholar
Portell, C.A. and Advani, A.S., Novel Targeted Therapies in Acute Lymphoblastic Leukemia. Leuk Lymphoma, 2013.Google Scholar
Porter, D.L., et al., Chimeric Antigen Receptor-modified T Cells in Chronic Lymphoid Leukemia. N Engl J Med, 2011. 365(8): p. 725–33.Google Scholar
Grupp, S.A., et al., Chimeric Antigen Receptor-modified T Cells for Acute Lymphoid Leukemia. N Engl J Med, 2013. 368(16): p. 1509–18.Google Scholar
Kebriaei, P., et al., Clofarabine Combined with Busulfan Provides Excellent Disease Control in Adult Patients with Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2012. 18(12): p. 1819–26.Google Scholar
O’Brien, S.M., Kantarjian, H., and Radich, J., Update: Chronic Myelogenous Leukemia Clinical Practice Guidelines. J Natl Compr Canc Netw, 2003. 1 Suppl 1: p. S2940.Google Scholar
Zelenetz, A.D., et al., Non-Hodgkin’s Lymphomas, Version 1.2013. J Natl Compr Canc Netw, 2013. 11(3): p. 257–72; quiz 273.Google Scholar
Scheinberg, P. and Young, N.S., How I Treat Acquired Aplastic Anemia. Blood, 2012. 120(6): p. 1185–96.Google Scholar
Taniguchi, T. and D’Andrea, A.D., Molecular Pathogenesis of Fanconi Anemia: Recent Progress. Blood, 2006. 107(11): p. 4223–33.Google Scholar
Cutler, C.S., et al., A Decision Analysis of Allogeneic Bone Marrow Transplantation for the Myelodysplastic Syndromes: Delayed Transplantation for Low-risk Myelodysplasia Is Associated with Improved Outcome. Blood, 2004. 104(2): p. 579–85.Google Scholar
Kroger, N., Allogeneic Stem Cell Transplantation for Elderly Patients with Myelodysplastic Syndrome. Blood, 2012. 119(24): p. 5632–9.Google Scholar
Greenberg, P.L., et al., Myelodysplastic Syndromes: Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2013. 11(7): p. 838–74.Google Scholar
Gupta, V., Hari, P., and Hoffman, R., Allogeneic Hematopoietic Cell Transplantation for Myelofibrosis in the Era of JAK Inhibitors. Blood, 2012. 120(7): p. 1367–79.CrossRefGoogle ScholarPubMed
Tefferi, A., How I Treat Myelofibrosis. Blood, 2011. 117(13): p. 3494–504.Google Scholar
Rachmilewitz, E.A. and Giardina, P.J., How I Treat Thalassemia. Blood, 2011. 118(13): p. 3479–88.Google Scholar
Hsieh, M.M., et al., Allogeneic Hematopoietic Stem-cell Transplantation for Sickle Cell Disease. N Engl J Med, 2009. 361(24): p. 2309–17.Google Scholar
Cavazzana-Calvo, M., Andre-Schmutz, I., and Fischer, A., Haematopoietic Stem Cell Transplantation for SCID Patients: Where Do We Stand? Br J Haematol, 2013. 160(2): p. 146–52.Google Scholar
Hutter, G., et al., Long-term Control of HIV by CCR5 Delta32/Delta32 Stem-cell Transplantation. N Engl J Med, 2009. 360(7): p. 692–8.Google Scholar
Wynn, R., Stem Cell Transplantation in Inherited Metabolic Disorders. Hematology Am Soc Hematol Educ Program, 2011. 2011: p. 285–91.Google Scholar
Prasad, V.K. and Kurtzberg, J., Cord Blood and Bone Marrow Transplantation in Inherited Metabolic Diseases: Scientific Basis, Current Status and Future Directions. Br J Haematol, 2010. 148(3): p. 356–72.Google Scholar
Dick, J.E., Stem Cell Concepts Renew Cancer Research. Blood, 2008. 112(13): p. 4793–807.Google Scholar
Papayannopoulou, T. and Scadden, D.T., Stem-cell Ecology and Stem Cells in Motion. Blood, 2008. 111(8): p. 3923–30.Google Scholar
Li, L. and Clevers, H., Coexistence of Quiescent and Active Adult Stem Cells in Mammals. Science, 2010. 327(5965): p. 542–5.Google Scholar
Moore, K.A. and Lemischka, I.R., Stem Cells and Their Niches. Science, 2006. 311(5769): p. 1880–5.Google Scholar
Bigas, A. and Espinosa, L., Hematopoietic Stem Cells: To Be or Notch to Be. Blood, 2012. 119(14): p. 3226–35.Google Scholar
Zon, L.I., Intrinsic and Extrinsic Control of Haematopoietic Stem-cell Self-renewal. Nature, 2008. 453(7193): p. 306–13.Google Scholar
Reya, T. and Clevers, H., Wnt Signalling in Stem Cells and Cancer. Nature, 2005. 434(7035): p. 843–50.Google Scholar
Blank, U., Karlsson, G., and Karlsson, S., Signaling Pathways Governing Stem-cell Fate. Blood, 2008. 111(2): p. 492503.Google Scholar
Doan, P.L., et al., Epidermal Growth Factor Regulates Hematopoietic Regeneration after Radiation Injury. Nat Med, 2013. 19(3): p. 295304.Google Scholar
Lucas, D., et al., Norepinephrine Reuptake Inhibition Promotes Mobilization in Mice: Potential Impact to Rescue Low Stem Cell Yields. Blood, 2012. 119(17): p. 3962–5.CrossRefGoogle ScholarPubMed
Katayama, Y., et al., Signals from the Sympathetic Nervous System Regulate Hematopoietic Stem Cell Egress from Bone Marrow. Cell, 2006. 124(2): p. 407–21.Google Scholar
Adams, G.B., et al., Therapeutic Targeting of a Stem Cell Niche. Nat Biotechnol, 2007. 25(2): p. 238–43.Google Scholar
Selleri, C., et al., The Metastasis-associated 67-kDa Laminin Receptor Is Involved in G-CSF-induced Hematopoietic Stem Cell Mobilization. Blood, 2006. 108(7): p. 2476–84.Google Scholar
Hoggatt, J. and Pelus, L.M., Many Mechanisms Mediating Mobilization: An Alliterative Review. Curr Opin Hematol, 2011. 18(4): p. 231–8.Google Scholar
Kawamori, Y., et al., Role for Vitamin D Receptor in the Neuronal Control of the Hematopoietic Stem Cell Niche. Blood, 2010. 116(25): p. 5528–35.Google Scholar
Goldschmidt, H., et al., Mobilization of Peripheral Blood Progenitor Cells with High-dose Cyclophosphamide (4 or 7 g/m2) and Granulocyte Colony-stimulating Factor in Patients with Multiple Myeloma. Bone Marrow Transplant, 1996. 17(5): p. 691–7.Google Scholar
DiPersio, J.F., et al., Plerixafor and G-CSF versus Placebo and G-CSF to Mobilize Hematopoietic Stem Cells for Autologous Stem Cell Transplantation in Patients with Multiple Myeloma. Blood, 2009. 113(23): p. 5720–6.Google Scholar
Ramirez, P., et al., BIO5192, a Small Molecule Inhibitor of VLA-4, Mobilizes Hematopoietic Stem and Progenitor Cells. Blood, 2009. 114(7): p. 1340–3.Google Scholar
