Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:10:38.045Z Has data issue: false hasContentIssue false

Chapter 2 - The Pathology of Kidney Transplantation

Published online by Cambridge University Press:  17 March 2018

Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stefoni, S, Campieri, C, Donati, G, Orlandi, V. The History of Clinical Renal Transplant. J Nephrol. 2004;17(3):475–8.Google Scholar
Cecka, JM. The OPTN/UNOS Renal Transplant Registry. Clin Transpl. 2005:116.Google Scholar
Dharnidharka, VR, Fiorina, P, Harmon, WE. Kidney Transplantation in Children. New England Journal of Medicine. 2014;371(6):549–58.CrossRefGoogle ScholarPubMed
Cohen, DJ, St Martin, L, Christensen, LL, Bloom, RD, Sung, RS. Kidney and Pancreas Transplantation in the United States, 1995–2004. Am J Transplant. 2006;6(5 Pt 2):1153–69.Google Scholar
de Vries, DK, Wijermars, LG, Reinders, ME, Lindeman, JH, Schaapherder, AF. Donor Pre-treatment in Clinical Kidney Transplantation: A Critical Appraisal. Clin Transplant. 2013;27(6):799808.Google Scholar
Catena, F, Coccolini, F, Montori, G, Vallicelli, C, Amaduzzi, A, Ercolani, G, et al. Kidney Preservation: Review of Present and Future Perspective. Transplantation Proceedings. 2013;45(9):3170–7.Google Scholar
Lee, AP, Abramowicz, D. Is the Kidney Donor Risk Index a Step Forward in the Assessment of Deceased Donor Kidney Quality? Nephrol Dial Transplant. 2014.CrossRefGoogle Scholar
Friedewald, JJ, Samana, CJ, Kasiske, BL, Israni, AK, Stewart, D, Cherikh, W, et al. The Kidney Allocation System. Surg Clin North Am. 2013;93(6):1395–406.CrossRefGoogle ScholarPubMed
Nicholson, ML, Wheatley, TJ, Doughman, TM, White, SA, Morgan, JD, Veitch, PS, et al. A Prospective Randomized Trial of Three Different Sizes of Core-cutting Needle for Renal Transplant Biopsy. Kidney International. 2000;58(1):390–5.Google Scholar
Jennette, JC, Kshirsagar, AV. How Can the Safety and Diagnostic Yield of Percutaneous Renal Biopsies Be Optimized? Nat Clin Pract Nephrol. 2008;4(3):126–7.CrossRefGoogle ScholarPubMed
Manno, C, Strippoli, GF, Arnesano, L, Bonifati, C, Campobasso, N, Gesualdo, L, et al. Predictors of Bleeding Complications in Percutaneous Ultrasound-guided Renal Biopsy. Kidney Int. 2004;66(4):1570–7.Google Scholar
Song, JH, Cronan, JJ. Percutaneous Biopsy in Diffuse Renal Disease: Comparison of 18- and 14-gauge Automated Biopsy Devices. J Vasc Interv Radiol. 1998;9(4):651–5.Google Scholar
Racusen, LC, Solez, K, Colvin, RB, Bonsib, SM, Castro, MC, Cavallo, T, et al. The BANFF 97 Working Classification of Renal Allograft Pathology. Kidney International. 1999;55(2):713–23.Google Scholar
Colvin, RB, Cohen, AH, Saiontz, C, Bonsib, S, Buick, M, Burke, B, et al. Evaluation of Pathologic Criteria for Acute Renal Allograft Rejection: Reproducibility, Sensitivity, and Clinical Correlation. J Am Soc Nephrol. 1997;8(12):1930–41.Google Scholar
Sorof, JM, Vartanian, RK, Olson, JL, Tomlanovich, SJ, Vincenti, FG, Amend, WJ. Histopathological Concordance of Paired Renal Allograft Biopsy Cores. Effect on the Diagnosis and Management of Acute Rejection. Transplantation. 1995;60(11):1215–9.Google Scholar
Pegas, KL, Michel, K, Garcia, VD, Goldani, J, Bittar, A, Seelig, D, et al. Histopathological Analysis of Pre-implantation Donor Kidney Biopsies: Association with Graft Survival and Function in One Year Post-transplantation. Jornal brasileiro de nefrologia: ‘orgao oficial de Sociedades Brasileira e Latino-Americana de Nefrologia. 2014;36(2):186–93.Google Scholar
Eccher, A, Boschiero, L, Fior, F, Casartelli Liviero, M, Zampicini, L, Ghimenton, C, et al. Donor Kidneys with Miliary Papillary Renal Cell Neoplasia: The Role of the Pathologist in Determining Suitability for Transplantation. Ann Transplant. 2014;19:362–6.Google Scholar
Chapman, JR. Do Protocol Transplant Biopsies Improve Kidney Transplant Outcomes? Curr Opin Nephrol Hypertens. 2012;21(6):580–6.Google Scholar
Saidi, RF, Elias, N, Kawai, T, Hertl, M, Farrell, ML, Goes, N, et al. Outcome of Kidney Transplantation Using Expanded Criteria Donors and Donation after Cardiac Death Kidneys: Realities and Costs. Am J Transplant. 2007;7(12):2769–74.Google Scholar
Patel, SK, Pankewycz, OG, Weber-Shrikant, E, Zachariah, M, Kohli, R, Nader, ND, et al. Graft Arteriosclerosis and Glomerulosclerosis Correlate with Flow and Resistance to Machine Perfusion in Kidney Transplantation. Transplantation Proceedings. 2012;44(7):2197–201.Google Scholar
Gaber, LW, Moore, LW, Alloway, RR, Amiri, MH, Vera, SR, Gaber, AO. Glomerulosclerosis as a Determinant of Posttransplant Function of Older Donor Renal Allografts. Transplantation. 1995;60(4):334–9.Google Scholar
Karpinski, J, Lajoie, G, Cattran, D, Fenton, S, Zaltzman, J, Cardella, C, et al. Outcome of Kidney Transplantation from High-risk Donors Is Determined by Both Structure and Function. Transplantation. 1999;67(8):1162–7.Google Scholar
Wang, CJ, Shafique, S, McCullagh, J, Diederich, DA, Winklhofer, FT, Wetmore, JB. Implications of Donor Disseminated Intravascular Coagulation on Kidney Allograft Recipients. Clin J Am Soc Nephrol. 2011;6(5):1160–7.CrossRefGoogle ScholarPubMed
De Vusser, K, Lerut, E, Kuypers, D, Vanrenterghem, Y, Jochmans, I, Monbaliu, D, et al. The Predictive Value of Kidney Allograft Baseline Biopsies for Long-term Graft Survival. J Am Soc Nephrol. 2013;24(11):1913–23.Google Scholar
Singh, P, Farber, JL, Doria, C, Francos, GC, Gulati, R, Ramirez, CB, et al. Peritransplant Kidney Biopsies: Comparison of Pathologic Interpretations and Practice Patterns of Organ Procurement Organizations. Clin Transplant. 2012;26(3):E1919.Google Scholar
Kasiske, BL, Stewart, DE, Bista, BR, Salkowski, N, Snyder, JJ, Israni, AK, et al. The Role of Procurement Biopsies in Acceptance Decisions for Kidneys Retrieved for Transplant. Clin J Am Soc Nephrol. 2014;9(3):562–71.Google Scholar
Toft, BG, Federspiel, BH, Sorensen, SS, Bagi, P, Nielsen, HB, Andersen, CB. A Histopathological Score on Baseline Biopsies from Elderly Donors Predicts Outcome 1 Year after Renal Transplantation. APMIS. 2012;120(3):182–6.Google Scholar
Sulikowski, T, Tejchman, K, Zietek, Z, Urasinska, E, Domanski, L, Sienko, J, et al. Histopathologic Evaluation of Pretransplantation Biopsy as a Factor Influencing Graft Function after Kidney Transplantation in 3-Year Observation. Transplantation Proceedings. 2010;42(9):3375–81.Google Scholar
Hall, IE, Reese, PP, Weng, FL, Schroppel, B, Doshi, MD, Hasz, RD, et al. Preimplant Histologic Acute Tubular Necrosis and Allograft Outcomes. Clin J Am Soc Nephrol. 2014;9(3):573–82.Google Scholar
Yu, N, Fu, S, Fu, Z, Meng, J, Xu, Z, Wang, B, et al. Allotransplanting Donor Kidneys after Resection of a Small Renal Cancer or Contralateral Healthy Kidneys from Cadaveric Donors with Unilateral Renal Cancer: A Systematic Review. Clin Transplant. 2014;28(1):815.Google Scholar
Musquera, M, Perez, M, Peri, L, Esforzado, N, Sebastia, MC, Paredes, D, et al. Kidneys from Donors with Incidental Renal Tumors: Should They Be Considered Acceptable Option for Transplantation? Transplantation. 2013;95(9):1129–33.CrossRefGoogle ScholarPubMed
Lappin, DW, Hutchison, AJ, Pearson, RC, O’Donoghue, DJ, Roberts, IS. Angiomyolipoma in a Transplanted Kidney. Nephrol Dial Transplant. 1999;14(6):1574–5.Google Scholar
Buob, D, Lionet, A. The Case | Peculiar Fibrous Nodules in a Renal Transplant Biopsy. Kidney Int. 2014;85(2):483–4.Google Scholar
Sangoi, AR, Fujiwara, M, West, RB, Montgomery, KD, Bonventre, JV, Higgins, JP, et al. Immunohistochemical Distinction of Primary Adrenal Cortical Lesions from Metastatic Clear Cell Renal Cell Carcinoma: A Study of 248 Cases. Am J Surg Pathol. 2011;35(5):678–86.Google Scholar
Nicol, D, Fujita, S. Kidneys from Patients with Small Renal Tumours Used for Transplantation: Outcomes and Results. Current Opinion in Urology. 2011;21(5):380–5.Google Scholar
Eltzschig, HK, Eckle, T. Ischemia and Reperfusion – From Mechanism to Translation. Nat Med. 2011;17(11):1391–401.CrossRefGoogle ScholarPubMed
Carden, DL, Granger, DN. Pathophysiology of Ischaemia-Reperfusion Injury. J Pathol. 2000;190(3):255–66.Google Scholar