Zohren, F., et al., The Monoclonal Anti-VLA-4 Antibody Natalizumab Mobilizes CD34+ Hematopoietic Progenitor Cells in Humans. Blood, 2008. 111(7): p. 3893–5.Google Scholar
de Nigris, F., et al., CXCR4 Inhibitors: Tumor Vasculature and Therapeutic Challenges. Recent Pat Anticancer Drug Discov, 2012. 7(3): p. 251–64.Google Scholar
Juarez, J.G., et al., Sphingosine-1-Phosphate Facilitates Trafficking of Hematopoietic Stem Cells and Their Mobilization by CXCR4 Antagonists in Mice. Blood, 2012. 119(3): p. 707–16.Google Scholar
Alousi, A.M., et al., Who Is the Better Donor for Older Hematopoietic Transplant Recipients: An Older-aged Sibling or a Young, Matched Unrelated Volunteer? Blood, 2013. 121(13): p. 2567–73.Google Scholar
Kanda, J., et al., Related Transplantation with HLA-1 Ag Mismatch in the GVH Direction and HLA-8/8 Allele-matched Unrelated Transplantation: A Nationwide Retrospective Study. Blood, 2012. 119(10): p. 2409–16.Google Scholar
Pietersma, F.L., et al., Influence of Donor Cytomegalovirus (CMV) Status on Severity of Viral Reactivation after Allogeneic Stem Cell Transplantation in CMV-seropositive Recipients. Clin Infect Dis, 2011. 52(7): p. e1448.Google Scholar
Confer, D.L., et al., Selection of Adult Unrelated Hematopoietic Stem Cell Donors: Beyond HLA. Biol Blood Marrow Transplant, 2010. 16(1 Suppl): p. S8S11.Google Scholar
Lee, S.J., et al., High-resolution Donor-recipient HLA Matching Contributes to the Success of Unrelated Donor Marrow Transplantation. Blood, 2007. 110(13): p. 4576–83.Google Scholar
Costa, L.J., et al., Overcoming HLA-DPB1 Donor Specific Antibody-mediated Haematopoietic Graft Failure. Br J Haematol, 2010. 151(1): p. 94–6.Google Scholar
Spellman, S., et al., The Detection of Donor-directed, HLA-specific Alloantibodies in Recipients of Unrelated Hematopoietic Cell Transplantation Is Predictive of Graft Failure. Blood, 2010. 115(13): p. 2704–8.Google Scholar
Horowitz, M.M., Does Matched Unrelated Donor Transplantation Have the Same Outcome as Matched Sibling Transplantation in Unselected Patients? Best Pract Res Clin Haematol, 2012. 25(4): p. 483–6.Google Scholar
Chakraverty, R., et al., Impact of in Vivo Alemtuzumab Dose before Reduced Intensity Conditioning and HLA-identical Sibling Stem Cell Transplantation: Pharmacokinetics, GVHD, and Immune Reconstitution. Blood, 2010. 116(16): p. 3080–8.Google Scholar
Soiffer, R.J., et al., Impact of Immune Modulation with Anti-T-cell Antibodies on the Outcome of Reduced-intensity Allogeneic Hematopoietic Stem Cell Transplantation for Hematologic Malignancies. Blood, 2011. 117(25): p. 6963–70.Google Scholar
Luznik, L., et al., High-dose Cyclophosphamide as Single-agent, Short-course Prophylaxis of Graft-versus-Host Disease. Blood, 2010. 115(16): p. 3224–30.Google Scholar
Aversa, F., et al., Treatment of High-risk Acute Leukemia with T-cell-depleted Stem Cells from Related Donors with One Fully Mismatched HLA Haplotype. N Engl J Med, 1998. 339(17): p. 1186–93.Google Scholar
Venstrom, J.M., et al., HLA-C-dependent Prevention of Leukemia Relapse by Donor Activating KIR2DS1. N Engl J Med, 2012. 367(9): p. 805–16.Google Scholar
Barker, J.N., Byam, C., and Scaradavou, A., How I Treat: The Selection and Acquisition of Unrelated Cord Blood Grafts. Blood, 2011. 117(8): p. 2332–9.Google Scholar
Eapen, M., et al., Effect of Donor-recipient HLA Matching at HLA A, B, C, and DRB1 on Outcomes after Umbilical-cord Blood Transplantation for Leukaemia and Myelodysplastic Syndrome: A Retrospective Analysis. Lancet Oncol, 2011. 12(13): p. 1214–21.CrossRefGoogle Scholar
Cutler, C., et al., Donor-specific Anti-HLA Antibodies Predict Outcome in Double Umbilical Cord Blood Transplantation. Blood, 2011. 118(25): p. 6691–7.Google Scholar
de Lima, M., et al., Cord-blood Engraftment with ex Vivo Mesenchymal-cell Coculture. N Engl J Med, 2012. 367(24): p. 2305–15.Google Scholar
Delaney, C., et al., Notch-mediated Expansion of Human Cord Blood Progenitor Cells Capable of Rapid Myeloid Reconstitution. Nat Med, 2010. 16(2): p. 232–6.Google Scholar
Liu, H., et al., Reduced-intensity Conditioning with Combined Haploidentical and Cord Blood Transplantation Results in Rapid Engraftment, Low GVHD, and Durable Remissions. Blood, 2011. 118(24): p. 6438–45.Google Scholar
Peled, T., et al., Nicotinamide, a SIRT1 Inhibitor, Inhibits Differentiation and Facilitates Expansion of Hematopoietic Progenitor Cells with Enhanced Bone Marrow Homing and Engraftment. Exp Hematol, 2012. 40(4): p. 342–55 e1.Google Scholar
Porter, R.L., et al., Prostaglandin E2 Increases Hematopoietic Stem Cell Survival and Accelerates Hematopoietic Recovery after Radiation Injury. Stem Cells, 2013. 31(2): p. 372–83.Google Scholar
North, T.E., et al., Prostaglandin E2 Regulates Vertebrate Haematopoietic Stem Cell Homeostasis. Nature, 2007. 447(7147): p. 1007–11.Google Scholar
Xia, L., et al., Surface Fucosylation of Human Cord Blood Cells Augments Binding to P-selectin and E-selectin and Enhances Engraftment in Bone Marrow. Blood, 2004. 104(10): p. 3091–6.Google Scholar
Xu, H., et al., A Critical Role for the TLR4/TRIF Pathway in Allogeneic Hematopoietic Cell Rejection by Innate Immune Cells. Cell Transplant, 2012.Google Scholar
Joffre, O., et al., Prevention of Acute and Chronic Allograft Rejection with CD4+CD25+Foxp3+ Regulatory T Lymphocytes. Nat Med, 2008. 14(1): p. 8892.Google Scholar
Scheffold, C., et al., Cytokines and Cytotoxic Pathways in Engraftment Resistance to Purified Allogeneic Hematopoietic Stem Cells. Biol Blood Marrow Transplant, 2005. 11(1): p. 112.Google Scholar
Ciurea, S.O., et al., Donor-specific Anti-HLA Abs and Graft Failure in Matched Unrelated Donor Hematopoietic Stem Cell Transplantation. Blood, 2011. 118(22): p. 5957–64.Google Scholar
Jabbour, E., et al., Treatment of Donor Graft Failure with Nonmyeloablative Conditioning of Fludarabine, Antithymocyte Globulin and a Second Allogeneic Hematopoietic Transplantation. Bone Marrow Transplant, 2007. 40(5): p. 431–5.Google Scholar
Curley, C., et al., Outcomes after Major or Bidirectional ABO-mismatched Allogeneic Hematopoietic Progenitor Cell Transplantation after Pretransplant Isoagglutinin Reduction with Donor-type Secretor Plasma with or without Plasma Exchange. Transfusion, 2012. 52(2): p. 291–7.Google Scholar
Worel, N., et al., Prophylactic Red Blood Cell Exchange for Prevention of Severe Immune Hemolysis in Minor ABO-mismatched Allogeneic Peripheral Blood Progenitor Cell Transplantation after Reduced-intensity Conditioning. Transfusion, 2007. 47(8): p. 1494–502.Google Scholar
Helbig, G., et al., Pure Red-cell Aplasia Following Major and Bi-directional ABO-incompatible Allogeneic Stem-cell Transplantation: Recovery of Donor-derived Erythropoiesis after Long-term Treatment Using Different Therapeutic Strategies. Ann Hematol, 2007. 86(9): p. 677–83.Google Scholar
Hirokawa, M., et al., Efficacy and Long-term Outcome of Treatment for Pure Red Cell Aplasia after Allogeneic Stem Cell Transplantation from Major ABO-incompatible Donors. Biol Blood Marrow Transplant, 2013. 19(7): p. 1026–32.Google Scholar
Booth, G.S., et al., Clinical Guide to ABO-Incompatible Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2013. 19(8): p. 1152–8.Google Scholar
Pavenski, K., et al., Efficacy of HLA-matched Platelet Transfusions for Patients with Hypoproliferative Thrombocytopenia: A Systematic Review. Transfusion, 2013.Google Scholar
Rebulla, P., A Mini-review on Platelet Refractoriness. Haematologica, 2005. 90(2): p. 247–53.Google Scholar
Radia, R. and Pamphilon, D., Transfusion Strategies in Patients Undergoing Stem-cell Transplantation. Expert Rev Hematol, 2011. 4(2): p. 213–20.Google Scholar
Storek, J., et al., Reconstitution of the Immune System after Hematopoietic Stem Cell Transplantation in Humans. Seminars in Immunopathology, 2008. 30(4): p. 425437.Google Scholar
Gress, R.E., et al., Lymphoid Reconstruction and Vaccines. Biol Blood Marrow Transplant, 2007. 13(1 Suppl 1): p. 1722.Google Scholar
Cham, B.P., et al., Neutrophil Function in Pediatric Patients after Bone Marrow Transplantation. International Journal of Pediatric Hematology/Oncology, 1996. 3(1): p. 7582.Google Scholar
Barczyk, A., et al., Decreased Levels of Myeloperoxidase in Induced Sputum of Patients with COPD after Treatment with Oral Glucocorticoids. Chest, 2004. 126(2): p. 389393.Google Scholar
Orciuolo, E., et al., Effects of Aspergillus Fumigatus Gliotoxin and Methylprednisolone on Human Neutrophils: Implications for the Pathogenesis of Invasive Aspergillosis. J Leukoc Biol, 2007. 82(4): p. 839–48.CrossRefGoogle ScholarPubMed
Boeckh, M., et al., Cytomegalovirus in Hematopoietic Stem Cell Transplant Recipients: Current Status, Known Challenges, and Future Strategies. Biol Blood Marrow Transplant, 2003. 9(9): p. 543–58.Google Scholar
Mullighan, C.G., et al., Mannose-binding Lectin Status Is Associated with Risk of Major Infection Following Myeloablative Sibling Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2008. 112(5): p. 21202128.Google Scholar
Bochud, P.Y., et al., Toll-like Receptor 4 Polymorphisms and Aspergillosis in Stem-cell Transplantation. New England Journal of Medicine, 2008. 359(17): p. 17661777.Google Scholar
Peggs, K.S., Immune Reconstitution Following Stem Cell Transplantation. Leuk Lymphoma, 2004. 45(6): p. 10931101.Google Scholar
Lowdell, M.W., Natural Killer Cells in Haematopoietic Stem Cell Transplantation. Transfusion Medicine, 2003. 13(6): p. 399404.Google Scholar
Morris, E.S., et al., Induction of Natural Killer T Cell-dependent Alloreactivity by Administration of Granulocyte Colony-stimulating Factor after Bone Marrow Transplantation. Nat Med, 2009. 15(4): p. 436–41.Google Scholar
Zeng, S.G., et al., Human Invariant NKT Cell Subsets Differentially Promote Differentiation, Antibody Production, and T Cell Stimulation by B Cells in Vitro. J Immunol, 2013. 191(4): p. 1666–76.Google Scholar
Ly, D., et al., An Alpha-galactosylceramide C20:2 N-acyl Variant Enhances Anti-inflammatory and Regulatory T Cell-independent Responses that Prevent Type 1 Diabetes. Clin Exp Immunol, 2010. 160(2): p. 185–98.Google Scholar
Talarn, C., et al., Kinetics of Recovery of Dendritic Cell Subsets after Reduced-intensity Conditioning Allogeneic Stem Cell Transplantation and Clinical Outcome. Haematologica, 2007. 92(12): p. 1655–63.Google Scholar
Komanduri, K.V., et al., Delayed Immune Reconstitution after Cord Blood Transplantation Is Characterized by Impaired Thymopoiesis and Late Memory T-cell Skewing. Blood, 2007. 110(13): p. 4543–51.Google Scholar
Chang, Y.J., et al., Immune Reconstitution Following Unmanipulated HLA-Mismatched/Haploidentical Transplantation Compared with HLA-identical Sibling Transplantation. J Clin Immunol, 2012. 32(2): p. 268–80.Google Scholar
Corre, E., et al., Long-term Immune Deficiency after Allogeneic Stem Cell Transplantation: B-cell Deficiency Is Associated with Late Infections. Haematologica, 2010. 95(6): p. 1025–9.Google Scholar
Kalwak, K., et al., Immune Reconstitution after Haematopoietic Cell Transplantation in Children: Immunophenotype Analysis with Regard to Factors Affecting the Speed of Recovery. Br J Haematol, 2002. 118(1): p. 7489.Google Scholar
Allen, J.L., et al., B Cells from Patients with Chronic GVHD Are Activated and Primed for Survival via BAFF-mediated Pathways. Blood, 2012. 120(12): p. 2529–36.Google Scholar