Rudich, SM, Kaplan, B, Magee, JC, Arenas, JD, Punch, JD, Kayler, LK, et al. Renal Transplantations Performed Using Non-Heart-Beating Organ Donors: Going back to the Future? Transplantation. 2002;74(12):1715–20.Google Scholar
Nicholson, ML, Metcalfe, MS, White, SA, Waller, JR, Doughman, TM, Horsburgh, T, et al. A Comparison of the Results of Renal Transplantation from Non-Heart-Beating, Conventional Cadaveric, and Living Donors. Kidney Int. 2000;58(6):2585–91.CrossRefGoogle ScholarPubMed
Perico, N, Cattaneo, D, Sayegh, MH, Remuzzi, G. Delayed Graft Function in Kidney Transplantation. Lancet. 2004;364(9447):1814–27.Google Scholar
Dittrich, S, Groneberg, DA, von Loeper, J, Lippek, F, Hegemann, O, Grosse-Siestrup, C, et al. Influence of Cold Storage on Renal Ischemia Reperfusion Injury after Non-Heart-Beating Donor Explantation. Nephron Exp Nephrol. 2004;96(3):e97102.Google Scholar
Arias-Diaz, J, Alvarez, J, del Barrio, MR, Balibrea, JL. Non-Heart-Beating Donation: Current State of the Art. Transplantation Proceedings. 2004;36(7):1891–3.Google Scholar
Renkens, JJ, Rouflart, MM, Christiaans, MH, van den Berg-Loonen, EM, van Hooff, JP, van Heurn, LW. Outcome of Nonheart-Beating Donor Kidneys with Prolonged Delayed Graft Function after Transplantation. Am J Transplant. 2005;5(11):2704–9.CrossRefGoogle ScholarPubMed
Sanchez-Fructuoso, A, Prats Sanchez, D, Marques Vidas, M, Lopez De Novales, E, Barrientos Guzman, A. Non-Heart Beating Donors. Nephrol Dial Transplant. 2004;19 Suppl 3:iii2631.Google Scholar
Molitoris, BA, Sutton, TA. Endothelial Injury and Dysfunction: Role in the Extension Phase of Acute Renal Failure. Kidney Int. 2004;66(2):496–9.Google Scholar
Bonventre, JV, Zuk, A. Ischemic Acute Renal Failure: An Inflammatory Disease? Kidney Int. 2004;66(2):480–5.Google Scholar
Di, Y, Lei, Y, Yu, F, Changfeng, F, Song, W, Xuming, M. MicroRNAs Expression and Function in Cerebral Ischemia Reperfusion Injury. Journal of Molecular Neuroscience: MN. 2014;53(2):242–50.Google Scholar
Cai, Y, Xu, H, Yan, J, Zhang, L, Lu, Y. Molecular Targets and Mechanism of Action of Dexmedetomidine in Treatment of Ischemia/Reperfusion Injury. Molecular Medicine Reports. 2014;9(5):1542–50.Google Scholar
Li, YF, Jing, Y, Hao, J, Frankfort, NC, Zhou, X, Shen, B, et al. MicroRNA-21 in the Pathogenesis of Acute Kidney Injury. Protein & Cell. 2013;4(11):813–9.Google Scholar
Cooper, JE, Wiseman, AC. Acute Kidney Injury in Kidney Transplantation. Curr Opin Nephrol Hypertens. 2013;22(6):698703.Google Scholar
Eltzschig, HK, Eckle, T. Ischemia and Reperfusion–From Mechanism to Translation. Nat Med. 2011;17(11):1391–401.Google Scholar
Troppmann, C, Gillingham, KJ, Gruessner, RW, Dunn, DL, Payne, WD, Najarian, JS, et al. Delayed Graft Function in the Absence of Rejection Has No Long-term Impact. A Study of Cadaver Kidney Recipients with Good Graft Function at 1 Year after Transplantation. Transplantation. 1996;61(9):1331–7.CrossRefGoogle ScholarPubMed
Benedetti, E, Najarian, JS, Gruessner, AC, Nakhleh, RE, Troppmann, C, Hakim, NS, et al. Correlation between Cystoscopic Biopsy Results and Hypoamylasuria in Bladder-drained Pancreas Transplants. Surgery. 1995;118(5):864–72.Google Scholar
Howard, RJ, Pfaff, WW, Brunson, ME, Scornik, JC, Ramos, EL, Peterson, QS. Increased Incidence of Rejection in Patients with Delayed Graft Function. Clinical Transplantation. 1994;8(6):527–31.Google Scholar
Kasiske, BL, Gaston, RS, Gourishankar, S, Halloran, PF, Matas, AJ, Jeffery, J, et al. Long-term Deterioration of Kidney Allograft Function. Am J Transplant. 2005;5(6):1405–14.Google Scholar
Cecka, JM. The OPTN/UNOS Renal Transplant Registry. Clinical Transplants 2003. Los Angeles: UCLA Immunogenetics Center; 2004. p. 1.Google Scholar
Haas, M. Subclinical Acute Antibody-mediated Rejection in Positive Crossmatch Renal Allografts. Am J Transplant. 2007;7:576–85.Google Scholar
Moreso, F, Ibernon, M, Goma, M, Carrera, M, Fulladosa, X, Hueso, M, et al. Subclinical Rejection Associated with Chronic Allograft Nephropathy in Protocol Biopsies as a Risk Factor for Late Graft Loss. American Journal of Transplantation. 2006;6(4):747–52.Google Scholar
Rush, D, Winnipeg Transplant, G. Insights into Subclinical Rejection. Transplantation Proceedings. 2004;36(2 Suppl):71S–3S.Google Scholar
Roberts, IS, Reddy, S, Russell, C, Davies, DR, Friend, PJ, Handa, AI, et al. Subclinical Rejection and Borderline Changes in Early Protocol Biopsy Specimens after Renal Transplantation. Transplantation. 2004;77(8):1194–8.Google Scholar
Mihatsch, MJ, Nickeleit, V, Gudat, F. Morphologic Criteria of Chronic Renal Allograft Rejection. Transplantation Proceedings. 1999;31(1–2):1295–7.CrossRefGoogle ScholarPubMed
Wieczorek, G, Bigaud, M, Menninger, K, Riesen, S, Quesniaux, V, Schuurman, HJ, et al. Acute and Chronic Vascular Rejection in Nonhuman Primate Kidney Transplantation. Am J Transplant. 2006;6(6):1285–96.Google Scholar
Colvin, RB. Kidney. In: Colvin, RB, Bhan, AK, McCluskey, RT, editors. Diagnostic Immunopathology. 2 ed. New York: Raven Press; 1995. p. 329–65.Google Scholar
Mauiyyedi, S, Colvin, RB. Pathology of Kidney Transplantation. In: Morris, PJ, editor. Kidney Transplantation. 5th ed. Philadelphia: W. B. Saunders Co.; 2001. p. 243376.Google Scholar
Halloran, PF. An Integrated View of Molecular Changes, Histopathology and Outcomes in Kidney Transplants. Am J Transplant. 2010;10:2223–30.Google Scholar
Murine OKT4A Immunosuppression in Cadaver Donor Renal Allograft Recipients: A Cooperative Pilot Study (Report 1). Cooperative Clinical Trials in Transplantation (CCTT) Research Group. Transplantation Proceedings. 1995;27(1):863.Google Scholar
Solez, K, Racusen, LC. The BANFF Classification Revisited. Kidney Int. 2013;83(2):201–6.Google Scholar
Nankivell, BJ, Alexander, SI. Rejection of the Kidney Allograft. New England Journal of Medicine. 2010;363(15):1451–62.Google Scholar
Wood, KJ, Bushell, A, Hester, J. Regulatory Immune Cells in Transplantation. Nature Reviews Immunology. 2012;12(6):417–30.Google Scholar
Hiki, Y, Leong, AS, Mathew, TH, Seymour, AE, Pascoe, V, Woodroffe, AJ. Typing of Intraglomerular Mononuclear Cells Associated with Transplant Glomerular Rejection. Clin Nephrol. 1986;26(5):244–9.Google Scholar
Bishop, GA, Hall, BM, Duggin, GG, Horvath, JS, Sheil, AG, Tiller, DJ. Immunopathology of Renal Allograft Rejection Analyzed with Monoclonal Antibodies to Mononuclear Cell Markers. Kidney Int. 1986;29(708):708–17.Google Scholar
Zhang, PL, Malek, SK, Prichard, JW, Lin, F, Yahya, TM, Schwartzman, MS, et al. Monocyte-mediated Acute Renal Rejection after Combined Treatment with Preoperative Campath-1H (Alemtuzumab) and Postoperative Immunosuppression. Ann Clin Lab Sci. 2004;34(2):209–13.Google Scholar
Hancock, WW, Thomson, NM, Atkins, RC. Composition of Interstitial Cellular Infiltrate Identified by Monoclonal Antibodies in Renal Biopsies of Rejecting Human Renal Allografts. Transplantation. 1983;35(5):458–63.Google Scholar
Hancock, WW, Atkins, RC. Immunohistological Analysis of Sequential Renal Biopsies from Patients with Acute Renal Rejection. J Immunol. 1985;136(2416):2416–20.Google Scholar
Charney, DA, Nadasdy, T, Lo, AW, Racusen, LC. Plasma Cell-rich Acute Renal Allograft Rejection. Transplantation. 1999;68(6):791–7.CrossRefGoogle ScholarPubMed
Meehan, SM, Domer, P, Josephson, M, Donoghue, M, Sadhu, A, Ho, LT, et al. The Clinical and Pathologic Implications of Plasmacytic Infiltrates in Percutaneous Renal Allograft Biopsies. Human Pathology. 2001;32(2):205–15.Google Scholar
Martins, HL, Silva, C, Martini, D, Noronha, IL. Detection of B Lymphocytes (CD20+) in Renal Allograft Biopsy Specimens. Transplantation Proceedings. 2007;39(2):432–4.Google Scholar
Mengel, M, Gwinner, W, Schwarz, A, Bajeski, R, Franz, I, Brocker, V, et al. Infiltrates in Protocol Biopsies from Renal Allografts. Am J Transplant. 2007;7(2):356–65.Google Scholar
Bagnasco, SM, Tsai, W, Rahman, MH, Kraus, ES, Barisoni, L, Vega, R, et al. CD20-positive Infiltrates in Renal Allograft Biopsies with Acute Cellular Rejection Are Not Associated with Worse Graft Survival. Am J Transplant. 2007;7(8):1968–73.Google Scholar
Hippen, BE, DeMattos, A, Cook, WJ, Kew, CE, 2nd, Gaston, RS. Association of CD20+ Infiltrates with Poorer Clinical Outcomes in Acute Cellular Rejection of Renal Allografts. Am J Transplant. 2005;5(9):2248–52.Google Scholar