Hazenberg, M.D., et al., T-cell Receptor Excision Circle and T-cell Dynamics after Allogeneic Stem Cell Transplantation Are Related to Clinical Events. Blood, 2002. 99(9): p. 3449–53.Google Scholar
Storek, J., et al., Immune Reconstitution after Allogeneic Marrow Transplantation Compared with Blood Stem Cell Transplantation. Blood, 2001. 97(11): p. 3380–9.Google Scholar
Storek, J., et al., Improved Reconstitution of CD4 T Cells and B Cells but Worsened Reconstitution of Serum IgG Levels after Allogeneic Transplantation of Blood Stem Cells Instead of Marrow. Blood, 1997. 89(10): p. 3891–3.Google Scholar
Parmar, S., et al., Ex Vivo Expanded Umbilical Cord Blood T Cells Maintain Naive Phenotype and TCR Diversity. Cytotherapy, 2006. 8(2): p. 149–57.Google Scholar
Ozdemir, E., et al., Cytomegalovirus Reactivation Following Allogeneic Stem Cell Transplantation Is Associated with the Presence of Dysfunctional Antigen-specific CD8+ T Cells. Blood, 2002. 100(10): p. 3690–7.Google Scholar
Escalon, M.P. and Komanduri, K.V., Cord Blood Transplantation: Evolving Strategies to Improve Engraftment and Immune Reconstitution. Curr Opin Oncol, 2010. 22(2): p. 122–9.Google Scholar
Della Chiesa, M., et al., Phenotypic and Functional Heterogeneity of Human NK Cells Developing after Umbilical Cord Blood Transplantation: A Role for Human Cytomegalovirus? Blood, 2012. 119(2): p. 399410.Google Scholar
Poulin, J.F., et al., Direct Evidence for Thymic Function in Adult Humans. Journal of Experimental Medicine, 1999. 190(4): p. 479–86.Google Scholar
Douek, D.C., et al., Changes in Thymic Function with Age and during the Treatment of HIV Infection. Nature, 1998. 396(6712): p. 690–5.Google Scholar
Clave, E., et al., Acute Graft-versus-Host Disease Transiently Impairs Thymic Output in Young Patients after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2009. 113(25): p. 6477–84.Google Scholar
Chung, B., et al., Combined Effects of Interleukin-7 and Stem Cell Factor Administration on Lymphopoiesis after Murine Bone Marrow Transplantation. Biol Blood Marrow Transplant, 2011. 17(1): p. 4860.Google Scholar
Andre-Schmutz, I., et al., IL-7 Effect on Immunological Reconstitution after HSCT Depends on MHC Incompatibility. Br J Haematol, 2004. 126(6): p. 844–51.Google Scholar
Okamoto, Y., et al., Effects of Exogenous Interleukin-7 on Human Thymus Function. Blood, 2002. 99(8): p. 2851–8.Google Scholar
Min, D., et al., Sustained Thymopoiesis and Improvement in Functional Immunity Induced by Exogenous KGF Administration in Murine Models of Aging. Blood, 2007. 109(6): p. 2529–37.Google Scholar
Goldberg, G.L., et al., Luteinizing Hormone-releasing Hormone Enhances T Cell Recovery Following Allogeneic Bone Marrow Transplantation. J Immunol, 2009. 182(9): p. 5846–54.Google Scholar
Brunstein, C.G., et al., Infusion of ex Vivo Expanded T Regulatory Cells in Adults Transplanted with Umbilical Cord Blood: Safety Profile and Detection Kinetics. Blood, 2011. 117(3): p. 1061–70.Google Scholar
Di Ianni, M., et al., Tregs Prevent GVHD and Promote Immune Reconstitution in HLA-haploidentical Transplantation. Blood, 2011. 117(14): p. 3921–8.Google Scholar
Hanley, P.J., et al., Functionally Active Virus-specific T Cells that Target CMV, Adenovirus, and EBV Can Be Expanded from Naive T-cell Populations in Cord Blood and Will Target a Range of Viral Epitopes. Blood, 2009. 114(9): p. 1958–67.Google Scholar
Harter, C., et al., Piperacillin/Tazobactam vs Ceftazidime in the Treatment of Neutropenic Fever in Patients with Acute Leukemia or Following Autologous Peripheral Blood Stem Cell Transplantation: A Prospective Randomized Trial. Bone Marrow Transplant, 2006. 37(4): p. 373–9.Google Scholar
Koya, R., et al., Analysis of the Value of Empiric Vancomycin Administration in Febrile Neutropenia Occurring after Autologous Peripheral Blood Stem Cell Transplants. Bone Marrow Transplant, 1998. 21(9): p. 923–6.Google Scholar
Clutter, D.S., et al., Fidaxomicin versus Conventional Antimicrobial Therapy in 59 Recipients of Solid Organ and Hematopoietic Stem Cell Transplantation with Clostridium Difficile-associated Diarrhea. Antimicrob Agents Chemother, 2013. 57(9): p. 4501–5.Google Scholar
Dubberke, E.R., et al., Severity of Clostridium Difficile-associated Disease (CDAD) in Allogeneic Stem Cell Transplant Recipients: Evaluation of a CDAD Severity Grading System. Infect Control Hosp Epidemiol, 2007. 28(2): p. 208–11.Google Scholar
Arango, J.I., et al., Incidence of Clostridium Difficile-associated Diarrhea before and after Autologous Peripheral Blood Stem Cell Transplantation for Lymphoma and Multiple Myeloma. Bone Marrow Transplant, 2006. 37(5): p. 517–21.Google Scholar
Hogenauer, C., et al., Klebsiella Oxytoca as a Causative Organism of Antibiotic-associated Hemorrhagic Colitis. N Engl J Med, 2006. 355(23): p. 2418–26.Google Scholar
Al-Anazi, K.A., et al., Klebsiella Oxytoca Bacteremia Causing Septic Shock in Recipients of Hematopoietic Stem Cell Transplant: Two Case Reports. Cases J, 2008. 1(1): p. 160.Google Scholar
Bhatt, A.S., et al., Sequence-based Discovery of Bradyrhizobium Enterica in Cord Colitis Syndrome. N Engl J Med, 2013. 369(6): p. 517–28.Google Scholar
Trifilio, S.M., et al., Breakthrough Zygomycosis after Voriconazole Administration among Patients with Hematologic Malignancies Who Receive Hematopoietic Stem-cell Transplants or Intensive Chemotherapy. Bone Marrow Transplant, 2007. 39(7): p. 425–9.Google Scholar
Person, A.K., Kontoyiannis, D.P., and Alexander, B.D., Fungal Infections in Transplant and Oncology Patients. Infect Dis Clin North Am, 2010. 24(2): p. 439–59.Google Scholar
Lindemans, C.A., Leen, A.M., and Boelens, J.J., How I Treat Adenovirus in Hematopoietic Stem Cell Transplant Recipients. Blood, 2010. 116(25): p. 5476–85.Google Scholar
Ullmann, A.J., et al., Posaconazole or Fluconazole for Prophylaxis in Severe Graft-versus-Host Disease. N Engl J Med, 2007. 356(4): p. 335–47.Google Scholar
Fishman, J.A., Prevention of Infection Caused by Pneumocystis Carinii in Transplant Recipients. Clin Infect Dis, 2001. 33(8): p. 1397–405.Google Scholar
Koskenvuo, M., et al., BK Polyomavirus-associated Hemorrhagic Cystitis among Pediatric Allogeneic Bone Marrow Transplant Recipients: Treatment Response and Evidence for Nosocomial Transmission. J Clin Virol, 2013. 56(1): p. 7781.Google Scholar
Raval, M., et al., Evaluation and Management of BK Virus-associated Nephropathy Following Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant, 2011. 17(11): p. 1589–93.Google Scholar
Miller, A.N., et al., Efficacy and Safety of Ciprofloxacin for Prophylaxis of Polyomavirus BK Virus-associated Hemorrhagic Cystitis in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Biol Blood Marrow Transplant, 2011. 17(8): p. 1176–81.Google Scholar
Chen, X.C., et al., Efficacy and Safety of Leflunomide for the Treatment of BK Virus-associated Hemorrhagic Cystitis in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Acta Haematol, 2013. 130(1): p. 52–6.Google Scholar
Lekakis, L.J., et al., BK Virus Nephropathy after Allogeneic Stem Cell Transplantation: A Case Report and Literature Review. Am J Hematol, 2009. 84(4): p. 243–6.Google Scholar
Tomblyn, M., et al., Guidelines for Preventing Infectious Complications among Hematopoietic Cell Transplantation Recipients: A Global Perspective. Biol Blood Marrow Transplant, 2009. 15(10): p. 1143–238.Google Scholar
Boeckh, M. and Ljungman, P., How We Treat Cytomegalovirus in Hematopoietic Cell Transplant Recipients. Blood, 2009. 113(23): p. 5711–9.CrossRefGoogle ScholarPubMed
Heslop, H.E., How I Treat EBV Lymphoproliferation. Blood, 2009. 114(19): p. 4002–8.Google Scholar
Maertens, J., et al., Screening for Circulating Galactomannan as a Noninvasive Diagnostic Tool for Invasive Aspergillosis in Prolonged Neutropenic Patients and Stem Cell Transplantation Recipients: A Prospective Validation. Blood, 2001. 97(6): p. 1604–10.Google Scholar
Savani, B.N., et al., How I Treat Late Effects in Adults after Allogeneic Stem Cell Transplantation. Blood, 2011. 117(11): p. 3002–9.Google Scholar
Meisel, R., et al., Pneumococcal Conjugate Vaccine Provides Early Protective Antibody Responses in Children after Related and Unrelated Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2007. 109(6): p. 2322–6.Google Scholar
Coppell, J.A., et al., Hepatic Veno-occlusive Disease Following Stem Cell Transplantation: Incidence, Clinical Course, and Outcome. Biol Blood Marrow Transplant, 2010. 16(2): p. 157–68.Google Scholar
Cutler, C., et al., Prediction of Veno-occlusive Disease Using Biomarkers of Endothelial Injury. Biol Blood Marrow Transplant, 2010. 16(8): p. 1180–5.Google Scholar
Ryu, S.G., et al., Randomized Comparison of Four-Times-Daily versus Once-Daily Intravenous Busulfan in Conditioning Therapy for Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant, 2007. 13(9): p. 1095–105.Google Scholar
Hassan, Z., Optimal Approach to Prevent Veno-occlusive Disease Following Hematopoietic Stem Cell Transplantation in Children. Pediatr Transplant, 2010. 14(6): p. 683–7.Google Scholar
Lakshminarayanan, S., et al., Low Incidence of Hepatic Veno-occlusive Disease in Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation Attributed to a Combination of Intravenous Heparin, Oral Glutamine, and Ursodiol at a Single Transplant Institution. Pediatr Transplant, 2010. 14(5): p. 618–21.Google Scholar
Tay, J., et al., Systematic Review of Controlled Clinical Trials on the Use of Ursodeoxycholic Acid for the Prevention of Hepatic Veno-occlusive Disease in Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2007. 13(2): p. 206–17.Google Scholar
Ruutu, T., et al., Ursodeoxycholic Acid for the Prevention of Hepatic Complications in Allogeneic Stem Cell Transplantation. Blood, 2002. 100(6): p. 1977–83.Google Scholar
Laskin, B.L., et al., Small Vessels, Big Trouble in the Kidneys and Beyond: Hematopoietic Stem Cell Transplantation-associated Thrombotic Microangiopathy. Blood, 2011. 118(6): p. 1452–62.Google Scholar
Rosenthal, J., et al., Transplant-associated Thrombotic Microangiopathy in Pediatric Patients Treated with Sirolimus and Tacrolimus. Pediatr Blood Cancer, 2011. 57(1): p. 142–6.Google Scholar
Kennedy, G.A., et al., Transplantation-associated Thrombotic Microangiopathy: Effect of Concomitant GVHD on Efficacy of Therapeutic Plasma Exchange. Bone Marrow Transplant, 2010. 45(4): p. 699704.Google Scholar
Uderzo, C., et al., Risk Factors and Severe Outcome in Thrombotic Microangiopathy after Allogeneic Hematopoietic Stem Cell Transplantation. Transplantation, 2006. 82(5): p. 638–44.Google Scholar
Wingard, J.R., Hiemenz, J.W., and Jantz, M.A., How I Manage Pulmonary Nodular Lesions and Nodular Infiltrates in Patients with Hematologic Malignancies or Undergoing Hematopoietic Cell Transplantation. Blood, 2012. 120(9): p. 1791–800.Google Scholar
Frangoul, H., Koyama, T., and Domm, J., Etanercept for Treatment of Idiopathic Pneumonia Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2009. 113(12): p. 2868–9; author reply 2869.Google Scholar
Yanik, G.A., et al., The Impact of Soluble Tumor Necrosis Factor Receptor Etanercept on the Treatment of Idiopathic Pneumonia Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2008. 112(8): p. 3073–81.Google Scholar
Hildebrandt, G.C., et al., Donor T-cell Production of RANTES Significantly Contributes to the Development of Idiopathic Pneumonia Syndrome after Allogeneic Stem Cell Transplantation. Blood, 2005. 105(6): p. 2249–57.Google Scholar