Loverre, A, Capobianco, C, Stallone, G, Infante, B, Schena, A, Ditonno, P, et al. Ischemia-Reperfusion Injury-induced Abnormal Dendritic Cell Traffic in the Transplanted Kidney with Delayed Graft Function. Kidney Int. 2007;72(8):9941003.Google Scholar
Woltman, AM, de Fijter, JW, Zuidwijk, K, Vlug, AG, Bajema, IM, van der Kooij, SW, et al. Quantification of Dendritic Cell Subsets in Human Renal Tissue under Normal and Pathological Conditions. Kidney Int. 2007;71(10):1001–8.Google Scholar
Lajoie, G, Nadasdy, T, Laszik, Z, Blick, KE, Silva, FG. Mast Cells in Acute Cellular Rejection of Human Renal Allografts. Mod Pathol. 1996;9(12):1118–25.Google Scholar
Gibson, IW, Gwinner, W, Brocker, V, Sis, B, Riopel, J, Roberts, IS, et al. Peritubular Capillaritis in Renal Allografts: Prevalence, Scoring System, Reproducibility and Clinicopathological Correlates. Am J Transplant. 2008.Google Scholar
Fahim, T, Bohmig, GA, Exner, M, Huttary, N, Kerschner, H, Kandutsch, S, et al. The Cellular Lesion of Humoral Rejection: Predominant Recruitment of Monocytes to Peritubular and Glomerular Capillaries. Am J Transplant. 2007;7(2):385–93.Google Scholar
Jurcic, V, Jeruc, J, Maric, S, Ferluga, D. Histomorphological Assessment of Phlebitis in Renal Allografts. Croat Med J. 2007;48(3):327–32.Google Scholar
Torbenson, M, Randhawa, P. Arcuate and Interlobular Phlebitis in Renal Allografts. Human Pathology. 2001;32(12):1388–91.Google Scholar
Stuht, S, Gwinner, W, Franz, I, Schwarz, A, Jonigk, D, Kreipe, H, et al. Lymphatic Neoangiogenesis in Human Renal Allografts: Results from Sequential Protocol Biopsies. Am J Transplant. 2007;7(2):377–84.Google Scholar
Salazar, IDR, López, MM, Chang, J, Halloran, PF. Reassessing the Significance of Intimal Arteritis in Kidney Transplant Biopsy Specimens. Journal of the American Society of Nephrology. 2015.Google Scholar
Colvin, RB. Eye of the Needle. Am J Transplant. 2007;7(2):267–8.Google Scholar
Solez, K, Colvin, R, Racusen, L, Haas, M, Sis, B, Mengel, M, et al. BANFF 07 Classification of Renal Allograft Pathology: Updates and Future Directions. Am J Transplant. 2008;8(4):753–60.Google Scholar
Nabokow, A, Dobronravov, VA, Khrabrova, M, Gröne, H-J, Gröne, E, Hallensleben, M, et al. Long-term Kidney Allograft Survival in Patients With Transplant Glomerulitis. Transplantation. 2015;99(2):331–9.Google Scholar
Desvaux, D, Le Gouvello, S, Pastural, M, Abtahi, M, Suberbielle, C, Boeri, N, et al. Acute Renal Allograft Rejections with Major Interstitial Oedema and Plasma Cell-rich Infiltrates: High Gamma-Interferon Expression and Poor Clinical Outcome. Nephrol Dial Transplant. 2004;19(4):933–9.Google Scholar
Lobo, PI, Spencer, CE, Isaacs, RB, McCullough, C. Hyperacute Renal Allograft Rejection from Anti-HLA Class 1 Antibody to B Cells–Antibody Detection by Two Color FCXM Was Possible Only after Using Pronase-digested Donor Lymphocytes. Transpl Int. 1997;10(1):6973.CrossRefGoogle Scholar
Racusen, LC, Solez, K, Colvin, RB, Bonsib, SM, Castro, MC, Cavallo, T, et al. The BANFF 97 Working Classification of Renal Allograft Pathology. Kidney Int. 1999;55(2):713–23.Google Scholar
Haas, M. C4d-negative Antibody-mediated Rejection in Renal Allografts: Evidence for Its Existence and Effect on Graft Survival. Clin Nephrol. 2011;75(4):271–8.Google Scholar
Haas, M. An Updated BANFF Schema for Diagnosis of Antibody-mediated Rejection in Renal Allografts. Current Opinion in Organ Transplantation. 2014;19(3):315–22.Google Scholar
LeBleu, VS, Taduri, G, O’Connell, J, Teng, Y, Cooke, VG, Woda, C, et al. Origin and Function of Myofibroblasts in Kidney Fibrosis. Nat Med. 2013; advance online publication.Google Scholar
Pascual, J, Pérez-Sáez, MJ, Mir, M, Crespo, M. Chronic Renal Allograft Injury: Early Detection, Accurate Diagnosis and Management. Transplantation Reviews. 2012;26(4):280–90.Google Scholar
Shimizu, A, Yamada, K, Sachs, DH, Colvin, RB. Persistent Rejection of Peritubular Capillaries and Tubules Is Associated with Progressive Interstitial Fibrosis. Kidney Int. 2002;61(5):1867–79.Google Scholar
Rush, D, Nickerson, P, Gough, J, McKenna, R, Grimm, P, Cheang, M, et al. Beneficial Effects of Treatment of Early Subclinical Rejection: A Randomized Study. J Am Soc Nephrol. 1998;9(11):2129–34.Google Scholar
Solez, K, Colvin, RB, Racusen, LC, Sis, B, Halloran, PF, Birk, PE, et al. BANFF ’05 Meeting Report: Differential Diagnosis of Chronic Allograft Injury and Elimination of Chronic Allograft Nephropathy (‘CAN’). Am J Transplant. 2007;7(3):518–26.CrossRefGoogle ScholarPubMed
Alpers, CE, Gordon, D, Gown, AM. Immunophenotype of Vascular Rejection in Renal Transplants. Modern Path. 1990;3(2):198203.Google Scholar
Nickeleit, V, Zeiler, M, Gudat, F, Thiel, G, Mihatsch, MJ. Detection of the Complement Degradation Product C4d in Renal Allografts: Diagnostic and Therapeutic Implications. J Am Soc Nephrol. 2002;13(1):242–51.CrossRefGoogle ScholarPubMed
Herzenberg, AM, Gill, JS, Djurdjev, O, Magil, AB. C4d Deposition in Acute Rejection: An Independent Long-term Prognostic Factor. J Am Soc Nephrol. 2002;13(1):234–41.Google Scholar
Wang, X, Smith, KD, Nicosia, RF, Alpers, CE, Kowalewska, J. Associations of C4d Deposition, Transplant Glomerulopathy and Rejection in Renal Allograft Biopsies Performed 10 or More Years after Transplantation. Modern Path. 2008;21 (supplement 1):296A (abstract).Google Scholar
Mauiyyedi, S, Pelle, PD, Saidman, S, Collins, AB, Pascual, M, Tolkoff-Rubin, NE, et al. Chronic Humoral Rejection: Identification of Antibody-mediated Chronic Renal Allograft Rejection by C4d Deposits in Peritubular Capillaries. J Am Soc Nephrol. 2001;12(3):574–82.Google Scholar
Collins, AB, Schneeberger, EE, Pascual, MA, Saidman, SL, Williams, WW, Tolkoff-Rubin, N, et al. Complement Activation in Acute Humoral Renal Allograft Rejection: Diagnostic Significance of C4d Deposits in Peritubular Capillaries. J Am Soc Nephrol. 1999;10(10):2208–14.Google Scholar
Habib, R, Broyer, M. Clinical Significance of Allograft Glomerulopathy. Kidney International – Supplement. 1993;43:S958.Google Scholar
Axelsen, RA, Seymour, AE, Mathew, TH, Canny, A, Pascoe, V. Glomerular Transplant Rejection: A Distinctive Pattern of Early Graft Damage. Clinical Nephrology. 1985;23(1):111.Google Scholar
Gloor, JM, Sethi, S, Stegall, MD, Park, WD, Moore, SB, DeGoey, S, et al. Transplant Glomerulopathy: Subclinical Incidence and Association with Alloantibody. Am J Transplant. 2007;7(9):2124–32.Google Scholar
Ivanyi, B, Kemeny, E, Szederkenyi, E, Marofka, F, Szenohradszky, P. The Value of Electron Microscopy in the Diagnosis of Chronic Renal Allograft Rejection. Mod Pathol. 2001;14(12):1200–8.Google Scholar
Maryniak, RK, First, MR, Weiss, MA. Transplant Glomerulopathy: Evolution of Morphologically Distinct Changes. Kidney International. 1985;27(5):799806.Google Scholar
Zollinger, HU, Mihatsch, MJ. Renal Pathology in Biopsy. 1 ed. Berlin, Heidelberg, New York: Springer Verlag; 1978. 684.Google Scholar
Drachenberg, CB, Steinberger, E, Hoehn-Saric, E, Heffes, A, Klassen, DK, Bartlett, ST, et al. Specificity of Intertubular Capillary Changes: Comparative Ultrastructural Studies in Renal Allografts and Native Kidneys. Ultrastruct Pathol. 1997;21(3):227–33.Google Scholar
Borel, JF, Kis, ZL. The Discovery and Development of Cyclosporine (Sandimmune). Transplantation Proceedings. 1991;23(2):1867–74.Google Scholar
Danovitch, GM. Cyclosporin or Tacrolimus: Which Agent to Choose? Nephrol Dial Transplant. 1997;12(8):1566–8.Google Scholar
Tanabe, K. Calcineurin Inhibitors in Renal Transplantation: What Is the Best Option? Drugs. 2003;63(15):1535–48.Google Scholar
Fischer, G, Wittmann-Liebold, B, Lang, K, Kiefhaber, T, Schmid, FX. Cyclophilin and Peptidyl-Prolyl Cis-Trans Isomerase Are Probably Identical Proteins. Nature. 1989;337(6206):476–8.Google Scholar
Takahashi, N, Hayano, T, Suzuki, M. Peptidyl-Prolyl Cis-Trans Isomerase is the Cyclosporin A-binding Protein Cyclophilin. Nature. 1989;337(6206):473–5.Google Scholar
Borel, JF, Baumann, G, Chapman, I, Donatsch, P, Fahr, A, Mueller, EA, et al. In Vivo Pharmacological Effects of Ciclosporin and Some Analogues. Advances in Pharmacology. 1996;35:115246.Google Scholar