Shenoy, A., Savani, B.N., and Barrett, A.J., Recombinant Factor VIIa to Treat Diffuse Alveolar Hemorrhage Following Allogeneic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2007. 13(5): p. 622–3.Google Scholar
Majhail, N.S., et al., Diffuse Alveolar Hemorrhage and Infection-associated Alveolar Hemorrhage Following Hematopoietic Stem Cell Transplantation: Related and High-risk Clinical Syndromes. Biol Blood Marrow Transplant, 2006. 12(10): p. 1038–46.Google Scholar
Wanko, S.O., et al., Diffuse Alveolar Hemorrhage: Retrospective Review of Clinical Outcome in Allogeneic Transplant Recipients Treated with Aminocaproic Acid. Biol Blood Marrow Transplant, 2006. 12(9): p. 949–53.Google Scholar
Yoshihara, S., et al., Bronchiolitis Obliterans Syndrome (BOS), Bronchiolitis Obliterans Organizing Pneumonia (BOOP), and Other Late-onset Noninfectious Pulmonary Complications Following Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2007. 13(7): p. 749–59.Google Scholar
Bernard, D., et al., CBX7 Controls the Growth of Normal and Tumor-derived Prostate Cells by Repressing the Ink4a/Arf Locus. Oncogene, 2005. 24(36): p. 5543–51.Google Scholar
Dandoy, C., et al., Pulmonary Hypertension after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2013.Google Scholar
Sakaida, E., et al., Late-onset Noninfectious Pulmonary Complications after Allogeneic Stem Cell Transplantation Are Significantly Associated with Chronic Graft-versus-Host Disease and with the Graft-versus-Leukemia Effect. Blood, 2003. 102(12): p. 4236–42.Google Scholar
Bashoura, L., et al., Inhaled Corticosteroids Stabilize Constrictive Bronchiolitis after Hematopoietic Stem Cell Transplantation. Bone Marrow Transplant, 2008. 41(1): p. 63–7.Google Scholar
Sengsayadeth, S.M., et al., Time to Explore Preventive and Novel Therapies for Bronchiolitis Obliterans Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2012. 18(10): p. 1479–87.Google Scholar
Au, B.K., Au, M.A., and Chien, J.W., Bronchiolitis Obliterans Syndrome Epidemiology after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant, 2011. 17(7): p. 1072–8.Google Scholar
Chien, J.W., et al., Bronchiolitis Obliterans Syndrome after Allogeneic Hematopoietic Stem Cell Transplantation—An Increasingly Recognized Manifestation of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2010. 16(1 Suppl): p. S10614.Google Scholar
Spielberger, R., et al., Palifermin for Oral Mucositis after Intensive Therapy for Hematologic Cancers. N Engl J Med, 2004. 351(25): p. 2590–8.Google Scholar
Phillips, G.L., 2nd, et al., A Phase I Trial: Dose Escalation of Melphalan in the “BEAM” Regimen Using Amifostine Cytoprotection. Biol Blood Marrow Transplant, 2011. 17(7): p. 1033–42.Google Scholar
Spencer, A., et al., Prospective Randomised Trial of Amifostine Cytoprotection in Myeloma Patients Undergoing High-dose Melphalan Conditioned Autologous Stem Cell Transplantation. Bone Marrow Transplant, 2005. 35(10): p. 971–7.Google Scholar
Hensley, M.L., et al., American Society of Clinical Oncology 2008 Clinical Practice Guideline Update: Use of Chemotherapy and Radiation Therapy Protectants. J Clin Oncol, 2009. 27(1): p. 127–45.Google Scholar
Keefe, D.M., et al., Updated Clinical Practice Guidelines for the Prevention and Treatment of Mucositis. Cancer, 2007. 109(5): p. 820–31.Google Scholar
Bensinger, W., et al., NCCN Task Force Report. Prevention and Management of Mucositis in Cancer Care. J Natl Compr Canc Netw, 2008. 6 Suppl 1: p. S121; quiz S22–4.Google Scholar
Ferrara, J.L., et al., Graft-versus-Host Disease. Lancet, 2009. 373(9674): p. 1550–61.Google Scholar
Shlomchik, W.D., Graft-versus-Host Disease. Nat Rev Immunol, 2007. 7(5): p. 340–52.Google Scholar
Blazar, B.R., Murphy, W.J., and Abedi, M., Advances in Graft-versus-Host Disease Biology and Therapy. Nat Rev Immunol, 2012. 12(6): p. 443–58.Google Scholar
Saliba, R.M., et al., Hyperacute GVHD: Risk Factors, Outcomes, and Clinical Implications. Blood, 2007. 109(7): p. 2751–8.Google Scholar
Shlomchik, W.D., et al., Prevention of Graft versus Host Disease by Inactivation of Host Antigen-presenting Cells. Science, 1999. 285(5426): p. 412–5.Google Scholar
Koyama, M., et al., Recipient Nonhematopoietic Antigen-presenting Cells Are Sufficient to Induce Lethal Acute Graft-versus-Host Disease. Nat Med, 2012. 18(1): p. 135–42.Google Scholar
Koyama, M., et al., Plasmacytoid Dendritic Cells Prime Alloreactive T Cells to Mediate Graft-versus-Host Disease as Antigen-presenting Cells. Blood, 2009. 113(9): p. 2088–95.Google Scholar
Maier, T., Holda, J.H., and Claman, H.N., Graft-vs-Host Reactions (GVHR) across Minor Murine Histocompatibility Barriers. II. Development of Natural Suppressor Cell Activity. J Immunol, 1985. 135(3): p. 1644–51.Google Scholar
Guinan, E.C., et al., Transplantation of Anergic Histoincompatible Bone Marrow Allografts. N Engl J Med, 1999. 340(22): p. 1704–14.Google Scholar
Prigozhina, T.B., et al., CD40 Ligand-specific Antibodies Synergize with Cyclophosphamide to Promote Long-term Transplantation Tolerance across MHC Barriers but Inhibit Graft-vs-Leukemia Effects of Transplanted Cells. Exp Hematol, 2003. 31(1): p. 81–8.Google Scholar
Li, J., et al., Roles of CD28, CTLA4, and Inducible Costimulator in Acute Graft-versus-Host Disease in Mice. Biol Blood Marrow Transplant, 2011. 17(7): p. 962–9.Google Scholar
Cooke, K.R., et al., LPS Antagonism Reduces Graft-versus-Host Disease and Preserves Graft-versus-Leukemia Activity after Experimental Bone Marrow Transplantation. J Clin Invest, 2001. 107(12): p. 1581–9.Google Scholar
Calcaterra, C., et al., Critical Role of TLR9 in Acute Graft-versus-Host Disease. J Immunol, 2008. 181(9): p. 6132–9.Google Scholar