Kapturczak, MH, Meier-Kriesche, HU, Kaplan, B. Pharmacology of Calcineurin Antagonists. Transplantation Proceedings. 2004;36(2 Suppl):25S32S.Google Scholar
Wiederrecht, G, Hung, S, Chan, HK, Marcy, A, Martin, M, Calaycay, J, et al. Characterization of High Molecular Weight FK-506 Binding Activities Reveals a Novel FK-506-binding Protein as Well as a Protein Complex. J Biol Chem. 1992;267(30):21753–60.Google Scholar
Maki, N, Sekiguchi, F, Nishimaki, J, Miwa, K, Hayano, T, Takahashi, N, et al. Complementary DNA Encoding the Human T-cell FK506-binding Protein, a Peptidylprolyl Cis-Trans Isomerase Distinct from Cyclophilin. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(14):5440–3.Google ScholarPubMed
Dudek, RW, Lawrence, IE Jr., Hill, RS, Johnson, RC. Induction of Islet Cytodifferentiation by Fetal Mesenchyme in Adult Pancreatic Ductal Epithelium. Diabetes. 1991;40(8):1041–8.Google Scholar
Wong, W, Venetz, JP, Tolkoff-Rubin, N, Pascual, M. Immunosuppressive Strategies in Kidney Transplantation: Which Role for the Calcineurin Inhibitors? Transplantation. 2005;80(3):289–96.Google Scholar
Halloran, PF. Immunosuppressive Drugs for Kidney Transplantation. The New England Journal of Medicine. 2004;351(26):2715–29.Google Scholar
Mihatsch, MJ, Theil, G, Spichtin, HP, Oberholzer, M, Brunner, FP, Harder, F, et al. Morphological Findings in Kidney Transplants after Treatment with Cyclosporine. Transplantation Proc. 1983;15 [Suppl 1]:2821–35.Google Scholar
Mihatsch, MJ, Ryffel, B, Gudat, F. The Differential Diagnosis between Rejection and Cyclosporine Toxicity. Kidney International – Supplement. 1995;52:S639.Google Scholar
Mihatsch, MJ, Morozumi, K, Strom, EH, Ryffel, B, Gudat, F, Thiel, G. Renal Transplant Morphology after Long-term Therapy with Cyclosporine. Transplantation Proceedings. 1995;27(1):3942.Google Scholar
Mihatsch, MJ, Gudat, F, Ryffel, B, Thiel, G. Cyclosporine Nephropathy. In: Tisher, CC, Brenner, BM, editors. Renal Pathology – With Clinical and Functional Correlations. 2nd ed. Philadelphia: J.B. Lippincott; 1994. p. 1641–81.Google Scholar
Stratta, P, Canavese, C, Quaglia, M, Balzola, F, Bobbio, M, Busca, A, et al. Posttransplantation Chronic Renal Damage in Nonrenal Transplant Recipients. Kidney Int. 2005;68(4):1453–63.Google Scholar
Ojo, AO, Held, PJ, Port, FK, Wolfe, RA, Leichtman, AB, Young, EW, et al. Chronic Renal Failure after Transplantation of a Nonrenal Organ. The New England Journal of Medicine. 2003;349(10):931–40.Google Scholar
English, RF, Pophal, SA, Bacanu, SA, Fricker, J, Boyle, GJ, Ellis, D, et al. Long-term Comparison of Tacrolimus- and Cyclosporine-induced Nephrotoxicity in Pediatric Heart-transplant Recipients. Am J Transplant. 2002;2(8):769–73.Google Scholar
Mihatsch, MJ, Thiel, G, Basler, V, Ryffel, B, Landmann, J, von Overbeck, J, et al. Morphological Patterns in Cyclosporine-treated Renal Transplant Recipients. Transplantation Proceedings. 1985;17(4 Suppl 1):101–16.Google Scholar
Hall, BM, Tiller, DJ, Duggin, GG, Horvath, JS, Farnsworth, A, May, J, et al. Post-transplant Acute Renal Failure in Cadaver Renal Recipients Treated with Cyclosporine. Kidney International. 1985;28(2):178–86.Google Scholar
Mihatsch, M, Thiel, G, Ryffel, B. Cyclosporine Nephrotoxicity. Advances in Nephrology. 1988;17:303–20.Google Scholar
Tsinalis, D, Dickenmann, M, Brunner, F, Gurke, L, Mihatsch, M, Nickeleit, V. Acute Renal Failure in a Renal Allograft Recipient Treated with Intravenous Immunoglobulin. Am J Kidney Dis. 2002;40(3):667–70.Google Scholar
Haas, M, Sonnenday, CJ, Cicone, JS, Rabb, H, Montgomery, RA. Isometric Tubular Epithelial Vacuolization in Renal Allograft Biopsy Specimens of Patients Receiving Low-dose Intravenous Immunoglobulin for a Positive Crossmatch. Transplantation. 2004;78(4):549–56.Google Scholar
Moreau, JF, Droz, D, Sabto, J, Jungers, P, Kleinknecht, D, Hinglais, N, et al. Osmotic Nephrosis Induced by Water-soluble Triiodinated Contrast Media in Man. A Retrospective Study of 47 Cases. Radiology. 1975;115(2):329–36.Google Scholar
Collins, BS, Davis, CL, Marsh, CL, McVicar, JP, Perkins, JD, Alpers, CE. Reversible Cyclosporine Arteriolopathy. Transplantation. 1992;54(4):732–4.Google Scholar
Morozumi, K, Thiel, G, Albert, FW, Banfi, G, Gudat, F, Mihatsch, MJ. Studies on Morphological Outcome of Cyclosporine-associated Arteriolopathy after Discontinuation of Cyclosporine in Renal Allografts. Clin Nephrol. 1992;38(1):18.Google Scholar
Bren, A, Pajek, J, Grego, K, Buturovic, J, Ponikvar, R, Lindic, J, et al. Follow-up of Kidney Graft Recipients with Cyclosporine-associated Hemolytic-Uremic Syndrome and Thrombotic Microangiopathy. Transplantation Proceedings. 2005;37(4):1889–91.Google Scholar
Rangel, EB, Gonzalez, AM, Linhares, MM, Araujo, SR, Franco, MF, de Sa, JR, et al. Thrombotic Microangiopathy after Simultaneous Pancreas-Kidney Transplantation. Clin Transplant. 2007;21(2):241–5.Google Scholar
Karthikeyan, V, Parasuraman, R, Shah, V, Vera, E, Venkat, KK. Outcome of Plasma Exchange Therapy in Thrombotic Microangiopathy after Renal Transplantation. Am J Transplant. 2003;3(10):1289–94.Google Scholar
Lewis, RM, Verani, RR, Vo, C, Katz, SM, Van, BCT, Radovancevic, B, et al. Evaluation of Chronic Renal Disease in Heart Transplant Recipients: Importance of Pretransplantation Native kidney Histologic Evaluation. Journal of Heart & Lung Transplantation. 1994;13(3):376–80.Google Scholar
Josephson, MA, Chiu, MY, Woodle, ES, Thistlethwaite, JR, Haas, M. Drug-induced Acute Interstitial Nephritis in Renal Allografts: Histopathologic Features and Clinical Course in Six Patients. Am J Kidney Dis. 1999;34(3):540–8.Google Scholar
Kormendi, F, Amend, W. The Importance of Eosinophil Cells in Kidney Allograft Rejection. Transplantation. 1988;45(3):537–9.Google Scholar
Weir, MR, Hall-Craggs, M, Shen, SY, Posner, JN, Alongi, SV, Dagher, FJ, et al. The Prognostic Value of the Eosinophil in Acute Renal Allograft Rejection. Transplantation. 1986;41(6):709–12.Google Scholar
Hongwei, W, Nanra, RS, Stein, A, Avis, L, Price, A, Hibberd, AD. Eosinophils in Acute Renal Allograft Rejection. Transplant Immunology. 1994;2(1):41–6.Google Scholar
Almirall, J, Campistol, JM, Sole, M, Andreu, J, Revert, L. Blood and Graft Eosinophilia as a Rejection Index in Kidney Transplant. Nephron. 1993;65(2):304–9.Google Scholar
Hallgren, R, Bohman, SO, Fredens, K. Activated Eosinophil Infiltration and Deposits of Eosinophil Cationic Protein in Renal Allograft Rejection. Nephron. 1991;59(2):266–70.Google Scholar
Ten, RM, Gleich, GJ, Holley, KE, Perkins, JD, Torres, VE. Eosinophil Granule Major Basic Protein in Acute Renal Allograft Rejection. Transplantation. 1989;47(6):959–63.Google Scholar
Colvin, RB, Fang, LS-T. Interstitial Nephritis. In: Tisher, CC, Brenner, BM, editors. Renal Pathology. 2nd ed. Philadelphia, PA: JB Lippincott; 1994. p. 723–68.Google Scholar
Groth, CG, Backman, L, Morales, JM, Calne, R, Kreis, H, Lang, P, et al. Sirolimus (Rapamycin)-based Therapy in Human Renal Transplantation: Similar Efficacy and Different Toxicity Compared with Cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation. 1999;67(7):1036–42.Google Scholar
Flechner, SM, Goldfarb, D, Modlin, C, Feng, J, Krishnamurthi, V, Mastroianni, B, et al. Kidney Transplantation without Calcineurin Inhibitor Drugs: A Prospective, Randomized Trial of Sirolimus versus Cyclosporine. Transplantation. 2002;74(8):1070–6.Google Scholar
Larson, TS, Dean, PG, Stegall, MD, Griffin, MD, Textor, SC, Schwab, TR, et al. Complete Avoidance of Calcineurin Inhibitors in Renal Transplantation: A Randomized Trial Comparing Sirolimus and Tacrolimus. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2006;6(3):514–22.Google Scholar
Kahan, BD, Julian, BA, Pescovitz, MD, Vanrenterghem, Y, Neylan, J. Sirolimus Reduces the Incidence of Acute Rejection Episodes Despite Lower Cyclosporine Doses in Caucasian Recipients of Mismatched Primary Renal Allografts: A Phase II Trial. Rapamune Study Group. Transplantation. 1999;68(10):1526–32.Google Scholar
Kahan, BD. Efficacy of Sirolimus Compared with Azathioprine for Reduction of Acute Renal Allograft Rejection: A Randomised Multicentre Study. The Rapamune US Study Group. Lancet. 2000;356(9225):194202.Google Scholar
MacDonald, AS. A Worldwide, Phase III, Randomized, Controlled, Safety and Efficacy Study of a Sirolimus/Cyclosporine Regimen for Prevention of Acute Rejection in Recipients of Primary Mismatched Renal Allografts. Transplantation. 2001;71(2):271–80.Google Scholar
Vitko, S, Margreiter, R, Weimar, W, Dantal, J, Viljoen, HG, Li, Y, et al. Everolimus (Certican) 12-month Safety and Efficacy versus Mycophenolate Mofetil in de Novo Renal Transplant Recipients. Transplantation. 2004;78(10):1532–40.Google Scholar
Lorber, MI, Mulgaonkar, S, Butt, KM, Elkhammas, E, Mendez, R, Rajagopalan, PR, et al. Everolimus versus Mycophenolate Mofetil in the Prevention of Rejection in de Novo Renal Transplant Recipients: A 3-year Randomized, Multicenter, Phase III Study. Transplantation. 2005;80(2):244–52.Google Scholar
Kahan, BD. Sirolimus: A Comprehensive Review. Expert Opinion on Pharmacotherapy. 2001;2(11):1903–17.Google Scholar
Bruns, CJ, Koehl, GE, Guba, M, Yezhelyev, M, Steinbauer, M, Seeliger, H, et al. Rapamycin-induced Endothelial Cell Death and Tumor Vessel Thrombosis Potentiate Cytotoxic Therapy against Pancreatic Cancer. Clin Cancer Res. 2004;10(6):2109–19.Google Scholar
Guba, M, Yezhelyev, M, Eichhorn, ME, Schmid, G, Ischenko, I, Papyan, A, et al. Rapamycin Induces Tumor-specific Thrombosis via Tissue Factor in the Presence of VEGF. Blood. 2005;105(11):4463–9.Google Scholar
Guba, M, von Breitenbuch, P, Steinbauer, M, Koehl, G, Flegel, S, Hornung, M, et al. Rapamycin Inhibits Primary and Metastatic Tumor Growth by Antiangiogenesis: Involvement of Vascular Endothelial Growth Factor. Nat Med. 2002;8(2):128–35.Google Scholar
Kahan, BD. Sirolimus. In: Morris, PJ, editor. Kidney Transplantation: Principles and Practice. 5th ed. Philadelphia, London, New York: W.B. Saunders Company; 2001. p. 279–88.Google Scholar
Fellstrom, B. Cyclosporine Nephrotoxicity. Transplantation Proceedings. 2004;36(2 Suppl):220S–3S.Google Scholar
Stallone, G, Infante, B, Schena, A, Battaglia, M, Ditonno, P, Loverre, A, et al. Rapamycin for Treatment of Chronic Allograft Nephropathy in Renal Transplant Patients. J Am Soc Nephrol. 2005;16(12):3755–62.Google Scholar
McTaggart, RA, Gottlieb, D, Brooks, J, Bacchetti, P, Roberts, JP, Tomlanovich, S, et al. Sirolimus Prolongs Recovery from Delayed Graft Function after Cadaveric Renal Transplantation. Am J Transplant. 2003;3(4):416–23.Google Scholar
Ciancio, G, Burke, GW, Gaynor, JJ, Ruiz, P, Roth, D, Kupin, W, et al. A Randomized Long-term Trial of Tacrolimus/Sirolimus versus Tacrolimums/Mycophenolate versus Cyclosporine/Sirolimus in Renal Transplantation: Three-year Analysis. Transplantation. 2006;81(6):845–52.Google Scholar
Buchler, M, Caillard, S, Barbier, S, Thervet, E, Toupance, O, Mazouz, H, et al. Sirolimus versus Cyclosporine in Kidney Recipients Receiving Thymoglobulin, Mycophenolate Mofetil and a 6-month Course of Steroids. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2007;7(11):2522–31.Google Scholar
Stallone, G, Schena, A, Infante, B, Di Paolo, S, Loverre, A, Maggio, G, et al. Sirolimus for Kaposi’s Sarcoma in Renal-transplant Recipients. The New England Journal of Medicine. 2005;352(13):1317–23.Google Scholar
Campistol, JM, Eris, J, Oberbauer, R, Friend, P, Hutchison, B, Morales, JM, et al. Sirolimus Therapy after Early Cyclosporine Withdrawal Reduces the Risk for Cancer in Adult Renal Transplantation. Journal of the American Society of Nephrology: JASN. 2006;17(2):581–9.Google Scholar
Smith, KD, Wrenshall, LE, Nicosia, RF, Pichler, R, Marsh, CL, Alpers, CE, et al. Delayed Graft Function and Cast Nephropathy Associated with Tacrolimus Plus Rapamycin Use. J Am Soc Nephrol. 2003;14(4):1037–45.Google Scholar
McTaggart, RA, Tomlanovich, S, Bostrom, A, Roberts, JP, Feng, S. Comparison of Outcomes after Delayed Graft Function: Sirolimus-based versus Other Calcineurin-inhibitor Sparing Induction Immunosuppression Regimens. Transplantation. 2004;78(3):475–80.Google Scholar
McTaggart, RA, Gottlieb, D, Brooks, J, Bacchetti, P, Roberts, JP, Tomlanovich, S, et al. Sirolimus Prolongs Recovery from Delayed Graft Function after Cadaveric Renal Transplantation. Am J Transplant. 2003;3(4):416–23.Google Scholar
Boratynska, M, Banasik, M, Patrzalek, D, Szyber, P, Klinger, M. Sirolimus Delays Recovery from Posttransplant Renal Failure in Kidney Graft Recipients. Transplantation Proceedings. 2005;37(2):839–42.Google Scholar
Reynolds, JC, Agodoa, LY, Yuan, CM, Abbott, KC. Thrombotic Microangiopathy after Renal Transplantation in the United States. Am J Kidney Dis. 2003;42(5):1058–68.Google Scholar
Hardinger, KL, Cornelius, LA, Trulock, EP, 3rd, Brennan, DC. Sirolimus-induced Leukocytoclastic Vasculitis. Transplantation. 2002;74(5):739–43.Google Scholar
Pasqualotto, AC, Bianco, PD, Sukiennik, TC, Furian, R, Garcia, VD. Sirolimus-induced Leukocytoclastic Vasculitis: The Second Case Reported. Am J Transplant. 2004;4(9):1549–51.Google Scholar
Sartelet, H, Toupance, O, Lorenzato, M, Fadel, F, Noel, LH, Lagonotte, E, et al. Sirolimus-induced Thrombotic Microangiopathy Is Associated with Decreased Expression of Vascular Endothelial Growth Factor in Kidneys. Am J Transplant. 2005;5(10):2441–7.Google Scholar
Novick, AC, Hwei, HH, Steinmuller, D, Streem, SB, Cunningham, RJ, Steinhilber, D, et al. Detrimental Effect of Cyclosporine on Initial Function of Cadaver Renal Allografts Following Extended Preservation. Results of a Randomized Prospective Study. Transplantation. 1986;42(2):154–8.Google Scholar
van den Akker, JM, Wetzels, JF, Hoitsma, AJ. Proteinuria Following Conversion from Azathioprine to Sirolimus in Renal Transplant Recipients. Kidney Int. 2006;70(7):1355–7.Google Scholar
Letavernier, E, Bruneval, P, Mandet, C, Van Huyen, JP, Peraldi, MN, Helal, I, et al. High Sirolimus Levels May Induce Focal Segmental Glomerulosclerosis de Novo. Clin J Am Soc Nephrol. 2007;2(2):326–33.Google Scholar
Letavernier, E, Pe’raldi, MN, Pariente, A, Morelon, E, Legendre, C. Proteinuria Following a Switch from Calcineurin Inhibitors to Sirolimus. Transplantation. 2005;80(9):1198–203.Google Scholar
Merkel, S, Mogilevskaja, N, Mengel, M, Haller, H, Schwarz, A. Side Effects of Sirolimus. Transplantation Proceedings. 2006;38(3):714–5.Google Scholar
Mackenzie, EF, Poulding, JM, Harrison, PR, Amer, B. Human Polyoma Virus (HPV)–A Significant Pathogen in Renal Transplantation. Proc Eur Dial Transplant Assoc. 1978;15:352–60.Google Scholar
Binet, I, Nickeleit, V, Hirsch, HH, Prince, O, Dalquen, P, Gudat, F, et al. Polyomavirus Disease under New Immunosuppressive Drugs: A Cause of Renal Graft Dysfunction and Graft Loss. Transplantation. 1999;67(6):918–22.CrossRefGoogle ScholarPubMed
Drachenberg, CB, Beskow, CO, Cangro, CB, Bourquin, PM, Simsir, A, Fink, J, et al. Human Polyoma Virus in Renal Allograft Biopsies: Morphological Findings and Correlation with Urine Cytology. Human Pathology. 1999;30(8):970–7.Google Scholar
Nickeleit, V, Hirsch, HH, Zeiler, M, Gudat, F, Prince, O, Thiel, G, et al. BK-virus Nephropathy in Renal Transplants-tubular Necrosis, MHC-class II Expression and Rejection in a Puzzling Game. Nephrol Dial Transplant. 2000;15(3):324–32.Google Scholar
Randhawa, PS, Finkelstein, S, Scantlebury, V, Shapiro, R, Vivas, C, Jordan, M, et al. Human Polyoma Virus-associated Interstitial Nephritis in the Allograft Kidney. Transplantation. 1999;67(1):103–9.Google Scholar
Howell, DN, Smith, SR, Butterly, DW, Klassen, PS, Krigman, HR, Burchette, JL Jr., et al. Diagnosis and Management of BK Polyomavirus Interstitial Nephritis in Renal Transplant Recipients. Transplantation. 1999;68(9):1279–88.Google Scholar
Cosio, FG, Amer, H, Grande, JP, Larson, TS, Stegall, MD, Griffin, MD. Comparison of Low versus High Tacrolimus Levels in Kidney Transplantation: Assessment of Efficacy by Protocol Biopsies. Transplantation. 2007;83(4):411–6.Google Scholar
Mengel, M, Bogers, JP, Bosmans, JL, Seron, D, Gwinner, W, Haller, H. Incidence of C4d Staining and Morphology of Acute Humoral Rejection in Protocol Biopsies of Renal Allografts: A Multicenter Study. Journal of the American Society of Nephrology. 2003;14:11A.Google Scholar
Nickeleit, V, Singh, HK, Mihatsch, MJ. Polyomavirus Nephropathy: Morphology, Pathophysiology, and Clinical Management. Curr Opin Nephrol Hypertens. 2003;12:599605.Google Scholar