Penack, O., et al., NOD2 Regulates Hematopoietic Cell Function during Graft-versus-Host Disease. J Exp Med, 2009. 206(10): p. 2101–10.Google Scholar
Wilhelm, K., et al., Graft-versus-Host Disease Is Enhanced by Extracellular ATP Activating P2X7 R. Nat Med, 2010. 16(12): p. 1434–8.Google Scholar
Holler, E., et al., Both Donor and Recipient NOD2/CARD15 Mutations Associated with Transplant-related Mortality and GvHD Following Allogeneic Stem Cell Transplantation. Blood, 2004. 104(3): p. 889–94.Google Scholar
Anderson, B.E., et al., Memory CD4+ T Cells Do Not Induce Graft-versus-Host Disease. J Clin Invest, 2003. 112(1): p. 101–8.Google Scholar
Anderson, B.E., et al., Memory T Cells in GVHD and GVL. Biol Blood Marrow Transplant, 2008. 14(1 Suppl 1): p. 1920.Google Scholar
Zhang, Y., et al., Host-reactive CD8+ Memory Stem Cells in Graft-versus-Host Disease. Nat Med, 2005. 11(12): p. 1299–305.Google Scholar
Chen, B.J., et al., Transfer of Allogeneic CD62L- Memory T Cells without Graft-versus-Host Disease. Blood, 2004. 103(4): p. 1534–41.Google Scholar
Chen, B.J., et al., Inability of Memory T Cells to Induce Graft-versus-Host Disease Is a Result of an Abortive Alloresponse. Blood, 2007. 109(7): p. 3115–23.Google Scholar
Zheng, H., et al., Central Memory CD8+ T Cells Induce Graft-versus-Host Disease and Mediate Graft-versus-Leukemia. J Immunol, 2009. 182(10): p. 5938–48.Google Scholar
Zheng, H., et al., Effector Memory CD4+ T Cells Mediate Graft-versus-Leukemia without Inducing Graft-versus-Host Disease. Blood, 2008. 111(4): p. 2476–84.Google Scholar
Shindo, T., et al., MEK Inhibitors Selectively Suppress Alloreactivity and Graft-versus-Host Disease in a Memory Stage-dependent Manner. Blood, 2013. 121(23): p. 4617–26.Google Scholar
Kim, T.K., et al., Co-engagement of Alpha(4)Beta(1) Integrin (VLA-4) and CD4 or CD8 is Necessary to Induce Maximal Erk1/2 Phosphorylation and Cytokine Production in Human T Cells. Hum Immunol, 2010. 71(1): p. 23–8.Google Scholar
Kim, T.K., et al., Human Late Memory CD8+ T Cells Have a Distinct Cytokine Signature Characterized by CC Chemokine Production without IL-2 Production. Journal of Immunology, 2009.Google Scholar
Martins, S.L., et al., Functional Assessment and Specific Depletion of Alloreactive Human T Cells Using Flow Cytometry. Blood, 2004. 104(12): p. 3429–36.Google Scholar
Petrovic, A., et al., LPAM (Alpha 4 Beta 7 Integrin) Is an Important Homing Integrin on Alloreactive T Cells in the Development of Intestinal Graft-versus-Host Disease. Blood, 2004. 103(4): p. 1542–7.Google Scholar
Murai, M., et al., Peyer’s Patch Is the Essential Site in Initiating Murine Acute and Lethal Graft-versus-Host Reaction. Nat Immunol, 2003. 4(2): p. 154–60.Google Scholar
Sandborn, W.J., et al., Vedolizumab as Induction and Maintenance Therapy for Crohn’s Disease. N Engl J Med, 2013. 369(8): p. 711–21.Google Scholar
Feagan, B.G., et al., Vedolizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med, 2013. 369(8): p. 699710.Google Scholar
Reshef, R., et al., Blockade of Lymphocyte Chemotaxis in Visceral Graft-versus-Host Disease. N Engl J Med, 2012. 367(2): p. 135–45.Google Scholar
Chen, Y.B., et al., Expression of CD30 in Patients with Acute Graft-versus-Host Disease. Blood, 2012. 120(3): p. 691–6.Google Scholar
Jankovic, D., et al., The Nlrp3 Inflammasome Regulates Acute Graft-versus-Host Disease. J Exp Med, 2013.Google Scholar
Ratajczak, P., et al., Th17/Treg Ratio in Human Graft-versus-Host Disease. Blood, 2010. 116(7): p. 1165–71.Google Scholar
Iclozan, C., et al., T Helper17 Cells Are Sufficient but Not Necessary to Induce Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2010. 16(2): p. 170–8.Google Scholar
Hanash, A.M., et al., Interleukin-22 Protects Intestinal Stem Cells from Immune-mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease. Immunity, 2012. 37(2): p. 339–50.Google Scholar
Edinger, M., et al., CD4+CD25+ Regulatory T Cells Preserve Graft-versus-Tumor Activity while Inhibiting Graft-versus-Host Disease after Bone Marrow Transplantation. Nat Med, 2003. 9(9): p. 1144–50.Google Scholar
Koreth, J., et al., Interleukin-2 and Regulatory T Cells in Graft-versus-Host Disease. N Engl J Med, 2011. 365(22): p. 2055–66.Google Scholar
Levine, J.E., et al., Acute Graft-versus-Host Disease Biomarkers Measured during Therapy Can Predict Treatment Outcomes: A Blood and Marrow Transplant Clinical Trials Network Study. Blood, 2012. 119(16): p. 3854–60.Google Scholar
Harris, A.C., et al., Plasma Biomarkers of Lower Gastrointestinal and Liver Acute GVHD. Blood, 2012. 119(12): p. 2960–3.Google Scholar
Ferrara, J.L., Advances in the Clinical Management of GVHD. Best Pract Res Clin Haematol, 2008. 21(4): p. 677–82.Google Scholar
Paczesny, S., et al., A Biomarker Panel for Acute Graft-versus-Host Disease. Blood, 2009. 113(2): p. 273–8.Google Scholar
Vander Lugt, M.T., et al., ST2 as a Marker for Risk of Therapy-resistant Graft-versus-Host Disease and Death. N Engl J Med, 2013. 369(6): p. 529–39.Google Scholar
Lin, M.T., et al., Relation of an Interleukin-10 Promoter Polymorphism to Graft-versus-Host Disease and Survival after Hematopoietic-cell Transplantation. N Engl J Med, 2003. 349(23): p. 2201–10.Google Scholar
Goddard, D.S., et al., Clinical Update on Graft-versus-Host Disease in Children. Semin Cutan Med Surg, 2010. 29(2): p. 92105.Google Scholar
Washington, K. and Jagasia, M., Pathology of Graft-versus-Host Disease in the Gastrointestinal Tract. Hum Pathol, 2009. 40(7): p. 909–17.Google Scholar
Shulman, H.M., et al., Histopathologic Diagnosis of Chronic Graft-versus-Host Disease: National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: II. Pathology Working Group Report. Biol Blood Marrow Transplant, 2006. 12(1): p. 3147.Google Scholar