Khamash, HA, Wadei, HM, Mahale, AS, Larson, TS, Stegall, MD, Cosio, FG, et al. Polyomavirus-associated Nephropathy Risk in Kidney Transplants: The Influence of Recipient Age and Donor Gender. Kidney Int. 2007;71(12):1302–9.Google Scholar
Ramos, E, Drachenberg, C, Hirsch, HH, Munivenkatappa, R, Papadimitriou, J, Nogueira, J, et al. BK Polyomavirus Allograft Nephropathy (BKPVN): Eight-fold Decrease in Graft Loss with Prospective Screening and Protocol Biopsy. Am J Transplant (supplement). 2006;WTC 2006 congress abstracts:121.Google Scholar
Gaber, LW, Egidi, MF, Stratta, RJ, Lo, A, Moore, LW, Gaber, AO. Clinical Utility of Histological Features of Polyomavirus Allograft Nephropathy. Transplantation. 2006;82(2):196204.Google Scholar
Nickeleit, V, Mihatsch, MJ. Polyomavirus Nephropathy in Native Kidneys and Renal Allografts: An Update on an Escalating Threat. Transpl Int. 2006;19(12):960–73.Google Scholar
Sachdeva, MS, Nada, R, Jha, V, Sakhuja, V, Joshi, K. The High Incidence of BK Polyoma Virus Infection among Renal Transplant Recipients in India. Transplantation. 2004;77(3):429–31.Google Scholar
Nada, R, Sachdeva, MU, Sud, K, Jha, V, Joshi, K. Co-infection by Cytomegalovirus and BK Polyoma Virus in Renal Allograft, Mimicking Acute Rejection. Nephrol Dial Transplant. 2005;20(5):994–6.Google Scholar
Mindlova, M, Boucek, P, Saudek, F, Jedinakova, T, Voska, L, Honsova, E, et al. Kidney Retransplantation Following Graft Loss to Polyoma Virus-associated Nephropathy: An Effective Treatment Option in Simultaneous Pancreas and Kidney Transplant Recipients. Transpl Int. 2008;21(4):353–6.Google Scholar
Nickeleit, V, Gordon, J, Thompson, D, Romeo, C. Antibody Titers and Latent Polyoma-BK-Virus (BKV) Loads in the General Population: Potential Donor Risk Assessment for the Development of BK-Virus Nephropathy (BKN) Post Transplantation. J Am Soc Nephrol (abstracts issue). 2004;15:524AGoogle Scholar
Hirsch, HH, Knowles, W, Dickenmann, M, Passweg, J, Klimkait, T, Mihatsch, MJ, et al. Prospective Study of Polyomavirus Type BK Replication and Nephropathy in Renal-transplant Recipients. The New England Journal of Medicine. 2002;347(7):488–96.Google Scholar
Nickeleit, V, Hirsch, HH, Binet, IF, Gudat, F, Prince, O, Dalquen, P, et al. Polyomavirus Infection of Renal Allograft Recipients: From Latent Infection to Manifest Disease. J Am Soc Nephrol. 1999;10(5):1080–9.Google Scholar
Nickeleit, V, Klimkait, T, Binet, IF, Dalquen, P, DelZenero, V, Thiel, G, et al. Testing for Polyomavirus Type BK DNA in Plasma to Identify Renal Allograft Recipients with Viral Nephropathy. The New England Journal of Medicine. 2000;342(18):1309–15.Google Scholar
Nickeleit, V, Steiger, J, MJ M. BK Virus Infection after Kidney Transplantation. Graft. 2002;5 (December suppl):S46S57.Google Scholar
Singh, HK, Bubendorf, L, Mihatsch, MJ, Drachenberg, CB, Nickeleit, V. Urine Cytology Findings of Polyomavirus Infections. In: Ahsan, N, editor. Polyomaviruses and Human Diseases. Advances in Experimental Medicine and Biology, vol. 577. 1st ed. New York, N.Y. Georgetown,TX.: Springer Science+Business Media, Landes Bioscience / Eurekah.com; 2006. p. 201–12.Google Scholar
Singh, HK, Madden, V, Shen, YJ, Thompson, D, Nickeleit, V. Negative Staining Electron Microscopy of Urine for the Detection of Polyomavirus Infections. Ultrastruct Pathol. 2006:(in press).Google Scholar
Drachenberg, CB, Papadimitriou, JC, Hirsch, HH, Wali, R, Crowder, C, Nogueira, J, et al. Histological Patterns of Polyomavirus Nephropathy: Correlation with Graft Outcome and Viral Load. Am J Transplant. 2004;4(12):2082–92.Google Scholar
Drachenberg, CB, Hirsch, HH, Papadimitriou, JC, Gosert, R, Wali, RK, Munivenkatappa, R, et al. Polyomavirus BK versus JC Replication and Nephropathy in Renal Transplant Recipients: A Prospective Evaluation. Transplantation. 2007;84(3):323–30.Google Scholar
Nickeleit, V, Hirsch, HH, Binet, IF, Gudat, F, Prince, O, Dalquen, P, et al. Polyomavirus Infection of Renal Allograft Recipients: From Latent Infection to Manifest Disease. Journal of the American Society of Nephrology. 1999;10(5):1080–9.Google Scholar
Nickeleit, V, Steiger, J, Mihatsch, MJ. BK Virus Infection after Kidney Transplantation. Graft. 2002;5 (December suppl):S46S57.Google Scholar
Nickeleit, V, Hirsch, HH, Zeiler, M, Gudat, F, Prince, O, Thiel, G, et al. BK-virus Nephropathy in Renal Transplants-tubular Necrosis, MHC-class II Expression and Rejection in a Puzzling game. Nephrology, Dialysis, Transplantation. 2000;15(3):324–32.Google Scholar
Singh, D, Kiberd, B, Gupta, R, Alkhudair, W, Lawen, J. Polyoma Virus-induced Hemorrhagic Cystitis in Renal Transplantation Patient with Polyoma Virus Nephropathy. Urology. 2006;67(2):423 e11–e12.Google Scholar
Celik, B, Randhawa, PS. Glomerular Changes in BK Virus Nephropathy. Human Pathology. 2004;35(3):367–70.Google Scholar
Nair, R, Katz, DA, Thomas, CP. Diffuse Glomerular Crescents and Peritubular Immune Deposits in a Transplant Kidney. Am J Kidney Dis. 2006;48(1):174–8.Google Scholar
Nickeleit, V, Thompson, B, Latour, M, Chan, G, Shingh, HK. Tubulo-centric Granulomatous Interstitial Nephritis in Renal Allograft Recipients with Polyomavirus Nephropathy. Lab Invest. 2007;87 (suppl 1):274A (abstract).Google Scholar
Bracamonte, ER, Furmanczyk, PS, Smith, KD, Nicosia, RF, Alpers, CE, Kowalewska, J. Tubular Basement Membrane Immune Deposits Associated with Polyoma Virus Nephropathy in Renal Allografts. Lab Invest. 2006;86 (suppl 1):259A (abstract).Google Scholar
Randhawa, PS, Vats, A, Zygmunt, D, Swalsky, P, Scantlebury, V, Shapiro, R, et al. Quantitation of Viral DNA in Renal Allograft Tissue from Patients with BK Virus Nephropathy. Transplantation. 2002;74(4):485–8.Google Scholar
Schmid, H, Burg, M, Kretzler, M, Banas, B, Grone, HJ, Kliem, V. BK Virus Associated Nephropathy in Native Kidneys of a Heart Allograft Recipient. Am J Transplant. 2005;5(6):1562–8.Google Scholar
Schmid, H, Nitschko, H, Gerth, J, Kliem, V, Henger, A, Cohen, CD, et al. Polyomavirus DNA and RNA Detection in Renal Allograft Biopsies: Results from a European Multicenter Study. Transplantation. 2005;80(5):600–4.Google Scholar
Nickeleit, V, Singh, HK, Gilliland, MGF, Thompson, D, Romeo, C. Latent Polyomavirus Type BK Loads in Native Kidneys Analyzed by TaqMan PCR: What Can Be Learned to Better Understand BK Virus Nephropathy? (abstract). Journal of the American Society of Nephrology. 2003;14:424A.Google Scholar
Boldorini, R, Veggiani, C, Barco, D, Monga, G. Kidney and Urinary Tract Polyomavirus Infection and Distribution: Molecular Biology Investigation of 10 Consecutive Autopsies. Arch Pathol Lab Med. 2005;129(1):6973.Google Scholar
Randhawa, P, Shapiro, R, Vats, A. Quantitation of DNA of Polyomaviruses BK and JC in Human Kidneys. J Infect Dis. 2005;192(3):504–9.Google Scholar
Chesters, PM, Heritage, J, McCance, DJ. Persistence of DNA Sequences of BK Virus and JC Virus in Normal Human Tissues and in Diseased Tissues. J Infect Dis. 1983;147(4):676–84.Google Scholar
Limaye, AP, Smith, KD, Cook, L, Groom, DA, Hunt, NC, Jerome, KR, et al. Polyomavirus Nephropathy in Native Kidneys of Non-renal Transplant Recipients. Am J Transplant. 2005;5(3):614–20.Google Scholar
Bracamonte, E, Leca, N, Smith, KD, Nicosia, RF, Nickeleit, V, Kendrick, E, et al. Tubular Basement Membrane Immune Deposits in Association with BK Polyomavirus Nephropathy. Am J Transplant. 2007:(in press).Google Scholar
Colvin, RB, Nickeleit, V. Renal Transplant Pathology. In: Jennette, JC, Olson, JL, Schwartz, MM, Silva, FG, editors. Pathology of the Kidney. 2. 6 ed. Philadelphia, Baltimore, New York, London: Lippincott Williams & Wilkins; 2007. p. 1347–490.Google Scholar
Nickeleit, V, Mihatsch, MJ. Polyomavirus Nephropathy: Pathogenesis, Morphological and Clinical Aspects. In: Kreipe, HH, editor. Verh Dtsch Ges Pathol, 88 Tagung. Muenchen, Jena: Urban & Fischer; 2004. p. 6984.Google Scholar
Hirsch, HH, Brennan, DC, Drachenberg, CB, Ginevri, F, Gordon, J, Limaye, AP, et al. Polyomavirus-associated Nephropathy in Renal Transplantation: Interdisciplinary Analyses and Recommendations. Transplantation. 2005;79(10):1277–86.Google Scholar
Drachenberg, RC, Drachenberg, CB, Papadimitriou, JC, Ramos, E, Fink, JC, Wali, R, et al. Morphological Spectrum of Polyoma Virus Disease in Renal Allografts: Diagnostic Accuracy of Urine Cytology. Am J Transplant. 2001;1(4):373–81.Google Scholar
van Gorder, MA, Della Pelle, P, Henson, JW, Sachs, DH, Cosimi, AB, Colvin, RB. Cynomolgus Polyoma Virus Infection: A New Member of the Polyoma Virus Family Causes Interstitial Nephritis, Ureteritis, and Enteritis in Immunosuppressed Cynomolgus Monkeys. Am J Pathol. 1999;154(4):1273–84.Google Scholar
Rubin, RH, Colvin, RB. Impact of Cytomegalovirus Infection on Renal Transplantation. In: L.C. R, Solez, K, Burdick, JF, editors. Kidney Transplant Rejection: Diagnosis and Treatment. 3rd ed. NY: Marcel Dekker; 1998. p. 605–25.Google Scholar
Battegay, EJ, Mihatsch, MJ, Mazzucchelli, L, Zollinger, HU, Gudat, F, Thiel, G, et al. Cytomegalovirus and Kidney. Clinical Nephrology. 1988;30(5):239–47.Google Scholar
Joshi, K, Nada, R, Radotra, BD, Jha, V, Sakhuja, V. Pathological Spectrum of Cytomegalovirus Infection of Renal Allograft Recipients – An Autopsy Study from North India. Indian J Pathol Microbiol. 2004;47(3):327–32.Google Scholar
Cozzutto, C, Felici, N. Unusual Glomerular Change in Cytomegalic Inclusion Disease. Virchows Arch A Pathol Anat and Histol. 1974;364:365–9.Google Scholar
Beneck, D, Greco, MA, Feiner, HD. Glomerulonephritis in Congenital Cytomegalic Inclusion Disease. Human Pathol. 1986;17:1054–9.Google Scholar
Onuigbo, M, Haririan, A, Ramos, E, Klassen, D, Wali, R, Drachenberg, C. Cytomegalovirus-induced Glomerular Vasculopathy in Renal Allografts: A Report of Two Cases. Am J Transplant. 2002;2(7):684–8.Google Scholar
Detwiler, RK, Singh, HK, Bolin, P Jr., Jennette, JC. Cytomegalovirus-induced Necrotizing and Crescentic Glomerulonephritis in a Renal Transplant Patient. 1998;32(5):820–4.Google Scholar
Kadereit, S, Michelson, S, Mougeno, tB, Thibault, P, Verroust, PJ, Mignon, F, et al. Polymerase Chain Reaction Detection of Cytomegalovirus Genome in Renal Biopsies. Kidney International. 1992;42:1012–6.Google Scholar
Liapis, H, Storch, GA, Hill, DA, Rueda, J, Brennan, DC. CMV Infection of the Renal Allograft Is Much More Common Than the Pathology Indicates: A Tetrospective Analysis of Qualitative and Quantitative Buffy Coat CMV-PCR, Renal Biopsy Pathology and Tissue CMV-PCR. Nephrol Dial Transplant. 2003;18(2):397402.Google Scholar
Richardson, WP, Colvin, RB, Cheeseman, SH, Tolkoff-Rubin, NE, Herrin, JT, Cosimi, AB, et al. Glomerulopathy Associated with Cytomegalovirus Viremia in Renal Allografts. New Engl J Med. 1981;305(2):5763.Google Scholar
Streblow, DN, Orloff, SL, Nelson, JA. Acceleration of Allograft Failure by Cytomegalovirus. Current Opinion in Immunology. 2007;19(5):577–82.Google Scholar
Fateh-Moghadam, S, Bocksch, W, Wessely, R, Jager, G, Hetzer, R, Gawaz, M. Cytomegalovirus Infection Status Predicts Progression of Heart-transplant Vasculopathy. Transplantation. 2003;76(10):1470–4.Google Scholar
Reinke, P, Fietze, E, Ode-Hakim, S, Prosch, S, Lippert, J, Ewert, R, et al. Late-acute Renal Allograft Rejection and Symptomless Cytomegalovirus Infection. Lancet. 1994;344(8939–8940):1737–8.Google Scholar
Emovon, OE, Chavin, J, Rogers, K, Self, S. Adenovirus in Kidney Transplantation: An Emerging Pathogen? Transplantation. 2004;77(9):1474–5.Google Scholar
Asim, M, Chong-Lopez, A, Nickeleit, V. Adenovirus Infection of a Renal Allograft. Am J Kidney Dis. 2003;41(3):696701.Google Scholar
Nickeleit, V. Critical Commentary To: Acute Adenoviral Infection of a Graft by Serotype 35 Following Renal Transplantation. Pathol Res Pract. 2003;199:701–2.Google Scholar
Singh, HK, Nickeleit, V. Kidney, Disease Caused by Viral Infections. Curr Diag Pathol. 2004;10:1121.Google Scholar
Ito, M, Hirabayashi, N, Uno, Y, Nakayama, A, Asai, J. Necrotizing Tubulointerstitial Nephritis Associated with Adenovirus Infection. Human Pathology. 1991;22(12):1225–31.Google Scholar
Bruno, B, Zager, RA, Boeckh, MJ, Gooley, TA, Myerson, DH, Huang, ML, et al. Adenovirus Nephritis in Hematopoietic Stem-cell Transplantation. Transplantation. 2004;77(7):1049–57.Google Scholar
Mazoyer, E, Daugas, E, Verine, J, Pillebout, E, Mourad, N, Molina, JM, et al. A Case Report of Adenovirus-related Acute Interstitial Nephritis in a Patient with AIDS. Am J Kidney Dis. 2008;51(1):121–6.Google Scholar
Mathur, SC, Squiers, EC, Tatum, AH, Szmalc, FS, Daucher, JW, Welker, DM, et al. Adenovirus Infection of the Renal Allograft with Sparing of Pancreas Graft Function in the Recipient of a Combined Kidney-Pancreas Transplant. Transplantation. 1998;65(1):138–41.Google Scholar
Friedrichs, N, Eis-Hubinger, AM, Heim, A, Platen, E, Zhou, H, Buettner, R. Acute Adenoviral Infection of a Graft by Serotype 35 Following Renal Transplantation. Pathol Res Pract. 2003;199(8):565–70.Google Scholar
Seidemann, K, Heim, A, Pfister, ED, Koditz, H, Beilken, A, Sander, A, et al. Monitoring of Adenovirus Infection in Pediatric Transplant Recipients by Quantitative PCR: Report of Six Cases and Review of the Literature. Am J Transplant. 2004;4(12):2102–8.Google Scholar
Lion, T, Baumgartinger, R, Watzinger, F, Matthes-Martin, S, Suda, M, Preuner, S, et al. Molecular Monitoring of Adenovirus in Peripheral Blood after Allogeneic Bone Marrow Transplantation Permits Early Diagnosis of Disseminated Disease. Blood. 2003;102(3):1114–20.Google Scholar
Myerowitz, RL, Stalder, H, Oxman, MN, Levin, MJ, Moore, M, Leith, JD, et al. Fatal Disseminated Adenovirus Infection in a Renal Transplant Recipient. Am J Med. 1975;59(4):591–8.Google Scholar
Harris, NL, Swerdlow, SH, Frizzera, G, Knowles, DM. Post-transplant Lymphoproliferative Disorders. In: Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW, editors. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues World Health Organization Classification of Tumours. Lyon: IARC Press; 2001. p. 264–9.Google Scholar
de Silva, LM, Bale, P, de Courcy, J, Brown, D, Knowles, W. Renal Failure due to BK Virus Infection in an Immunodeficient Child. J Med Virol. 1995;45(2):192–6.Google Scholar
Mueller-Hermelink, HK, Ott, G, Kneitz, B, Ruediger, T. The Spectrum of Lymphoproliferations and Malignant Lymphoma after Organ Transplantation. In: Kreipe, HH, editor. Verhandlungen der Deutschen Gesellschaft fuer Pathologie, 88 Tagung. 1. Muenchen, Jena: Urban &Fischer; 2004. p. 63–8.Google Scholar
Frank, D, Cesarman, E, Liu, Yf, Michler, RE, Knowles, DM. Posttransplantation Lymphoproliferative Disorders Frequently Contain Type A and Not Type B Epstein-Barr Virus. Blood. 1995;85:1396–403.Google Scholar
Lager, DJ, Burgart, LJ, Slagel, DD. Epstein-Barr Virus Detection in Sequential Biopsies from Patients with a Posttransplant Lymphoproliferative Disorder. Mod Pathol. 1993;6(1):42–7.Google Scholar
Ferry, JA, Harris, NL. Pathology of Posttransplant Lymphoproliferative Disorders. In: Solez, K, Racussen, LC, Billingham, ME, editors. Solid Organ Transplant Rejection. New York: Marcel Dekker; 1996. p. 277–98.Google Scholar
Penn, I. The Changing Pattern of Posttransplant Malignancies. Transplantation Proceedings. 1991;23:1101–3.Google Scholar
Capello, D, Rossi, D, Gaidano, G. Post-transplant Lymphoproliferative Disorders: Molecular Basis of Disease Histogenesis and Pathogenesis. Hematological Oncology. 2005;23(2):61–7.Google Scholar
Caillard, S, Dharnidharka, V, Agodoa, L, Bohen, E, Abbott, K. Posttransplant Lymphoproliferative Disorders after Renal Transplantation in the United States in Era of Modern Immunosuppression. Transplantation. 2005;80(9):1233–43.Google Scholar
Shapiro, R, Nalesnik, M, McCauley, J, Fedorek, S, Jordan, ML, Scantlebury, VP, et al. Posttransplant Lymphoproliferative Disorders in Adult and Pediatric Renal Transplant Patients Receiving Tacrolimus-based Immunosuppression. Transplantation. 1999;68(12):1851–4.Google Scholar
Koike, J, Yamaguchi, Y, Hoshikawa, M, Takahashi, H, Horita, S, Tanabe, K, et al. Post-Transplant Lymphoproliferative Disorders in Kidney Transplantation: Histological and Molecular Genetic Assessment. Clin Transplant. 2002;16 Suppl 8:12–7.Google Scholar
Randhawa, PS, Magnone, M, Jordan, M, Shapiro, R, Demetris, AJ, Nalesnik, M. Renal Allograft Involvement by Epstein-Barr Virus Associated Post-transplant Lymphoproliferative Disease. American Journal of Surgical Pathology. 1996;20(5):563–71.Google Scholar