Ma, S.Y., et al., Hepatitic Graft-versus-Host Disease after Hematopoietic Stem Cell Transplantation: Clinicopathologic Features and Prognostic Implication. Transplantation, 2004. 77(8): p. 1252–9.Google Scholar
Deeg, H.J. and Antin, J.H., The Clinical Spectrum of Acute Graft-versus-Host Disease. Semin Hematol, 2006. 43(1): p. 2431.Google Scholar
Kanakry, C.G., et al., Aldehyde Dehydrogenase Expression Drives Human Regulatory T Cell Resistance to Posttransplantation Cyclophosphamide. Sci Transl Med, 2013. 5(211): p. 211ra157.Google Scholar
Ross, D., et al., Antigen and Lymphopenia-driven Donor T Cells Are Differentially Diminished by Post-transplantation Administration of Cyclophosphamide after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant, 2013. 19(10): p. 1430–8.Google Scholar
Martin, P.J., et al., First- and Second-line Systemic Treatment of Acute Graft-versus-Host Disease: Recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant, 2012. 18(8): p. 1150–63.Google Scholar
Wolf, D., et al., Novel Treatment Concepts for Graft-versus-Host Disease. Blood, 2012. 119(1): p. 1625.Google Scholar
Lee, S.J., New Approaches for Preventing and Treating Chronic Graft-versus-Host Disease. Blood, 2005. 105(11): p. 4200–6.Google Scholar
Arai, S., et al., Global and Organ-specific Chronic Graft-versus-Host Disease Severity According to the 2005 NIH Consensus Criteria. Blood, 2011. 118(15): p. 4242–9.Google Scholar
Zhi, L., et al., Enhanced Th17 Differentiation and Aggravated Arthritis in IEX-1-Deficient Mice by Mitochondrial Reactive Oxygen Species-mediated Signaling. J Immunol, 2012. 189(4): p. 1639–47.Google Scholar
Sarantopoulos, S., et al., High Levels of B-cell Activating Factor in Patients with Active Chronic Graft-versus-Host Disease. Clin Cancer Res, 2007. 13(20): p. 6107–14.Google Scholar
Navarra, S.V., et al., Efficacy and Safety of Belimumab in Patients with Active Systemic Lupus Erythematosus: A Randomised, Placebo-controlled, Phase 3 Trial. Lancet, 2011. 377(9767): p. 721–31.Google Scholar
Koreth, J., et al., Bortezomib-based Graft-versus-Host Disease Prophylaxis in HLA-Mismatched Unrelated Donor Transplantation. J Clin Oncol, 2012. 30(26): p. 3202–8.Google Scholar
Biagi, E., et al., Extracorporeal Photochemotherapy Is Accompanied by Increasing Levels of Circulating CD4+CD25+GITR+Foxp3+CD62L+ Functional Regulatory T-cells in Patients with Graft-versus-Host Disease. Transplantation, 2007. 84(1): p. 31–9.Google Scholar
Cutler, C., et al., Rituximab Prophylaxis Prevents Corticosteroid-requiring Chronic GVHD after Allogeneic Peripheral Blood Stem Cell Transplantation: Results of a Phase 2 Trial. Blood, 2013. 122(8): p. 1510–7.Google Scholar
Cutler, C., et al., Rituximab for Steroid-refractory Chronic Graft-versus-Host Disease. Blood, 2006. 108(2): p. 756–62.Google Scholar
Wolff, D., et al., Consensus Conference on Clinical Practice in Chronic GVHD: Second-line Treatment of Chronic Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2011. 17(1): p. 117.Google Scholar
Chavan, R. and el-Azhary, R., Cutaneous Graft-versus-Host Disease: Rationales and Treatment Options. Dermatol Ther, 2011. 24(2): p. 219–28.Google Scholar
Imanguli, M.M., et al., Oral Graft-versus-Host Disease. Oral Dis, 2008. 14(5): p. 396412.Google Scholar
Schubert, M.M. and Correa, M.E., Oral Graft-versus-Host Disease. Dent Clin North Am, 2008. 52(1): p. 79109, viii-ix.Google Scholar
Perez, R.L., et al., Limbus Damage in Ocular Graft-versus-Host Disease. Biol Blood Marrow Transplant, 2011. 17(2): p. 270–3.Google Scholar
Mohty, M., et al., Chronic Graft-versus-Host Disease after Allogeneic Blood Stem Cell Transplantation: Long-term Results of a Randomized Study. Blood, 2002. 100(9): p. 3128–34.Google Scholar
Spiryda, L.B., et al., Graft-versus-Host Disease of the Vulva and/or Vagina: Diagnosis and Treatment. Biol Blood Marrow Transplant, 2003. 9(12): p. 760–5.Google Scholar
Xu, L., et al., Histologic Findings in Lung Biopsies in Patients with Suspected Graft-versus-Host Disease. Hum Pathol, 2013. 44(7): p. 1233–40.Google Scholar
Hildebrandt, G.C., et al., Diagnosis and Treatment of Pulmonary Chronic GVHD: Report from the Consensus Conference on Clinical Practice in Chronic GVHD. Bone Marrow Transplant, 2011. 46(10): p. 1283–95.Google Scholar
Demetris, A.J., Immune Cholangitis: Liver Allograft Rejection and Graft-versus-Host Disease. Mayo Clin Proc, 1998. 73(4): p. 367–79.Google Scholar
Couriel, D.R., et al., Chronic Graft-versus-Host Disease Manifesting as Polymyositis: An Uncommon Presentation. Bone Marrow Transplant, 2002. 30(8): p. 543–6.Google Scholar
Lin, J., et al., Membranous Glomerulopathy Associated with Graft-versus-Host Disease Following Allogeneic Stem Cell Transplantation. Report of 2 Cases and Review of the Literature. Am J Nephrol, 2001. 21(5): p. 351–6.Google Scholar
Seber, A., Khan, S.P., and Kersey, J.H., Unexplained Effusions: Association with Allogeneic Bone Marrow Transplantation and Acute or Chronic Graft-versus-Host Disease. Bone Marrow Transplant, 1996. 17(2): p. 207–11.Google Scholar
Hamid, O., et al., Safety and Tumor Responses with Lambrolizumab (Anti-PD-1) in Melanoma. N Engl J Med, 2013. 369(2): p. 134–44.Google Scholar
Fong, L. and Small, E.J., Anti-cytotoxic T-lymphocyte Antigen-4 Antibody: The First in an Emerging Class of Immunomodulatory Antibodies for Cancer Treatment. J Clin Oncol, 2008. 26(32): p. 5275–83.Google Scholar
Filipovich, A.H., et al., National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. Diagnosis and Staging Working Group Report. Biol Blood Marrow Transplant, 2005. 11(12): p. 945–56.Google Scholar