Cockfield, SM, Preiksaitis, JK, Jewell, LD, Parfrey, NA. Post-transplant Lymphoproliferative Disorder in Renal Allograft Recipients. Clinical Experience and Risk Factor Analysis in a Single Center. Transplantation. 1993;56(1):8896.Google Scholar
Citterio, F, Lauriola, L, Nanni, G, Vecchio, FM, Magalini, SC, Castagneto, M. Polyclonal Lymphoma Confined to Renal Allograft: Case Report. Transplantation Proceedings. 1987;19(5):3732–4.Google Scholar
Jones, C, Bleau, B, Buskard, N, Magil, A, Yeung, K, Shackleton, C, et al. Simultaneous Development of Diffuse Immunoblastic Lymphoma in Recipients of Renal Transplants from a Single Cadaver Donor: Transmission of Epstein-Barr Virus and Triggering by OKT3. American Journal of Kidney Diseases. 1994;23(1):130–4.Google Scholar
Denning, DW, Weiss, LM, Martinez, K, Flechner, SM. Transmission of Epstein-Barr Virus by a Transplanted Kidney, with Activation by OKT3 Antibody. Transplantation. 1989;48:141–4.Google Scholar
Nádasdy, T, Park, CS, Peiper, SC, Wenzl, JE, Oates, J, Silva, FG. Epstein-Barr Virus Infection-associated Renal Disease: Diagnostic Use of Molecular Hybridization Technology in Patients with Negative Serology. Journal of the American Society of Nephrology. 1992;2(12):1734–42.Google Scholar
Weissman, DJ, Ferry, JA, Harris, NL, Louis, DN, Delmonico, F, Spiro, I. Posttransplant Lymphoproliferative Disorders in Solid Organ Recipients Are Predominately Aggressive Tumors of Host Origin. Am J Clin Pathol. 1995;103:748–55.Google Scholar
Delecluse, H-J, Kremmer, E, Rouault, J-P, Cour, C, Bornkamm, G, Berger, F. The Expression of Epstein-Barr Virus Latent Proteins Is Related to the Pathological Features of Post-transplant Lymphoproliferative Disorders. Am J Pathol. 1995;146:1113–20.Google Scholar
Thomas, JA, Hotchin, NA, Allday, MJ, Amolot, P, Rose, M, Yacoub, M, et al. Immunohistology of Epstein-Barr Virus-associated Antigens in B Cell Disorders from Immunocompromised Individuals. Transplantation. 1990;49:944–533.Google Scholar
Renoult, E, Aymard, B, Gregoire, MJ, Bellou, A, Hubert, J, Hestin, D, et al. Epstein-Barr Virus Lymphoproliferative Disease of Donor Origin after Kidney Transplantation: A Case Report. American Journal of Kidney Diseases. 1995;26(1):84–7.Google Scholar
Hjelle, B, Evans, HM, Yen, TS, Garovoy, M, Guis, M, Edman, JC. A Poorly Differentiated Lymphoma of Donor Origin in a Renal Allograft Recipient. Transplantation. 1989;47(6):945–8.Google Scholar
Ulrich, W, Chott, A, Watschinger, B, Reiter, C, Kovarik, J, Radaszkiewicz, T. Primary Peripheral T Cell Lymphoma in a Kidney Transplant under Immunosuppression with Cyclosporine A. Human Pathology. 1989;20(10):1027–30.Google Scholar
Meduri, G, Fromentin, L, Vieillefond, A, Fries, D. Donor-related Non-Hodgkin’s Lymphoma in a Renal Allograft Recipient. Transplantation Proceedings. 1991;23(5):2649–50.Google Scholar
Sprangers, B, Kuypers, DR. Recurrence of Glomerulonephritis after Renal Transplantation. Transplant Rev (Orlando). 2013;27(4):126–34.Google Scholar
Marinaki, S, Lionaki, S, Boletis, JN. Glomerular Disease Recurrence in the Renal Allograft: A Hurdle but Not a Barrier for Successful Kidney Transplantation. Transplantation Proceedings. 2013;45(1):39.Google Scholar
Ulinski, T. Recurrence of Focal Segmental Glomerulosclerosis after Kidney Transplantation: Strategies and Outcome. Curr Opin Organ Transplant. 2010;15(5):628–32.Google Scholar
Ponticelli, C, Moroni, G, Glassock, RJ. Recurrence of Secondary Glomerular Disease after Renal Transplantation. Clin J Am Soc Nephrol. 2011;6(5):1214–21.Google Scholar
van der Boog, PJ, de Fijter, JW, Bruijn, JA, van Es, LA. Recurrence of IgA Nephropathy after Renal Transplantation. Annales de medecine interne. 1999;150(2):137–42.Google Scholar
Jeong, HJ, Huh, KH, Kim, YS, Kim, SI. IgA Nephropathy in Renal Allografts-recurrence and Graft Dysfunction. Yonsei Med J. 2004;45(6):1043–8.Google Scholar
D’Agati, V. Pathologic Classification of Focal Segmental Glomerulosclerosis. Semin Nephrol. 2003;23(2):117–34.Google Scholar
D’Agati, VD, Alster, JM, Jennette, JC, Thomas, DB, Pullman, J, Savino, DA, et al. Association of Histologic Variants in FSGS Clinical Trial with Presenting Features and Outcomes. Clin J Am Soc Nephrol. 2013;8(3):399406.Google Scholar
Letavernier, E, Bruneval, P, Mandet, C, Van Huyen, J-PD, Péraldi, M-N, Helal, I, et al. High Sirolimus Levels May Induce Focal Segmental Glomerulosclerosis De Novo. Clinical Journal of the American Society of Nephrology. 2007;2(2):326–33.Google Scholar
Leca, N. Focal Segmental Glomerulosclerosis Recurrence in the Renal Allograft. Adv Chronic Kidney Dis. 2014;21(5):448–52.Google Scholar
Green, H, Rahamimov, R, Rozen-Zvi, B, Pertzov, B, Tobar, A, Lichtenberg, S, et al. Recurrent Membranoproliferative Glomerulonephritis Type I After Kidney Transplantation: A 17-Year Single-center Experience. Transplantation. 2014.Google Scholar
McCaughan, JA, O’Rourke, DM, Courtney, AE. Recurrent Dense Deposit Disease after Renal Transplantation: An Emerging Role for Complementary Therapies. Am J Transplant. 2012;12(4):1046–51.Google Scholar
Moroni, G, Casati, C, Quaglini, S, Gallelli, B, Banfi, G, Montagnino, G, et al. Membranoproliferative Glomerulonephritis Type I in Renal Transplantation Patients: A Single-center Study of a Cohort of 68 Renal Transplants Followed up for 11 Years. Transplantation. 2011;91(11):1233–9.Google Scholar
Lorenz, EC, Sethi, S, Leung, N, Dispenzieri, A, Fervenza, FC, Cosio, FG. Recurrent Membranoproliferative Glomerulonephritis after Kidney Transplantation. Kidney Int. 2010;77(8):721–8.Google Scholar
Ponticelli, C, Glassock, RJ. Posttransplant Recurrence of Primary Glomerulonephritis. Clin J Am Soc Nephrol. 2010;5(12):2363–72.Google Scholar
Canaud, G, Audard, V, Kofman, T, Lang, P, Legendre, C, Grimbert, P. Recurrence from Primary and Secondary Glomerulopathy after Renal Transplant. Transpl Int. 2012;25(8):812–24.Google Scholar
Najafian, B, Alpers, CE, Fogo, AB. Pathology of Human Diabetic Nephropathy. Contrib Nephrol. 2011;170:3647.Google Scholar
Tervaert, TW, Mooyaart, AL, Amann, K, Cohen, AH, Cook, HT, Drachenberg, CB, et al. Pathologic Classification of Diabetic Nephropathy. J Am Soc Nephrol. 2010;21(4):556–63.Google Scholar
Norby, GE, Strom, EH, Midtvedt, K, Hartmann, A, Gilboe, IM, Leivestad, T, et al. Recurrent Lupus Nephritis after Kidney Transplantation: A Surveillance Biopsy Study. Ann Rheum Dis. 2010;69(8):1484–7.Google Scholar
Weng, F, Goral, S. Recurrence of Lupus Nephritis after Renal Transplantation: If We Look for It, Will We Find It? Nat Clin Pract Neph. 2005;1(2):62–3.Google Scholar
Zarifian, A, Meleg-Smith, S, O’Donovan, R, Tesi, RJ, Batuman, V. Cyclosporine-associated Thrombotic Microangiopathy in Renal Allografts. Kidney Int. 1999;55(6):2457–66.Google Scholar
Barbour, TD, Crosthwaite, A, Chow, K, Finlay, MJ, Better, N, Hughes, PD, et al. Antiphospholipid Syndrome in Renal Transplantation. Nephrology (Carlton, Vic). 2014;19(4):177–85.Google Scholar
Salameh, H, Abu Omar, M, Alhariri, A, Kisra, S, Qasem, A, Bin Abdulhak, A. Adult Post-kidney Transplant Familial Atypical Hemolytic Uremic Syndrome Successfully Treated with Eculizumab: A Case Report and Literature Review. American Journal of Therapeutics. 2014.Google Scholar
Chua, S, Wong, G, Lim, WH. The Importance of Genetic Mutation Screening to Determine Retransplantation Following Failed Kidney Allograft from Recurrent Atypical Haemolytic Ureamic Syndrome. BMJ Case Reports. 2014.Google Scholar
Ruggenenti, P. Post-transplant Hemolytic-uremic Syndrome. Kidney Int. 2002;62(3):1093–104.Google Scholar
Hruskova, Z, Geetha, D, Tesar, V. Renal Transplantation in Anti-neutrophil Cytoplasmic Antibody-associated Vasculitis. Nephrol Dial Transplant. 2014.Google Scholar
Berre, LL, Dufay, A, Cantarovich, D, Meurette, A, Audrain, M, Giral, M, et al. Early and Irreversible Recurrence MPO-ANCA-positive Glomerulonephritis after Renal Transplantation. Clin Nephrol. 2014.Google Scholar
Kowalewska, J. Pathology of Recurrent Diseases in Kidney Allografts: Membranous Nephropathy and Focal Segmental Glomerulosclerosis. Curr Opin Organ Transplant. 2013;18(3):313–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×